
The stru
ture of 
ontinuous rigid fun
tions oftwo variablesRi
hárd Balka∗Eötvös Loránd UniversityDepartment of AnalysisPázmány P. s. 1/
, H-1117, Budapest, Hungarybalkar�
s.elte.huandMárton Elekes†Alfréd Rényi Institute of Mathemati
sHungarian A
ademy of S
ien
esP.O. Box 127, H-1364 Budapest, Hungaryemar
i�renyi.huwww.renyi.hu/˜emar
iandEötvös Loránd UniversityDepartment of AnalysisPázmány P. s. 1/
, H-1117, Budapest, HungarySeptember 16, 2008Abstra
tA fun
tion f : R
n → R is 
alled verti
ally rigid if graph(cf) is isometri
to graph(f) for all c 6= 0. In [1℄ we settled Jankovi¢'s 
onje
ture byshowing that a 
ontinuous fun
tion f : R → R is verti
ally rigid if andonly if it is of the form a+ bx or a+ bekx (a, b, k ∈ R). Now we prove thata 
ontinuous fun
tion f : R

2 → R is verti
ally rigid if and only if after
∗Partially supported by Hungarian S
ienti�
 Foundation grant no. 72655.
†Partially supported by Hungarian S
ienti�
 Foundation grants no. 49786, 61600, and72655.MSC 
odes: Primary 26A99 Se
ondary 39B22, 39B52, 39B72, 51M99Key Words: rigid, fun
tional equation, transformation, exponential1



a suitable rotation around the z-axis f(x, y) is of the form a + bx + dy,
a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → R 
ontinuous).The problem remains open in higher dimensions.1 Introdu
tionAn easy 
al
ulation shows that the exponential fun
tion f(x) = ex has thesomewhat `paradoxi
al' property that cf is a translate of f for every c > 0. Itis also easy to see that every fun
tion of the form a+ bekx shares this property.Moreover, for every fun
tion of the form f(x) = a + bx the graph of cf isisometri
 to the graph of f . In [2℄ Cain, Clark and Rose introdu
ed the notionof verti
al rigidity, whi
h we now formulate for fun
tions of several variables.De�nition 1.1 A fun
tion f : R

n → R is 
alled verti
ally rigid, if graph(cf)is isometri
 to graph(f) for all c ∈ (0,∞). (Clearly, c ∈ R \ {0} would be thesame.)Then D. Jankovi¢ formulated the following 
onje
ture (see [2℄).Conje
ture 1.2 (D. Jankovi¢) A 
ontinuous fun
tion f : R → R is verti
allyrigid if and only if it is of the form a+ bx or a+ bekx (a, b, k ∈ R, k 6= 0).This 
onje
ture, and more, was proved in [1℄.Theorem 1.3 Jankovi¢'s 
onje
ture holds. (It is a
tually enough to assumethat f is verti
ally rigid for an un
ountable set C, see De�nition 1.6 below.)Later C. Ri
hter gave generalisations of this theorem in various dire
tions,see [3℄.The main goal of the present paper is to give a 
omplete des
ription of the
ontinuous verti
ally rigid fun
tions of two variables.Theorem 1.4 (Main Theorem) A 
ontinuous fun
tion f : R
2 → R is ver-ti
ally rigid if and only if after a suitable rotation around the z-axis f(x, y) isof the form a + bx + dy, a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0,

s : R → R 
ontinuous).As these 
lasses look somewhat ad ho
, we do not even have 
onje
tures inhigher dimensions.Problem 1.5 Chara
terise the 
ontinuous verti
ally rigid fun
tions of n vari-ables for n ≥ 3.In fa
t, for the proof of the Main Theorem we need the following te
hni
algeneralisations.
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De�nition 1.6 If C is a subset of (0,∞) and G is a set of isometries of R
3 thenwe say that f is verti
ally rigid for a set C ⊂ (0,∞) via elements of G if forevery c ∈ C there exists a ϕ ∈ G su
h that ϕ(graph(f)) = graph(cf).(If we do not mention C or G then C is (0,∞) and G is the set of allisometries.)De�nition 1.7 Let us say that a set C ⊂ (0,∞) 
ondensates to ∞ if for every

r ∈ R the set C ∩ (r,∞) is un
ountable.The Main Theorem will immediately follow from the following, in whi
h wejust repla
e (0,∞) by a set C 
ondensating to ∞.Theorem 1.8 (Main Theorem, te
hni
al form) Let C ⊂ (0,∞) be a set
ondensating to ∞. Then a 
ontinuous fun
tion f : R
2 → R is verti
ally rigidfor C if and only if after a suitable rotation around the z-axis f(x, y) is of theform a+ bx+ dy, a+ s(y)ekx or a+ bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → R
ontinuous).The stru
ture of the proof will be the following. First we 
he
k in Se
tion 2that fun
tions of the above forms are rigid. (Of 
ourse, they are all 
ontinuous.)Then we start proving the Main Theorem in more and more general settings.In Se
tion 3 �rst we show that if all the isometries are horizontal translationsthen the verti
ally rigid fun
tion f(x, y) is of the form s(y)ekx (k ∈ R, k 6= 0,

s : R → R 
ontinuous). The pun
hline here is that we 
an derive a simple fun
-tional equation from verti
al rigidity (some sort of `multipli
ativity', see Lemma3.4). Then we 
on
lude this se
tion by referring to a 
ompletely algebrai
 proofin [1℄ showing that if we allow arbitrary translations then f(x, y) is of the form
a+ s(y)ekx (a, k ∈ R, k 6= 0, s : R → R 
ontinuous).Then we start working on the 
ase of general isometries. The 
entral ideais to 
onsider the set Sf of dire
tions of segments 
onne
ting pairs of points on
graph(f) (see De�nition 4.1). We 
olle
t the ne
essary properties of this setin Se
tion 4. The set Sf has some sort of rigidity in that the transformation
f 7→ cf distorts the shape of it, but the resulting set has to be isometri
 to theoriginal one (see De�nition 5.1 and Remark 5.2). Using these we determine thepossible Sf 's in Se
tion 5, then in Se
tion 6 we 
omplete the proof by handlingthese 
ases using various methods.Finally, in Se
tion 7 we 
olle
t the open questions.2 Fun
tions of these forms are rigidRotation of the graph around the z-axis does not a�e
t verti
al rigidity, so we
an assume that f is of the given form without rotations.Fun
tions of the form a+ bx+ dy are 
learly verti
ally rigid.Let now f(x, y) = a + s(y)ekx (a, k ∈ R, k 6= 0, s : R → R 
ontinuous).Then cf(x, y) = f(x + log c

k
, y) + a(c − 1), so f is a
tually verti
ally rigid viatranslations in the xz-plane. 3



Let now f(x, y) = a+bekx+dy (a, b, d, k ∈ R, k 6= 0). Res
aling the graph ina homotheti
 way does not a�e
t verti
al rigidity, so we 
an 
onsider kf(x
k
, y

k
)and assume k = 1. We may also assume b, d 6= 0, otherwise our fun
tion is ofone of the previous forms. Adding a 
onstant, re�e
ting the graph about the

xz-plane (needed only if the signs of b and d di�er), multiplying by a nonzero
onstant, as well as a translation in the x-dire
tion do not a�e
t verti
al rigidity,so by applying these in this order we 
an assume that a = 0, bd > 0, d = 1, and
b = 1.Hen
e it su�
es to 
he
k that f(x, y) = ex + y is verti
ally rigid. Let us �xa c > 0. In every verti
al plane of the form {x = x0} the restri
tion of f isa straight line of slope 1. There is a unique angle in (

−π
4 ,

π
4

) so that rotationof this angle around the x-axis takes all these lines to lines of slope c. Let usnow 
onsider the interse
tion of this rotated graph with the xy-plane. We 
laimthat this interse
tion is the graph of a fun
tion of the form y = −wce
x (where

wc > 0). Indeed, in every plane {x = x0} the new line (of slope c) and thetwo axes form a right-angled triangle. All these triangles are homotheti
, andthe ratio of their sizes is determined by the distan
e of the line from the x-axis,whi
h is ex0

√
2
, whi
h is proportional to ex0, hen
e so is the bottom sides of thetriangles, and we are done. A
tually, one 
an also 
al
ulate wc =

√
c2+1√
2c

, butthis will not be really important for us.Now, applying a translation in the x-dire
tion we 
an obtain a fun
tion withstill all lines of slope c but now with interse
tion with the xy-plane of the form
y = −ex. But then we are done, sin
e this fun
tion 
learly agrees with cf . (Notethat the interse
tion of graph(f) and the xy-plane is of the form y = −ex, andall lines in this graph are of slope 1, hen
e for graph(cf) this interse
tion is still
y = −ex, and all lines are of slope c.) This �nishes the proof of verti
al rigidity.3 Verti
al rigidity via translationsTheorem 3.1 Let C ⊂ (0,∞) be an un
ountable set. Then a 
ontinuous fun
-tion f : R

2 → R is verti
ally rigid for C via horizontal translations if and only ifafter a suitable rotation around the z-axis f(x, y) is of the form s(y)ekx (k ∈ R,
k 6= 0, s : R → R 
ontinuous).We already 
he
ked the easy dire
tion in the previous se
tion. Before provingthe other dire
tion we need some preparation. The �rst lemma will be usefulthroughout the paper. Sometimes we will use it ta
itly. The easy proof is leftto the reader.Lemma 3.2 Let f : R

2 → R be verti
ally rigid for c0 via ϕ0 and for c via ϕ.Then c0f is verti
ally rigid for c
c0

via ϕ ◦ ϕ−1
0 .From now on we will often use the notation ~x for two-dimensional (andsometimes three-dimensional) ve
tors. 4



De�nition 3.3 For a fun
tion f : R
2 → R and a set C ⊂ (0,∞) let Tf,C ⊂ R

2be the additive group generated by the set T ′ = {~t ∈ R
2 : ∃c ∈ C ∀~x ∈

R
2 f(~x+ ~t) = cf(~x)}. (We will usually simply write T for Tf,C .)Lemma 3.4 Let f : R

2 → R be a verti
ally rigid fun
tion for a set C ⊂ (0,∞)via horizontal translations su
h that f(~0) = 1. Then
f(~x+ ~t) = f(~x)f(~t) ∀~x ∈ R

2 ∀~t ∈ T.Moreover, f(~t) > 0 for every ~t ∈ T , and T ′ is un
ountable if so is C.Proof. By assumption, for every c ∈ C there exists ~tc ∈ R
2 su
h that cf(~x) =

f(~x+ ~tc) for every ~x ∈ R
2. Then ~tc ∈ T ′ for every c ∈ C.Every ~t ∈ T 
an be written as ~t =

∑m
i=1 ni

~ti (~ti ∈ T ′, ni ∈ Z, i = 1, . . . ,m)where f(~x+ ~ti) = cif(~x) (~x ∈ R
2, i = 1, . . . ,m).From these we easily get

f(~x+ ~t) = c~tf(~x), where c~t =
m
∏

i=1

cni

i , ~x ∈ R
2, ~t ∈ T. (3.1)Note that c~t > 0 (and also that it is not ne
essarily a member of C). It su�
esto show that c~t = f(~t) for every ~t ∈ T , but this follows if we substitute ~x = ~0into (3.1).Sin
e f is not identi
ally zero, ~tc 6= ~tc′ whenever c, c′ ∈ C are distin
t. Hen
e

{~tc : c ∈ C} is un
ountable, so T ′ is un
ountable if so is C. �Proof. (Thm. 3.1) If f is identi
ally zero then we are done, so let us assumethat this is not the 
ase. The 
lass of 
ontinuous verti
ally rigid fun
tions forsome set 
ondensating to ∞ via horizontal translations, as well as the 
lassof fun
tions of the form s(y)ekx (k ∈ R, k 6= 0, s : R → R 
ontinuous) areboth 
losed under horizontal translations and under multipli
ation by nonzero
onstants (by Lemma 3.2). Hen
e we may assume that f(~0) = 1. Then theprevious lemma yields that f(~t1 + ~t2) = f(~t1)f(~t2) (~t1, ~t2 ∈ T ), and also that
f |T > 0. Then g(~t) = log f(~t) is de�ned for every ~t ∈ T , and g is 
learly additiveon T .Let us now 
onsider T̄ , the 
losure of T , whi
h is 
learly an un
ountable
losed subgroup of R

2. It is well-known that every 
losed subgroup of R
2 is anondegenerate linear image of a group of the form G1 × G2, where G1, G2 ∈

{{0},Z,R}. Hen
e after a suitable rotation around the origin T̄ is either R
2 or

R × {0} or R × rZ for some r > 0.Case 1. T̄ = R
2.In this 
ase T ⊂ R

2 is dense. It is well-known that a 
ontinuous additivefun
tion on a dense subgroup is of the form g(x, y) = αx + βy, ((x, y) ∈ T ) forsome α, β ∈ R. But then f(x, y) = eαx+βy on T , and by 
ontinuity this holdson the whole plane as well. As the 
onstant 1 fun
tion is not verti
ally rigidvia horizontal translations, α = β = 0 
annot hold. By applying a rotation ofangle π
2 if ne
essary we may assume that α 6= 0. But then by 
hoosing k = α,

s(y) = eβy we are done. 5



Case 2. T̄ = R × {0}.In this 
ase every ~tc is of the form (tc, 0), where tc 6= 0 if c 6= 1. (We mayassume 1 /∈ C.)Applying [1, Thm. 2.5℄ for every �xed y we obtain that f(x, y) = s(y)ekyx(s(y), ky ∈ R, ky 6= 0). As s(y) = f(0, y), we get that s is 
ontinuous. If s(y) 6= 0then it is not hard to see that ky = log c
tc

, whi
h is independent of y, so for these
y's ky = k is 
onstant. But if s(y) = 0 then the value of ky is irrelevant, soit 
an be 
hosen to be the same 
onstant k. Hen
e without loss of generality
ky = k is 
onstant, and we are done with this 
ase.Case 3. T̄ = R × rZ.As T ′ is un
ountable, there is an n ∈ Z so that T ′∩(R×{rn}) is un
ountable.Fix an element tc0

of this set. Then Lemma 3.2 yields that c0f is verti
ally rigidfor an un
ountable set via translations of the form (t, 0). Restri
ting ourselvesto these isometries and c's we are done using Case 2, sin
e every un
ountableset in R generates a dense subgroup. �Now we handle the 
ase of arbitrary translations.Theorem 3.5 Let f : R
2 → R be an arbitrary fun
tion that is verti
ally rigidfor a set C ⊂ (0,∞) via translations. Then there exists a ∈ R su
h that f − ais verti
ally rigid for the same set C via horizontal translations.Proof. The obvious modi�
ation of [1, Thm. 2.4℄ works, just repla
e all x'sand u's by ve
tors. �This readily implies the following.Corollary 3.6 Let C ⊂ (0,∞) be an un
ountable set. Then a 
ontinuous fun
-tion f : R

2 → R is verti
ally rigid for C via translations if and only if after asuitable rotation around the z-axis f(x, y) is of the form a+ s(y)ekx (a, k ∈ R,
k 6= 0, s : R → R 
ontinuous).4 The set SfNow we start working on the 
ase of arbitrary isometries.Let S

2 ⊂ R
3 denote the unit sphere. For a fun
tion f : R

2 → R let Sf bethe set of dire
tions between pairs of points on the graph of f , that is,De�nition 4.1
Sf =

{

p− q

|p− q|
∈ S

2 : p, q ∈ graph(f), p 6= q

}

.Re
all that a great 
ir
le is a 
ir
le line in R
3 of radius 1 
entered at theorigin. We 
all it verti
al if it passes through the points (0, 0,±1).Lemma 4.2 Let f : R

2 → R be 
ontinuous. Then6



1. −Sf = Sf (symmetri
 about the origin)2. (0, 0,±1) /∈ Sf3. Sf is 
onne
ted4. Every great 
ir
le 
ontaining (0, 0,±1) interse
ts Sf in two (symmetri
)nonempty ar
s.5. S
2 \Sf has exa
tly two 
onne
ted 
omponents, one 
ontaining (0, 0, 1) andone 
ontaining (0, 0,−1).Proof. (1.) Obvious.(2.) Obvious, sin
e f is a fun
tion.(3.) graph(f) is homeomorphi
 to R

2, hen
e the squared of it minus the(2-dimensional) diagonal is a 
onne
ted set. Sin
e Sf is the 
ontinuous imageof this 
onne
ted set, it is itself 
onne
ted.(4.) The interse
tion of Sf with su
h a great 
ir
le 
orresponds to restri
tingour attention to distin
t pairs of points ( ~x1, ~x2) ∈ R
2 × R

2 so that the segment
[ ~x1, ~x2] is parallel to a �xed line L ⊂ R

2. Now, given two su
h nondegeneratesegments it is easy to move one of them 
ontinuously to the other so that alongthe way it remains nondegenerate and parallel to L. This shows that in bothhalves of the great 
ir
le (separated by (0, 0,±1)) Sf is pathwise 
onne
ted,hen
e it is an ar
.(5.) First we show that there are at least two 
omponents. Let S
1 denote theunit 
ir
le in R

2 = {(x, y, z) : z = 0}. If ~x1 ranges over a (
losed) half of S
1 thenthe pairs ( ~x1,− ~x1) determine a 
losed 
urve in Sf with exa
tly two points onevery verti
al great 
ir
le. Hen
e (0, 0, 1) and (0, 0,−1) are in di�erent 
onne
ted
omponents of S

2 \ Sf . Now we show that there are at most two 
omponents.But this is 
lear, as by (4.) every point of S
2 \ Sf 
an be 
onne
ted with an ar
of a verti
al great 
ir
le either to (0, 0, 1) or to (0, 0,−1) in S

2 \ Sf . �The above lemma shows that Sf is something like a `strip around the sphere'.Now we make this somewhat more pre
ise by de�ning the top and the bottom`boundaries' of this strip.De�nition 4.3 Let h : S
1 → S

2 be de�ned as follows. Every ~x ∈ S
1 is in aunique half great 
ir
le 
onne
ting (0, 0, 1) and (0, 0,−1). The interse
tion of

Sf with this great 
ir
le is an ar
, de�ne h(~x) as the top endpoint of this ar
.Clearly, the bottom endpoint of this ar
 is −h(−~x), so the `top fun
tionbounding the strip Sf is h(~x) and the bottom fun
tion is −h(−~x)'. The 
oordi-nate fun
tions of h are denoted by (h1, h2, h3), where h3 : S
1 → [−1, 1] en
odesall information about h.Lemma 4.4 Let f : R

2 → R be 
ontinuous, and h be de�ned as above. Then1. h(~x) 6= (0, 0,−1) for every ~x ∈ S
17



2. h is lower semi
ontinuous (in the obvious sense, or equivalently, h3 islower semi
ontinuous)3. h is 
onvex with respe
t to great 
ir
les, that is, if h(~x) and h(~y) de-termine a unique nonverti
al great 
ir
le (i.e. there is a subar
 of S
1 oflength < π 
onne
ting ~x and ~y, and h(~x), h(~y) 6= (0, 0, 1)) then on thissubar
 graph(h) is bounded from above by the great 
ir
le.Proof. (1.) Obvious by Lemma 4.2 (2.) and (4.).(2.) We have to 
he
k that if h3(~x) > u then the same holds in a neigh-bourhood of ~x. (Note that essentially h3 is de�ned as a supremum.) Hen
e

h3(~x) > u if and only if there exists a segment [~a,~b] ⊂ R
2 parallel to ~x overwhi
h the slope of f is bigger than u. But then by the 
ontinuity of f the sameholds for segments 
lose enough to [~a,~b], in parti
ular to slightly rotated 
opies,and we are done.(3.) Let ~z ∈ S

1 be an element of the shorter ar
 
onne
ting ~x and ~y in S
1,let [~a,~b] ⊂ R

2 be a segment parallel to ~z, and let P be the plane of the great
ir
le determined by h(~x) and h(~y). Let P ′ be the plane parallel to P passingthrough ~a. We have to show that the slope of f between ~a and ~b is not morethan that of P ′. Write ~b − ~a = α~x+ β~y for some α, β > 0. By the de�nition of
h(~x) when `going from' ~a to ~a + α~x we 
annot get above P ′, and similarly, bythe de�nition of h(~y) when `going from' ~a+ α~x to ~a + α~x + β~y = ~b we 
annotget above P ′, so we are done. �Remark 4.5 Most probably there is an algebrai
 way to prove (3.), but theauthors were unable to �nd one that is not hopelessly tedious.5 Determining the possible Sf 'sDe�nition 5.1 For c > 0 let ψc : S

2 → S
2 denote the map that `deforms Sfa

ording to the map c 7→ cf ', that is,

ψc((x, y, z)) =
(x, y, cz)

|(x, y, cz)|
((x, y, z) ∈ S

2).Remark 5.2 Let ϕc be the isometry mapping graph(f) onto graph(cf). Everyisometry ϕ is of the form ϕtrans ◦ϕort, where ϕort is an orthogonal transforma-tion and ϕtrans is a translation. Moreover, if ϕ is orientation-preserving then
ϕort is a rotation around a line passing through the origin. A key observationis the following: The verti
al rigidity of f for C implies that ϕort

c (Sf ) = ψc(Sf )for every c ∈ C.Now we prove the main theorem of this se
tion. For the de�nition of h3 seethe previous se
tion.Theorem 5.3 Let C ⊂ (0,∞) be a set 
ondensating to ∞, and let f : R
2 → Rbe a 
ontinuous fun
tion verti
ally rigid for C. Then one of the following holds.8



• Case A. There is a verti
al great 
ir
le that interse
ts Sf in only twopoints.
• Case B. Sf = S

2 \ {(0, 0, 1), (0, 0,−1)}.
• Case C. There exists an ~x0 ∈ S

1 su
h that h3( ~x0) = 0 and h3(~x) = 1 forevery ~x 6= ~x0, that is, Sf is `S2 minus two quarters of a great 
ir
le'.
• Case D. There exists a 
losed interval I in S

1 with 0 < length(I) < πsu
h that h3(~x) = 0 if ~x ∈ I, and h3(~x) = 1 if ~x /∈ I, that is, Sf is `S2minus two spheri
al triangles'.Proof. We separate two 
ases a

ording to whether h3 ≥ 0 everywhere or not.First let us suppose that there exists a ~x ∈ S
1 su
h that h3(~x) < 0. Thisimplies that there is a verti
al great 
ir
le 
ontaining two ar
s, one in the top
omponent 
onne
ting (0, 0, 1) with S

1 and even 
rossing it, and an other one(the symmetri
 pair in the bottom 
omponent) running from the `South Pole tothe Equator' and even above. But then 
onsidering geometri
ally the a
tion of
ψc one 
an easily 
he
k that if we 
hoose larger and larger c's (tending to ∞)then we obtain that ψc(Sf ) 
ontains in the two 
omponents two symmetri
alar
s on the same great 
ir
le whi
h are only leaving out two small gaps of lengthtending to 0. But then by Remark 5.2 Sf also 
ontains two su
h ar
s in the two
omponents on some (not ne
essarily verti
al) great 
ir
le, hen
e the distan
eof the 
omponents is 0.Let ~pn and ~qn be sequen
es in the top and bottom 
omponent, respe
tively,so that dist( ~pn, ~qn) → 0. By 
ompa
tness we may assume ~pn, ~qn → ~p ∈ S

2.We 
laim that ~pn → ~p implies ~p 6= (0, 0,−1). (And similarly ~qn → ~p implies
~p 6= (0, 0, 1).) Indeed, let ~xn ∈ S

1 be so that ~xn and ~pn lay on the same verti
algreat 
ir
le, and similarly, let ~x ∈ S
1 and ~p lay on the same verti
al great 
ir
le.Then ~xn → ~x, and using the fa
t h(~x) 6= (0, 0,−1) and the lower semi
ontinuityof h at ~x (Lemma 4.4 (1.) and (2.)) we are done.Using the lower semi
ontinuity of h at ~x again (and ~pn → ~p) we get that h(~x)
annot be above ~p. Similarly, −h(−~x) 
annot be below ~p. But h(~x) is alwaysabove −h(−~x), so the only option is h(~x) = −h(−~x), hen
e there is a verti
algreat 
ir
le whose interse
tion with Sf is just a (symmetri
) pair of points, soCase A holds, and hen
e we are done with the �rst half of the proof.Now let us assume that h3 ≥ 0 everywhere. First we prove that h3(~x) ∈

{0, 1} for Lebesgue almost every ~x ∈ S
1. Indeed, �x an arbitrary c ∈ C \ {1}.By rigidity the (equal) measure of the two 
omponents remains the same afterapplying ψc. Sin
e h3 ≥ 0, the interse
tion of the top 
omponent with theverti
al great 
ir
le 
ontaining an ~x shrinks if c > 1 and grows if c < 1, unless

h3(~x) = 0 or 1. Hen
e we are done, sin
e the measure of the top 
omponent 
anbe 
al
ulated from the lengths of these ar
s.Now we show that {~x : h3(~x) = 0} is either empty, or a pair of points of theform { ~x0,− ~x0}, or a 
losed interval in S
1 (possibly degenerate or the whole S

1).So we have to show that if ~x, ~y ∈ S
1 are so that the shorter ar
 
onne
ting themis shorter than π, and h3(~x) = h3(~y) = 0 then h3(~z) = 0 for every ~z in this9



ar
. But h3(~z) ≥ 0 by assumption, and h3(~z) ≤ 0 by the 
onvexity of h appliedto h(~x) = ~x and h(~y) = ~y. The fa
t that the endpoints are also 
ontained in
{~x : h3(~x) = 0} easily follows from the semi
ontinuity.If {~x : h3(~x) = 0} is a symmetri
al pair of points or a 
losed interval oflength at least π then it is easy to see that Case A holds. Hen
e we may assumethat it is empty, or a singleton, or a 
losed interval I with 0 < length(I) < π.Case 1. {~x : h3(~x) = 0} = ∅.In this 
ase, h3 > 0 everywhere, and hen
e h3 = 1 almost everywhere.Therefore one 
an easily see (using the 
onvexity) that h3 = 1 everywhere butpossibly at at most two points of the form { ~x0,− ~x0}. We 
laim that a
tually
h3 = 1 everywhere. We know already that Sf is S

2 minus two symmetri
ar
s on the same verti
al great 
ir
le. The ar
s 
ontain (0, 0, 1) and (0, 0,−1),respe
tively, and they do not rea
h the `Equator', sin
e h3 > 0. Let us �x anarbitrary c ∈ C \ {1}. By rigidity the (equal) length of the ar
s should not
hange when applying ψc, but it 
learly 
hanges, a 
ontradi
tion.Hen
e Sf = S
2 \ {(0, 0, 1), (0, 0,−1)}, so Case B holds.Case 2. {~x : h3(~x) = 0} is a singleton.Let { ~x0} = {~x : h3(~x) = 0}. Similarly as above, h3 = 1 almost everywhere.Then 
onvexity easily implies that h3(~x) = 1 whenever ~x /∈ { ~x0,− ~x0}. Againsimilarly, the length of the ar
s is un
hanged by ψc only if h3( ~−x0) = 1, so Sfis S

2 minus two symmetri
 quarter ar
s starting from the `Poles' on a verti
algreat 
ir
le, so Case C holds.Case 3. {~x : h3(~x) = 0} is a 
losed interval in S
1 with 0 < length(I) < π.Let I = {~x : h3(~x) = 0}. As h3 = 0 or 1 almost everywhere, 
onvexityreadily implies that h3 = 1 on S

1 \ I. Hen
e Sf is `S2 minus two spheri
altriangles', and Case D holds.This 
on
ludes the proof. �6 The end of the proofNow we 
omplete the proof of the te
hni
al form of the Main Theorem. Werepeat the statement here.Theorem 6.1 (Main Theorem, te
hni
al form) Let C ⊂ (0,∞) be a set 
on-densating to ∞. Then a 
ontinuous fun
tion f : R
2 → R is verti
ally rigid for

C if and only if after a suitable rotation around the z-axis f(x, y) is of the form
a + bx + dy, a + s(y)ekx or a + bekx + dy (a, b, d, k ∈ R, k 6= 0, s : R → R
ontinuous).Proof. By Theorem 5.3 it su�
es to 
onsider Cases A-D.Case A. There is a verti
al great 
ir
le that interse
ts Sf in only two points.We may assume using a suitable rotation around the z-axis that the verti
algreat 
ir
le is in the yz-plane, hen
e f(x, y) is of the form g(x) + dy.Sub
ase A1. d = 0. 10



Let c ∈ C be �xed, and let ϕc be the 
orresponding isometry. The graph of
cf is invariant under translations parallel to the y-axis. As the same holds for
f , by rigidity, cf is also invariant under translations parallel to the ϕc-image ofthe y-axis. If these two dire
tions are nonparallel, then graph(cf) is a plane,and hen
e so is graph(f), so we are done sin
e f(x, y) is of the form a+bx (notethat there is no `+dy' sin
e f does not depend on y). Therefore we may assumethat all lines parallel to the y-axis are taken to lines parallel to the y-axis, butthen all planes parallel to the xz-plane are taken to planes parallel to the xz-plane. But this shows (by 
onsidering the interse
tions of the graphs with the
xz-plane) that g is verti
ally rigid for c, hen
e by Theorem 1.3 g(x) is of thefrom a+ bx or a+ bekx (a, b, k ∈ R, k 6= 0), and we are done.Sub
ase A2. d 6= 0.For every c ∈ C let ϕc be the 
orresponding isometry. We 
laim thatwe may assume that all these are orientation-preserving. If {c ∈ C :
ϕc is orientation-preserving} 
ondensates to ∞ then we are done by shrinking
C, otherwise we may assume that they are all orientation-reversing (note thatif we split C into two pie
es then at least one of them still 
ondensates to ∞).Let us �x a c0 ∈ C and 
onsider c0f instead of f . By Lemma 3.2 this fun
tionis rigid for an un
ountable set with all isometries orientation-preserving, and ifit is of the desired form then so is f , so we are done.We may assume 1 /∈ C. Let us �x a c ∈ C. Similarly as in the previouslemma, we may assume that lines parallel to (0, 1, d) are taken to lines parallelto (0, 1, cd) as follows. The spe
ial form of f implies that graph(f) is invariantunder translations in the (0, 1, d)-dire
tion, hen
e graph(cf) is invariant undertranslations in the (0, 1, cd)-dire
tion, moreover, by rigidity, graph(cf) is alsoinvariant under translations parallel to the ϕc-image of the lines of dire
tion
(0, 1, d). If these two latter dire
tions do not 
oin
ide then graph(cf) is a plane,and we are done.Therefore the image of every line parallel to (0, 1, d) is a line parallel to
(0, 1, cd) under the orientation-preserving isometry ϕc. It is well-known thatevery orientation-preserving isometry of R

3 is a rotation around a line 
ontain-ing the origin followed by a translation. Sin
e the translation does not a�e
tdire
tions, let us fo
us on the rotation �rst. As it takes a given dire
tion toanother given nonparallel dire
tion (d 6= 0), the axis of the rotation has to beorthogonal to the plane spanned by these two dire
tions. Hen
e the axis has tobe the x-axis.Let us now 
onsider the interse
tion of the graph of f with the xy-plane. Itis 
learly of the form y = − 1
d
g(x). We 
laim that this fun
tion is rigid for anun
ountable set, whi
h will �nish the proof by Theorem 1.3.Using the same argument as in Se
tion 2 (
onsidering homotheti
 triangles)we get that after the rotation around the x-axis the interse
tion with the xy-plane is still a nonzero 
onstant multiple of − 1

d
g, a
tually −wc

1
d
g (for wc seeSe
tion 2). The map c 7→ wc is non
onstant real analyti
, hen
e the preimageof every point is 
ountable, hen
e the range of C is un
ountable. Thereforeit su�
es to prove that − 1

d
g is rigid for every wc. By assumption, ϕc (whi
his a rotation around the x-axis followed by a translation) takes graph(f) into11



graph(cf). The interse
tion of graph(cf) with the xy-plane is also − 1
d
g. Hen
ethe translation 
onverts the interse
tion −wc

1
d
g into − 1

d
g. But the rotatedgraph is invariant under translations parallel to (0, 1, cd), and after applying atranslation to su
h a graph the interse
tion with the xy-plane be
omes a trans-late of the original interse
tion (just de
ompose the ve
tor into a yz-
omponentand an x-
omponent). Hen
e −wc

