Elekes, M.,
Soukup, D. T.,
Soukup, L.
and
Szentmiklóssy, Z.
Decompositions of edge-colored infinite complete graphs into monochromatic paths,
pdf, submitted.

Elekes, M. and
Vidnyánszky, Z. Characterization of order types of pointwise linearly ordered families of Baire class 1 functions, pdf, submitted.

Balka, R.,
Darji, U. B. and Elekes, M. Hausdorff and packing dimension of fibers and graphs of prevalent continuous maps, pdf, submitted.

Elekes, M., Kiss, V. and
Vidnyánszky, Z. Ranks on the Baire class ξ functions, pdf, to appear in Trans. Amer. Math. Soc.

Elekes, M. and
Keleti, T.
Decomposing the real line into Borel sets closed under addition, pdf,
to appear in Math. Logic Quart.

Balka, R.,
Darji, U. B. and Elekes, M. Bruckner-Garg-type results with respect to Haar null sets in C[0,1], pdf, to appear in Proc. Edinb. Math. Soc. (2).

Elekes, M. and
Vidnyánszky, Z. Haar null sets without G_{δ} hulls, pdf, to appear in Israel
J. Math.

Balka, R., Elekes, M. and Máthé, A.
Answer to a question of Kolmogorov, pdf, Proc. Amer. Math. Soc.143 (2015), no. 5, 2085-2089.

Balka, R.,
Buczolich, Z. and Elekes, M.
A new fractal dimension: The topological Hausdorff dimension, pdf, Adv. Math.274 (2015), 881-927.

Elekes, M. and
Steprans, J. Haar null sets and the consistent reflection
of non-meagreness, pdf, Canad. J. Math.66 (2014), 303-322.

Elekes, M.,
Keleti, T. and Máthé, A.
Reconstructing geometric objects from
the measures of their intersections with test sets, pdf, J. Fourier Anal. Appl.19 (2013), no. 3, 545-576.

Balka, R.,
Buczolich, Z. and Elekes, M.
Topological Hausdorff dimension and level sets of
generic continuous functions on fractals, pdf, Chaos Solitons Fractals45 (2012), 1579-1589.

Balka, R. and Elekes, M.
Continuous horizontally rigid functions of two variables are affine, pdf, Aequationes Math.84
(2012), no. 1-2, 27-39.

Elekes, M.
A covering theorem and the random-indestructibility of the density zero ideal,
pdf, Real Anal. Exchange.37 (2011),
no. 1, 55-60.

Elekes, M., Mátrai, T.
and Soukup, L.
On splitting infinite-fold covers,
pdf, Fund. Math.212 (2011), 95-127.

Elekes, M.,
Keleti, T. and Máthé, A.
Self-similar and self-affine sets; measure of the
intersection of two copies, pdf, Ergodic Theory Dynam. Systems.30 (2010), no. 2, 399-440.

Elekes, M. and Máthé, A.
Can we assign the Borel hulls in a monotone way?,
ps, pdf, Fund. Math.205 (2009), no. 2, 105-115.

Balka, R. and Elekes, M.
The structure of continuous rigid functions of two variables,
pdf, Real Anal. Exchange35 (2009), no. 1, 139-156.

Elekes, M. On a converse to Banach's Fixed Point
Theorem, ps, pdf, Proc. Amer.
Math. Soc.137 (2009), no. 9, 3139-3146.

Balka, R. and Elekes, M.
The structure of rigid functions,
ps, pdf,
J. Math. Anal. Appl.345 (2008), no. 2, 880-888.

Elekes, M. and
Tóth, Á. Covering
locally compact groups by less than 2^{ω} many translates of a compact
nullset, ps, pdf,
Fund. Math.193 (2007), 243-257.

Elekes, M. and Laczkovich, M. A cardinal number
connected to the solvability of systems of difference equations in a given
function class, ps, pdf, J. Anal. Math.101 (2007), 199-218.

Elekes, M. and
Keleti, T.
Is Lebesgue measure the
only σ-finite invariant Borel measure?, ps, pdf,
J. Math. Anal. Appl.321 (2006), no. 1, 445-451.

Elekes, M. and
Steprans, J. Chains of Baire class 1
functions and various notions of special trees, ps, pdf, Israel
J. Math.151 (2006), 179-187.

Elekes, M. and
Keleti, T. Borel sets which are null
or non-sigma-finite for every translation invariant measure, ps, pdf, Adv. Math.201 (2006), 102-115.

Elekes, M. Hausdorff measures of different dimensions
are isomorphic under the Continuum Hypothesis, ps, pdf, Real
Anal. Exchange30 (2004/05), no. 2, 605-616.

Elekes, M. and
Steprans, J. Less than 2^{ω} many
translates of a compact nullset may cover the real line, ps, pdf,
Fund. Math.181 (2004), no. 1, 89-96.

Elekes, M. Measurable envelopes, Hausdorff measures
and Sierpinski sets, ps, pdf, Coll. Math.98 (2003), no. 2,
155-162.

Elekes, M. and
Kunen, K. Transfinite sequences of
continuous and Baire class 1 functions, ps, pdf, Proc. Amer. Math. Soc.131 (2003),
no. 8, 2453-2457.

Elekes, M. Level sets of differentiable functions of
two variables with non-vanishing gradient, ps, pdf,
J. Math. Anal. Appl.270 (2002), no. 2, 369-382.

Elekes, M.,
Keleti, T. and Prokaj, V. The composition
of derivatives has a fixed point, ps, pdf, Real Anal. Exchange27 (2001/02),
no. 1, 131-140.

Elekes, M. Linearly ordered families of Baire 1
functions, ps, pdf,
Real Anal. Exchange 27 (2001/02), no. 1, 49-63.

Address:
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
H-1053 Budapest, Reáltanoda u. 13-15.
H-1364 Budapest, P.O. Box: 127
Office: III. 12.
Phone: (36-1) 483 8351, (36-1) 483 8300
Fax: (36-1) 483 8333
e-mail: