Márton Elekes



Information for students


Papers

My research is partially supported by and .

  • Elekes, M., Kiss, V. and Vidnyánszky, Z. Ranks on the Baire class ξ functions, pdf, submitted.

  • Elekes, M. and Vidnyánszky, Z. Haar null sets without Gδ hulls, pdf, submitted.

  • Balka, R., Darji, U. B. and Elekes, M. Bruckner-Garg-type results with respect to Haar null sets in C[0,1], pdf, submitted.

  • Balka, R., Buczolich, Z. and Elekes, M. A new fractal dimension: The topological Hausdorff dimension, pdf, submitted.

  • Balka, R., Elekes, M. and Máthé, A. Answer to a question of Kolmogorov, pdf, to appear in Proc. Amer. Math. Soc.

  • Elekes, M. and Steprans, J. Haar null sets and the consistent reflection of non-meagreness, pdf, Canad. J. Math. 66 (2014), 303-322.

  • Elekes, M., Keleti, T. and Máthé, A. Reconstructing geometric objects from the measures of their intersections with test sets, pdf, J. Fourier Anal. Appl. 19 (2013), no. 3, 545-576.

  • Balka, R., Buczolich, Z. and Elekes, M. Topological Hausdorff dimension and level sets of generic continuous functions on fractals, pdf, Chaos Solitons Fractals 45 (2012), 1579-1589.

  • Balka, R. and Elekes, M. Continuous horizontally rigid functions of two variables are affine, pdf, Aequationes Math. 84 (2012), no. 1-2, 27-39.

  • Elekes, M. A covering theorem and the random-indestructibility of the density zero ideal, pdf, Real Anal. Exchange. 37 (2011), no. 1, 55-60.

  • Elekes, M., Mátrai, T. and Soukup, L. On splitting infinite-fold covers, pdf, Fund. Math. 212 (2011), 95-127.

  • Elekes, M., Keleti, T. and Máthé, A. Self-similar and self-affine sets; measure of the intersection of two copies, pdf, Ergodic Theory Dynam. Systems. 30 (2010), no. 2, 399-440.

  • Elekes, M. and Máthé, A. Can we assign the Borel hulls in a monotone way?, ps, pdf, Fund. Math. 205 (2009), no. 2, 105-115.

  • Balka, R. and Elekes, M. The structure of continuous rigid functions of two variables, pdf, Real Anal. Exchange 35 (2009), no. 1, 139-156.

  • Elekes, M. On a converse to Banach's Fixed Point Theorem, ps, pdf, Proc. Amer. Math. Soc. 137 (2009), no. 9, 3139-3146.

  • Balka, R. and Elekes, M. The structure of rigid functions, ps, pdf, J. Math. Anal. Appl. 345 (2008), no. 2, 880-888.

  • Elekes, M. and Tóth, Á. Covering locally compact groups by less than 2ω many translates of a compact nullset, ps, pdf, Fund. Math. 193 (2007), 243-257.

  • Elekes, M. and Laczkovich, M. A cardinal number connected to the solvability of systems of difference equations in a given function class, ps, pdf, J. Anal. Math. 101 (2007), 199-218.

  • Elekes, M. and Keleti, T. Is Lebesgue measure the only σ-finite invariant Borel measure?, ps, pdf, J. Math. Anal. Appl. 321 (2006), no. 1, 445-451.

  • Elekes, M. and Steprans, J. Chains of Baire class 1 functions and various notions of special trees, ps, pdf, Israel J. Math. 151 (2006), 179-187.

  • Elekes, M. and Keleti, T. Borel sets which are null or non-sigma-finite for every translation invariant measure, ps, pdf, Adv. Math. 201 (2006), 102-115.

  • Elekes, M. Hausdorff measures of different dimensions are isomorphic under the Continuum Hypothesis, ps, pdf, Real Anal. Exchange 30 (2004/05), no. 2, 605-616.

  • Elekes, M. and Steprans, J. Less than 2ω many translates of a compact nullset may cover the real line, ps, pdf, Fund. Math. 181 (2004), no. 1, 89-96.

  • Elekes, M. Measurable envelopes, Hausdorff measures and Sierpinski sets, ps, pdf, Coll. Math. 98 (2003), no. 2, 155-162.

  • Elekes, M. and Kunen, K. Transfinite sequences of continuous and Baire class 1 functions, ps, pdf, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2453-2457.

  • Elekes, M. Level sets of differentiable functions of two variables with non-vanishing gradient, ps, pdf, J. Math. Anal. Appl. 270 (2002), no. 2, 369-382.

  • Elekes, M., Keleti, T. and Prokaj, V. The composition of derivatives has a fixed point, ps, pdf, Real Anal. Exchange 27 (2001/02), no. 1, 131-140.

  • Elekes, M. Linearly ordered families of Baire 1 functions, ps, pdf, Real Anal. Exchange 27 (2001/02), no. 1, 49-63.


    Address:
    	 Alfréd Rényi Institute of Mathematics
    	 Hungarian Academy of Sciences
    	 H-1053 Budapest, Reáltanoda u. 13-15.
    	 H-1364 Budapest, P.O. Box: 127
    Office:	 III. 12.
    Phone:	 (36-1) 483 8351, (36-1) 483 8300
    Fax:	 (36-1) 483 8333
    e-mail: