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a suitable rotation around the z-axis f(x, y) is of the form a + bx + dy,
a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → R ontinuous).The problem remains open in higher dimensions.1 IntrodutionAn easy alulation shows that the exponential funtion f(x) = ex has thesomewhat `paradoxial' property that cf is a translate of f for every c > 0. Itis also easy to see that every funtion of the form a+ bekx shares this property.Moreover, for every funtion of the form f(x) = a + bx the graph of cf isisometri to the graph of f . In [2℄ Cain, Clark and Rose introdued the notionof vertial rigidity, whih we now formulate for funtions of several variables.De�nition 1.1 A funtion f : R

n → R is alled vertially rigid, if graph(cf)is isometri to graph(f) for all c ∈ (0,∞). (Clearly, c ∈ R \ {0} would be thesame.)Then D. Jankovi¢ formulated the following onjeture (see [2℄).Conjeture 1.2 (D. Jankovi¢) A ontinuous funtion f : R → R is vertiallyrigid if and only if it is of the form a+ bx or a+ bekx (a, b, k ∈ R, k 6= 0).This onjeture, and more, was proved in [1℄.Theorem 1.3 Jankovi¢'s onjeture holds. (It is atually enough to assumethat f is vertially rigid for an unountable set C, see De�nition 1.6 below.)Later C. Rihter gave generalisations of this theorem in various diretions,see [3℄.The main goal of the present paper is to give a omplete desription of theontinuous vertially rigid funtions of two variables.Theorem 1.4 (Main Theorem) A ontinuous funtion f : R
2 → R is ver-tially rigid if and only if after a suitable rotation around the z-axis f(x, y) isof the form a + bx + dy, a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0,

s : R → R ontinuous).As these lasses look somewhat ad ho, we do not even have onjetures inhigher dimensions.Problem 1.5 Charaterise the ontinuous vertially rigid funtions of n vari-ables for n ≥ 3.In fat, for the proof of the Main Theorem we need the following tehnialgeneralisations.
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De�nition 1.6 If C is a subset of (0,∞) and G is a set of isometries of R
3 thenwe say that f is vertially rigid for a set C ⊂ (0,∞) via elements of G if forevery c ∈ C there exists a ϕ ∈ G suh that ϕ(graph(f)) = graph(cf).(If we do not mention C or G then C is (0,∞) and G is the set of allisometries.)De�nition 1.7 Let us say that a set C ⊂ (0,∞) ondensates to ∞ if for every

r ∈ R the set C ∩ (r,∞) is unountable.The Main Theorem will immediately follow from the following, in whih wejust replae (0,∞) by a set C ondensating to ∞.Theorem 1.8 (Main Theorem, tehnial form) Let C ⊂ (0,∞) be a setondensating to ∞. Then a ontinuous funtion f : R
2 → R is vertially rigidfor C if and only if after a suitable rotation around the z-axis f(x, y) is of theform a+ bx+ dy, a+ s(y)ekx or a+ bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → Rontinuous).The struture of the proof will be the following. First we hek in Setion 2that funtions of the above forms are rigid. (Of ourse, they are all ontinuous.)Then we start proving the Main Theorem in more and more general settings.In Setion 3 �rst we show that if all the isometries are horizontal translationsthen the vertially rigid funtion f(x, y) is of the form s(y)ekx (k ∈ R, k 6= 0,

s : R → R ontinuous). The punhline here is that we an derive a simple fun-tional equation from vertial rigidity (some sort of `multipliativity', see Lemma3.4). Then we onlude this setion by referring to a ompletely algebrai proofin [1℄ showing that if we allow arbitrary translations then f(x, y) is of the form
a+ s(y)ekx (a, k ∈ R, k 6= 0, s : R → R ontinuous).Then we start working on the ase of general isometries. The entral ideais to onsider the set Sf of diretions of segments onneting pairs of points on
graph(f) (see De�nition 4.1). We ollet the neessary properties of this setin Setion 4. The set Sf has some sort of rigidity in that the transformation
f 7→ cf distorts the shape of it, but the resulting set has to be isometri to theoriginal one (see De�nition 5.1 and Remark 5.2). Using these we determine thepossible Sf 's in Setion 5, then in Setion 6 we omplete the proof by handlingthese ases using various methods.Finally, in Setion 7 we ollet the open questions.2 Funtions of these forms are rigidRotation of the graph around the z-axis does not a�et vertial rigidity, so wean assume that f is of the given form without rotations.Funtions of the form a+ bx+ dy are learly vertially rigid.Let now f(x, y) = a + s(y)ekx (a, k ∈ R, k 6= 0, s : R → R ontinuous).Then cf(x, y) = f(x + log c

k
, y) + a(c − 1), so f is atually vertially rigid viatranslations in the xz-plane. 3



Let now f(x, y) = a+bekx+dy (a, b, d, k ∈ R, k 6= 0). Resaling the graph ina homotheti way does not a�et vertial rigidity, so we an onsider kf(x
k
, y

k
)and assume k = 1. We may also assume b, d 6= 0, otherwise our funtion is ofone of the previous forms. Adding a onstant, re�eting the graph about the

xz-plane (needed only if the signs of b and d di�er), multiplying by a nonzeroonstant, as well as a translation in the x-diretion do not a�et vertial rigidity,so by applying these in this order we an assume that a = 0, bd > 0, d = 1, and
b = 1.Hene it su�es to hek that f(x, y) = ex + y is vertially rigid. Let us �xa c > 0. In every vertial plane of the form {x = x0} the restrition of f isa straight line of slope 1. There is a unique angle in (

−π
4 ,

π
4

) so that rotationof this angle around the x-axis takes all these lines to lines of slope c. Let usnow onsider the intersetion of this rotated graph with the xy-plane. We laimthat this intersetion is the graph of a funtion of the form y = −wce
x (where

wc > 0). Indeed, in every plane {x = x0} the new line (of slope c) and thetwo axes form a right-angled triangle. All these triangles are homotheti, andthe ratio of their sizes is determined by the distane of the line from the x-axis,whih is ex0

√
2
, whih is proportional to ex0, hene so is the bottom sides of thetriangles, and we are done. Atually, one an also alulate wc =

√
c2+1√
2c

, butthis will not be really important for us.Now, applying a translation in the x-diretion we an obtain a funtion withstill all lines of slope c but now with intersetion with the xy-plane of the form
y = −ex. But then we are done, sine this funtion learly agrees with cf . (Notethat the intersetion of graph(f) and the xy-plane is of the form y = −ex, andall lines in this graph are of slope 1, hene for graph(cf) this intersetion is still
y = −ex, and all lines are of slope c.) This �nishes the proof of vertial rigidity.3 Vertial rigidity via translationsTheorem 3.1 Let C ⊂ (0,∞) be an unountable set. Then a ontinuous fun-tion f : R

2 → R is vertially rigid for C via horizontal translations if and only ifafter a suitable rotation around the z-axis f(x, y) is of the form s(y)ekx (k ∈ R,
k 6= 0, s : R → R ontinuous).We already heked the easy diretion in the previous setion. Before provingthe other diretion we need some preparation. The �rst lemma will be usefulthroughout the paper. Sometimes we will use it taitly. The easy proof is leftto the reader.Lemma 3.2 Let f : R

2 → R be vertially rigid for c0 via ϕ0 and for c via ϕ.Then c0f is vertially rigid for c
c0

via ϕ ◦ ϕ−1
0 .From now on we will often use the notation ~x for two-dimensional (andsometimes three-dimensional) vetors. 4



De�nition 3.3 For a funtion f : R
2 → R and a set C ⊂ (0,∞) let Tf,C ⊂ R

2be the additive group generated by the set T ′ = {~t ∈ R
2 : ∃c ∈ C ∀~x ∈

R
2 f(~x+ ~t) = cf(~x)}. (We will usually simply write T for Tf,C .)Lemma 3.4 Let f : R

2 → R be a vertially rigid funtion for a set C ⊂ (0,∞)via horizontal translations suh that f(~0) = 1. Then
f(~x+ ~t) = f(~x)f(~t) ∀~x ∈ R

2 ∀~t ∈ T.Moreover, f(~t) > 0 for every ~t ∈ T , and T ′ is unountable if so is C.Proof. By assumption, for every c ∈ C there exists ~tc ∈ R
2 suh that cf(~x) =

f(~x+ ~tc) for every ~x ∈ R
2. Then ~tc ∈ T ′ for every c ∈ C.Every ~t ∈ T an be written as ~t =

∑m
i=1 ni

~ti (~ti ∈ T ′, ni ∈ Z, i = 1, . . . ,m)where f(~x+ ~ti) = cif(~x) (~x ∈ R
2, i = 1, . . . ,m).From these we easily get

f(~x+ ~t) = c~tf(~x), where c~t =
m
∏

i=1

cni

i , ~x ∈ R
2, ~t ∈ T. (3.1)Note that c~t > 0 (and also that it is not neessarily a member of C). It su�esto show that c~t = f(~t) for every ~t ∈ T , but this follows if we substitute ~x = ~0into (3.1).Sine f is not identially zero, ~tc 6= ~tc′ whenever c, c′ ∈ C are distint. Hene

{~tc : c ∈ C} is unountable, so T ′ is unountable if so is C. �Proof. (Thm. 3.1) If f is identially zero then we are done, so let us assumethat this is not the ase. The lass of ontinuous vertially rigid funtions forsome set ondensating to ∞ via horizontal translations, as well as the lassof funtions of the form s(y)ekx (k ∈ R, k 6= 0, s : R → R ontinuous) areboth losed under horizontal translations and under multipliation by nonzeroonstants (by Lemma 3.2). Hene we may assume that f(~0) = 1. Then theprevious lemma yields that f(~t1 + ~t2) = f(~t1)f(~t2) (~t1, ~t2 ∈ T ), and also that
f |T > 0. Then g(~t) = log f(~t) is de�ned for every ~t ∈ T , and g is learly additiveon T .Let us now onsider T̄ , the losure of T , whih is learly an unountablelosed subgroup of R

2. It is well-known that every losed subgroup of R
2 is anondegenerate linear image of a group of the form G1 × G2, where G1, G2 ∈

{{0},Z,R}. Hene after a suitable rotation around the origin T̄ is either R
2 or

R × {0} or R × rZ for some r > 0.Case 1. T̄ = R
2.In this ase T ⊂ R

2 is dense. It is well-known that a ontinuous additivefuntion on a dense subgroup is of the form g(x, y) = αx + βy, ((x, y) ∈ T ) forsome α, β ∈ R. But then f(x, y) = eαx+βy on T , and by ontinuity this holdson the whole plane as well. As the onstant 1 funtion is not vertially rigidvia horizontal translations, α = β = 0 annot hold. By applying a rotation ofangle π
2 if neessary we may assume that α 6= 0. But then by hoosing k = α,

s(y) = eβy we are done. 5



Case 2. T̄ = R × {0}.In this ase every ~tc is of the form (tc, 0), where tc 6= 0 if c 6= 1. (We mayassume 1 /∈ C.)Applying [1, Thm. 2.5℄ for every �xed y we obtain that f(x, y) = s(y)ekyx(s(y), ky ∈ R, ky 6= 0). As s(y) = f(0, y), we get that s is ontinuous. If s(y) 6= 0then it is not hard to see that ky = log c
tc

, whih is independent of y, so for these
y's ky = k is onstant. But if s(y) = 0 then the value of ky is irrelevant, soit an be hosen to be the same onstant k. Hene without loss of generality
ky = k is onstant, and we are done with this ase.Case 3. T̄ = R × rZ.As T ′ is unountable, there is an n ∈ Z so that T ′∩(R×{rn}) is unountable.Fix an element tc0

of this set. Then Lemma 3.2 yields that c0f is vertially rigidfor an unountable set via translations of the form (t, 0). Restriting ourselvesto these isometries and c's we are done using Case 2, sine every unountableset in R generates a dense subgroup. �Now we handle the ase of arbitrary translations.Theorem 3.5 Let f : R
2 → R be an arbitrary funtion that is vertially rigidfor a set C ⊂ (0,∞) via translations. Then there exists a ∈ R suh that f − ais vertially rigid for the same set C via horizontal translations.Proof. The obvious modi�ation of [1, Thm. 2.4℄ works, just replae all x'sand u's by vetors. �This readily implies the following.Corollary 3.6 Let C ⊂ (0,∞) be an unountable set. Then a ontinuous fun-tion f : R

2 → R is vertially rigid for C via translations if and only if after asuitable rotation around the z-axis f(x, y) is of the form a+ s(y)ekx (a, k ∈ R,
k 6= 0, s : R → R ontinuous).4 The set SfNow we start working on the ase of arbitrary isometries.Let S

2 ⊂ R
3 denote the unit sphere. For a funtion f : R

2 → R let Sf bethe set of diretions between pairs of points on the graph of f , that is,De�nition 4.1
Sf =

{

p− q

|p− q|
∈ S

2 : p, q ∈ graph(f), p 6= q

}

.Reall that a great irle is a irle line in R
3 of radius 1 entered at theorigin. We all it vertial if it passes through the points (0, 0,±1).Lemma 4.2 Let f : R

2 → R be ontinuous. Then6



1. −Sf = Sf (symmetri about the origin)2. (0, 0,±1) /∈ Sf3. Sf is onneted4. Every great irle ontaining (0, 0,±1) intersets Sf in two (symmetri)nonempty ars.5. S
2 \Sf has exatly two onneted omponents, one ontaining (0, 0, 1) andone ontaining (0, 0,−1).Proof. (1.) Obvious.(2.) Obvious, sine f is a funtion.(3.) graph(f) is homeomorphi to R

2, hene the squared of it minus the(2-dimensional) diagonal is a onneted set. Sine Sf is the ontinuous imageof this onneted set, it is itself onneted.(4.) The intersetion of Sf with suh a great irle orresponds to restritingour attention to distint pairs of points ( ~x1, ~x2) ∈ R
2 × R

2 so that the segment
[ ~x1, ~x2] is parallel to a �xed line L ⊂ R

2. Now, given two suh nondegeneratesegments it is easy to move one of them ontinuously to the other so that alongthe way it remains nondegenerate and parallel to L. This shows that in bothhalves of the great irle (separated by (0, 0,±1)) Sf is pathwise onneted,hene it is an ar.(5.) First we show that there are at least two omponents. Let S
1 denote theunit irle in R

2 = {(x, y, z) : z = 0}. If ~x1 ranges over a (losed) half of S
1 thenthe pairs ( ~x1,− ~x1) determine a losed urve in Sf with exatly two points onevery vertial great irle. Hene (0, 0, 1) and (0, 0,−1) are in di�erent onnetedomponents of S

2 \ Sf . Now we show that there are at most two omponents.But this is lear, as by (4.) every point of S
2 \ Sf an be onneted with an arof a vertial great irle either to (0, 0, 1) or to (0, 0,−1) in S

2 \ Sf . �The above lemma shows that Sf is something like a `strip around the sphere'.Now we make this somewhat more preise by de�ning the top and the bottom`boundaries' of this strip.De�nition 4.3 Let h : S
1 → S

2 be de�ned as follows. Every ~x ∈ S
1 is in aunique half great irle onneting (0, 0, 1) and (0, 0,−1). The intersetion of

Sf with this great irle is an ar, de�ne h(~x) as the top endpoint of this ar.Clearly, the bottom endpoint of this ar is −h(−~x), so the `top funtionbounding the strip Sf is h(~x) and the bottom funtion is −h(−~x)'. The oordi-nate funtions of h are denoted by (h1, h2, h3), where h3 : S
1 → [−1, 1] enodesall information about h.Lemma 4.4 Let f : R

2 → R be ontinuous, and h be de�ned as above. Then1. h(~x) 6= (0, 0,−1) for every ~x ∈ S
17



2. h is lower semiontinuous (in the obvious sense, or equivalently, h3 islower semiontinuous)3. h is onvex with respet to great irles, that is, if h(~x) and h(~y) de-termine a unique nonvertial great irle (i.e. there is a subar of S
1 oflength < π onneting ~x and ~y, and h(~x), h(~y) 6= (0, 0, 1)) then on thissubar graph(h) is bounded from above by the great irle.Proof. (1.) Obvious by Lemma 4.2 (2.) and (4.).(2.) We have to hek that if h3(~x) > u then the same holds in a neigh-bourhood of ~x. (Note that essentially h3 is de�ned as a supremum.) Hene

h3(~x) > u if and only if there exists a segment [~a,~b] ⊂ R
2 parallel to ~x overwhih the slope of f is bigger than u. But then by the ontinuity of f the sameholds for segments lose enough to [~a,~b], in partiular to slightly rotated opies,and we are done.(3.) Let ~z ∈ S