1
d
g 
an be translated to − 1

d
g, so the inverseof this translation shows that − 1

d
g is rigid for wc.Case B. Sf = S

2 \ {(0, 0, 1), (0, 0,−1)}.So Sf is invariant under every ψc, and hen
e so is under every ϕort
c . Then
learly ϕort

c ((0, 0, 1)) = (0, 0, 1) or ϕort
c ((0, 0, 1)) = (0, 0,−1) for every c ∈ C.By the same argument as above we 
an assume that the former holds for every

c ∈ C. Using the argument again we 
an assume that all ϕc's are orientation-preserving. But then ea
h of these is a rotation around the z-axis followed bya translation, in other words, an orientation-preserving transformation in the
xy-plane followed by a translation in the z-dire
tion. An orientation-preservingtransformation in the plane is either a translation or a rotation. If it is atranslation for every c then we are done by Corollary 3.6. So let us assume thatthere exists a c su
h that ϕc is a proper rotation around ~x ∈ R

2 followed by averti
al translation. We 
laim that then f is 
onstant, whi
h will 
ontradi
t that
Sf is nearly the full sphere, �nishing the proof of this 
ase. We will a
tually showthat f is 
onstant on every 
losed dis
 B(~x,R) 
entered at ~x. Indeed, 
onsider
maxB(~x,R) f −minB(~x,R) f . This is un
hanged by the rotation around ~x as wellas by the verti
al translation, hen
e by ϕc. But the map f 7→ cf multiplies thisamount by c 6= 1, so the only option is maxB(~x,R) f − minB(~x,R) f = 0, and weare done.Case C. There exists an ~x0 ∈ S

1 su
h that h3( ~x0) = 0 and h3(~x) = 1 for every
~x 6= ~x0, that is, Sf is `S2 minus two quarters of a great 
ir
le'.So Sf is invariant under every ψc, and hen
e so is under every ϕort

c . Hen
e
ϕort

c maps (0, 0, 1) to one of the four endpoints of the two ar
s. Therefore we
an assume by splitting C into four pie
es a

ording to the image of (0, 0, 1)and applying Lemma 3.2 that (0, 0, 1) is a �xed point of every ϕort
c . But thenthe two ar
s are also �xed, and a
tually ϕort

c is the identity. Hen
e every ϕc isa translation, and we are done by Corollary 3.6.Case D. There exists a 
losed interval I in S
1 with 0 < length(I) < π su
hthat h3(~x) = 0 if ~x ∈ I and h3(~x) = 1 if ~x /∈ I, that is, Sf is `S2 minus twospheri
al triangles'.As Sf is invariant under every ϕort

c , verti
es of the triangles are mapped toverti
es. Hen
e we may assume (by splitting C into six pie
es) that (0, 0, 1) is�xed. But then the triangles are also �xed sets, and every ϕort
c is the identity,so we are done as in the previous 
ase.This �nishes the proof of the Main Theorem. �
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7 Open questionsQuestion 7.1 In the Main Theorem 
an we relax the assumption of 
ontinuityto Lebesgue measurability, Baire measurability, Borel measurability, Baire 
lassone, separate 
ontinuity or at least one point of 
ontinuity?Question 7.2 Whi
h notion of largeness of C su�
es for the various resultsof this paper? For example, does the Main Theorem hold if we only assume that
C 
ontains three elements that pairwise generate dense multipli
ative subgroupsof (0,∞)?Remark 7.3 It was shown in [3℄ that two su
h elements su�
e for the anal-ogous one-variable result. However, two independent elements are not enoughhere, sin
e if g is verti
ally rigid for c1 via a translation and h is verti
ally rigidfor c2 via a translation then f(x, y) = g(x)h(y) is verti
ally rigid for both.Moreover, the main point in that proof in [3℄ is to repla
e `splitting C' byalternative arguments, and we were unable to do so here.The following question is rather vague.Question 7.4 Let us 
all a set H ⊂ S

2 rigid if ψc(H) is isometri
 to H forevery c > 0. Is there a simple des
ription of rigid sets? Or if we assume someregularity?And �nally, the most intriguing problem.Question 7.5 What 
an we say if there are more than two variables?Referen
es[1℄ R. Balka, M. Elekes, The stru
ture of rigid fun
tions, J. Math. Anal. Appl.345, no. 2, (2008), 880�888.[2℄ B. Cain, J. Clark, D. Rose, Verti
ally rigid fun
tions, Real Anal. Ex
hange31, no. 2, (2005/2006), 515�518.[3℄ C. Ri
hter, Continuous rigid fun
tions, preprint, see http://www.minet.uni-jena.de/Math-Net/reports/shadows//08-02report.html
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