1 be an element of the shorter ar onneting ~x and ~y in S
1,let [~a,~b] ⊂ R

2 be a segment parallel to ~z, and let P be the plane of the greatirle determined by h(~x) and h(~y). Let P ′ be the plane parallel to P passingthrough ~a. We have to show that the slope of f between ~a and ~b is not morethan that of P ′. Write ~b − ~a = α~x+ β~y for some α, β > 0. By the de�nition of
h(~x) when `going from' ~a to ~a + α~x we annot get above P ′, and similarly, bythe de�nition of h(~y) when `going from' ~a+ α~x to ~a + α~x + β~y = ~b we annotget above P ′, so we are done. �Remark 4.5 Most probably there is an algebrai way to prove (3.), but theauthors were unable to �nd one that is not hopelessly tedious.5 Determining the possible Sf 'sDe�nition 5.1 For c > 0 let ψc : S

2 → S
2 denote the map that `deforms Sfaording to the map c 7→ cf ', that is,

ψc((x, y, z)) =
(x, y, cz)

|(x, y, cz)|
((x, y, z) ∈ S

2).Remark 5.2 Let ϕc be the isometry mapping graph(f) onto graph(cf). Everyisometry ϕ is of the form ϕtrans ◦ϕort, where ϕort is an orthogonal transforma-tion and ϕtrans is a translation. Moreover, if ϕ is orientation-preserving then
ϕort is a rotation around a line passing through the origin. A key observationis the following: The vertial rigidity of f for C implies that ϕort

c (Sf ) = ψc(Sf )for every c ∈ C.Now we prove the main theorem of this setion. For the de�nition of h3 seethe previous setion.Theorem 5.3 Let C ⊂ (0,∞) be a set ondensating to ∞, and let f : R
2 → Rbe a ontinuous funtion vertially rigid for C. Then one of the following holds.8



• Case A. There is a vertial great irle that intersets Sf in only twopoints.
• Case B. Sf = S

2 \ {(0, 0, 1), (0, 0,−1)}.
• Case C. There exists an ~x0 ∈ S

1 suh that h3( ~x0) = 0 and h3(~x) = 1 forevery ~x 6= ~x0, that is, Sf is `S2 minus two quarters of a great irle'.
• Case D. There exists a losed interval I in S

1 with 0 < length(I) < πsuh that h3(~x) = 0 if ~x ∈ I, and h3(~x) = 1 if ~x /∈ I, that is, Sf is `S2minus two spherial triangles'.Proof. We separate two ases aording to whether h3 ≥ 0 everywhere or not.First let us suppose that there exists a ~x ∈ S
1 suh that h3(~x) < 0. Thisimplies that there is a vertial great irle ontaining two ars, one in the topomponent onneting (0, 0, 1) with S

1 and even rossing it, and an other one(the symmetri pair in the bottom omponent) running from the `South Pole tothe Equator' and even above. But then onsidering geometrially the ation of
ψc one an easily hek that if we hoose larger and larger c's (tending to ∞)then we obtain that ψc(Sf ) ontains in the two omponents two symmetrialars on the same great irle whih are only leaving out two small gaps of lengthtending to 0. But then by Remark 5.2 Sf also ontains two suh ars in the twoomponents on some (not neessarily vertial) great irle, hene the distaneof the omponents is 0.Let ~pn and ~qn be sequenes in the top and bottom omponent, respetively,so that dist( ~pn, ~qn) → 0. By ompatness we may assume ~pn, ~qn → ~p ∈ S

2.We laim that ~pn → ~p implies ~p 6= (0, 0,−1). (And similarly ~qn → ~p implies
~p 6= (0, 0, 1).) Indeed, let ~xn ∈ S

1 be so that ~xn and ~pn lay on the same vertialgreat irle, and similarly, let ~x ∈ S
1 and ~p lay on the same vertial great irle.Then ~xn → ~x, and using the fat h(~x) 6= (0, 0,−1) and the lower semiontinuityof h at ~x (Lemma 4.4 (1.) and (2.)) we are done.Using the lower semiontinuity of h at ~x again (and ~pn → ~p) we get that h(~x)annot be above ~p. Similarly, −h(−~x) annot be below ~p. But h(~x) is alwaysabove −h(−~x), so the only option is h(~x) = −h(−~x), hene there is a vertialgreat irle whose intersetion with Sf is just a (symmetri) pair of points, soCase A holds, and hene we are done with the �rst half of the proof.Now let us assume that h3 ≥ 0 everywhere. First we prove that h3(~x) ∈

{0, 1} for Lebesgue almost every ~x ∈ S
1. Indeed, �x an arbitrary c ∈ C \ {1}.By rigidity the (equal) measure of the two omponents remains the same afterapplying ψc. Sine h3 ≥ 0, the intersetion of the top omponent with thevertial great irle ontaining an ~x shrinks if c > 1 and grows if c < 1, unless

h3(~x) = 0 or 1. Hene we are done, sine the measure of the top omponent anbe alulated from the lengths of these ars.Now we show that {~x : h3(~x) = 0} is either empty, or a pair of points of theform { ~x0,− ~x0}, or a losed interval in S
1 (possibly degenerate or the whole S

1).So we have to show that if ~x, ~y ∈ S
1 are so that the shorter ar onneting themis shorter than π, and h3(~x) = h3(~y) = 0 then h3(~z) = 0 for every ~z in this9



ar. But h3(~z) ≥ 0 by assumption, and h3(~z) ≤ 0 by the onvexity of h appliedto h(~x) = ~x and h(~y) = ~y. The fat that the endpoints are also ontained in
{~x : h3(~x) = 0} easily follows from the semiontinuity.If {~x : h3(~x) = 0} is a symmetrial pair of points or a losed interval oflength at least π then it is easy to see that Case A holds. Hene we may assumethat it is empty, or a singleton, or a losed interval I with 0 < length(I) < π.Case 1. {~x : h3(~x) = 0} = ∅.In this ase, h3 > 0 everywhere, and hene h3 = 1 almost everywhere.Therefore one an easily see (using the onvexity) that h3 = 1 everywhere butpossibly at at most two points of the form { ~x0,− ~x0}. We laim that atually
h3 = 1 everywhere. We know already that Sf is S

2 minus two symmetriars on the same vertial great irle. The ars ontain (0, 0, 1) and (0, 0,−1),respetively, and they do not reah the `Equator', sine h3 > 0. Let us �x anarbitrary c ∈ C \ {1}. By rigidity the (equal) length of the ars should nothange when applying ψc, but it learly hanges, a ontradition.Hene Sf = S
2 \ {(0, 0, 1), (0, 0,−1)}, so Case B holds.Case 2. {~x : h3(~x) = 0} is a singleton.Let { ~x0} = {~x : h3(~x) = 0}. Similarly as above, h3 = 1 almost everywhere.Then onvexity easily implies that h3(~x) = 1 whenever ~x /∈ { ~x0,− ~x0}. Againsimilarly, the length of the ars is unhanged by ψc only if h3( ~−x0) = 1, so Sfis S

2 minus two symmetri quarter ars starting from the `Poles' on a vertialgreat irle, so Case C holds.Case 3. {~x : h3(~x) = 0} is a losed interval in S
1 with 0 < length(I) < π.Let I = {~x : h3(~x) = 0}. As h3 = 0 or 1 almost everywhere, onvexityreadily implies that h3 = 1 on S

1 \ I. Hene Sf is `S2 minus two spherialtriangles', and Case D holds.This onludes the proof. �6 The end of the proofNow we omplete the proof of the tehnial form of the Main Theorem. Werepeat the statement here.Theorem 6.1 (Main Theorem, tehnial form) Let C ⊂ (0,∞) be a set on-densating to ∞. Then a ontinuous funtion f : R
2 → R is vertially rigid for

C if and only if after a suitable rotation around the z-axis f(x, y) is of the form
a + bx + dy, a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → Rontinuous).Proof. By Theorem 5.3 it su�es to onsider Cases A-D.Case A. There is a vertial great irle that intersets Sf in only two points.We may assume using a suitable rotation around the z-axis that the vertialgreat irle is in the yz-plane, hene f(x, y) is of the form g(x) + dy.Subase A1. d = 0. 10



Let c ∈ C be �xed, and let ϕc be the orresponding isometry. The graph of
cf is invariant under translations parallel to the y-axis. As the same holds for
f , by rigidity, cf is also invariant under translations parallel to the ϕc-image ofthe y-axis. If these two diretions are nonparallel, then graph(cf) is a plane,and hene so is graph(f), so we are done sine f(x, y) is of the form a+bx (notethat there is no `+dy' sine f does not depend on y). Therefore we may assumethat all lines parallel to the y-axis are taken to lines parallel to the y-axis, butthen all planes parallel to the xz-plane are taken to planes parallel to the xz-plane. But this shows (by onsidering the intersetions of the graphs with the
xz-plane) that g is vertially rigid for c, hene by Theorem 1.3 g(x) is of thefrom a+ bx or a+ bekx (a, b, k ∈ R, k 6= 0), and we are done.Subase A2. d 6= 0.For every c ∈ C let ϕc be the orresponding isometry. We laim thatwe may assume that all these are orientation-preserving. If {c ∈ C :
ϕc is orientation-preserving} ondensates to ∞ then we are done by shrinking
C, otherwise we may assume that they are all orientation-reversing (note thatif we split C into two piees then at least one of them still ondensates to ∞).Let us �x a c0 ∈ C and onsider c0f instead of f . By Lemma 3.2 this funtionis rigid for an unountable set with all isometries orientation-preserving, and ifit is of the desired form then so is f , so we are done.We may assume 1 /∈ C. Let us �x a c ∈ C. Similarly as in the previouslemma, we may assume that lines parallel to (0, 1, d) are taken to lines parallelto (0, 1, cd) as follows. The speial form of f implies that graph(f) is invariantunder translations in the (0, 1, d)-diretion, hene graph(cf) is invariant undertranslations in the (0, 1, cd)-diretion, moreover, by rigidity, graph(cf) is alsoinvariant under translations parallel to the ϕc-image of the lines of diretion
(0, 1, d). If these two latter diretions do not oinide then graph(cf) is a plane,and we are done.Therefore the image of every line parallel to (0, 1, d) is a line parallel to
(0, 1, cd) under the orientation-preserving isometry ϕc. It is well-known thatevery orientation-preserving isometry of R

3 is a rotation around a line ontain-ing the origin followed by a translation. Sine the translation does not a�etdiretions, let us fous on the rotation �rst. As it takes a given diretion toanother given nonparallel diretion (d 6= 0), the axis of the rotation has to beorthogonal to the plane spanned by these two diretions. Hene the axis has tobe the x-axis.Let us now onsider the intersetion of the graph of f with the xy-plane. Itis learly of the form y = − 1
d
g(x). We laim that this funtion is rigid for anunountable set, whih will �nish the proof by Theorem 1.3.Using the same argument as in Setion 2 (onsidering homotheti triangles)we get that after the rotation around the x-axis the intersetion with the xy-plane is still a nonzero onstant multiple of − 1

d
g, atually −wc

1
d
g (for wc seeSetion 2). The map c 7→ wc is nononstant real analyti, hene the preimageof every point is ountable, hene the range of C is unountable. Thereforeit su�es to prove that − 1

d
g is rigid for every wc. By assumption, ϕc (whihis a rotation around the x-axis followed by a translation) takes graph(f) into11



graph(cf). The intersetion of graph(cf) with the xy-plane is also − 1
d
g. Henethe translation onverts the intersetion −wc

1
d
g into − 1

d
g. But the rotatedgraph is invariant under translations parallel to (0, 1, cd), and after applying atranslation to suh a graph the intersetion with the xy-plane beomes a trans-late of the original intersetion (just deompose the vetor into a yz-omponentand an x-omponent). Hene −wc

1
d
g an be translated to − 1

d
g, so the inverseof this translation shows that − 1

d
g is rigid for wc.Case B. Sf = S

2 \ {(0, 0, 1), (0, 0,−1)}.So Sf is invariant under every ψc, and hene so is under every ϕort
c . Thenlearly ϕort

c ((0, 0, 1)) = (0, 0, 1) or ϕort
c ((0, 0, 1)) = (0, 0,−1) for every c ∈ C.By the same argument as above we an assume that the former holds for every

c ∈ C. Using the argument again we an assume that all ϕc's are orientation-preserving. But then eah of these is a rotation around the z-axis followed bya translation, in other words, an orientation-preserving transformation in the
xy-plane followed by a translation in the z-diretion. An orientation-preservingtransformation in the plane is either a translation or a rotation. If it is atranslation for every c then we are done by Corollary 3.6. So let us assume thatthere exists a c suh that ϕc is a proper rotation around ~x ∈ R

2 followed by avertial translation. We laim that then f is onstant, whih will ontradit that
Sf is nearly the full sphere, �nishing the proof of this ase. We will atually showthat f is onstant on every losed dis B(~x,R) entered at ~x. Indeed, onsider
maxB(~x,R) f −minB(~x,R) f . This is unhanged by the rotation around ~x as wellas by the vertial translation, hene by ϕc. But the map f 7→ cf multiplies thisamount by c 6= 1, so the only option is maxB(~x,R) f − minB(~x,R) f = 0, and weare done.Case C. There exists an ~x0 ∈ S

1 suh that h3( ~x0) = 0 and h3(~x) = 1 for every
~x 6= ~x0, that is, Sf is `S2 minus two quarters of a great irle'.So Sf is invariant under every ψc, and hene so is under every ϕort

c . Hene
ϕort

c maps (0, 0, 1) to one of the four endpoints of the two ars. Therefore wean assume by splitting C into four piees aording to the image of (0, 0, 1)and applying Lemma 3.2 that (0, 0, 1) is a �xed point of every ϕort
c . But thenthe two ars are also �xed, and atually ϕort

c is the identity. Hene every ϕc isa translation, and we are done by Corollary 3.6.Case D. There exists a losed interval I in S
1 with 0 < length(I) < π suhthat h3(~x) = 0 if ~x ∈ I and h3(~x) = 1 if ~x /∈ I, that is, Sf is `S2 minus twospherial triangles'.As Sf is invariant under every ϕort

c , verties of the triangles are mapped toverties. Hene we may assume (by splitting C into six piees) that (0, 0, 1) is�xed. But then the triangles are also �xed sets, and every ϕort
c is the identity,so we are done as in the previous ase.This �nishes the proof of the Main Theorem. �
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7 Open questionsQuestion 7.1 In the Main Theorem an we relax the assumption of ontinuityto Lebesgue measurability, Baire measurability, Borel measurability, Baire lassone, separate ontinuity or at least one point of ontinuity?Question 7.2 Whih notion of largeness of C su�es for the various resultsof this paper? For example, does the Main Theorem hold if we only assume that
C ontains three elements that pairwise generate dense multipliative subgroupsof (0,∞)?Remark 7.3 It was shown in [3℄ that two suh elements su�e for the anal-ogous one-variable result. However, two independent elements are not enoughhere, sine if g is vertially rigid for c1 via a translation and h is vertially rigidfor c2 via a translation then f(x, y) = g(x)h(y) is vertially rigid for both.Moreover, the main point in that proof in [3℄ is to replae `splitting C' byalternative arguments, and we were unable to do so here.The following question is rather vague.Question 7.4 Let us all a set H ⊂ S

2 rigid if ψc(H) is isometri to H forevery c > 0. Is there a simple desription of rigid sets? Or if we assume someregularity?And �nally, the most intriguing problem.Question 7.5 What an we say if there are more than two variables?Referenes[1℄ R. Balka, M. Elekes, The struture of rigid funtions, J. Math. Anal. Appl.345, no. 2, (2008), 880�888.[2℄ B. Cain, J. Clark, D. Rose, Vertially rigid funtions, Real Anal. Exhange31, no. 2, (2005/2006), 515�518.[3℄ C. Rihter, Continuous rigid funtions, preprint, see http://www.minet.uni-jena.de/Math-Net/reports/shadows//08-02report.html
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