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Abstract

The main goal of this note is to prove the following theorem. If An is

a sequence of measurable sets in a σ-�nite measure space (X,A, µ) that

covers µ-a.e. x ∈ X in�nitely many times, then there exists a sequence of

integers ni of density zero so that Ani still covers µ-a.e. x ∈ X in�nitely

many times. The proof is a probabilistic construction.

As an application we give a simple direct proof of the known theorem

that the ideal of density zero subsets of the natural numbers is random-

indestructible, that is, random forcing does not add a co-in�nite set of

naturals that almost contains every ground model density zero set. This

answers a question of B. Farkas.

1 Introduction

Maximal almost disjoint (MAD) families of subsets of the naturals play a central
role in set theory. (Two sets are almost disjoint if there intersection is �nite.)
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A fundamental question is whether MAD families remain maximal in forcing
extensions. This is often studied in a little more generality as follows. For a
MAD family M let IM be the ideal of sets that can be almost contained in
a �nite union of members of M. (Almost contained means that only �nitely
many elements are not contained.) Then it is easy to see thatM remains MAD
in a forcing extension if and only if there is no co-in�nite set of naturals in the
extension that almost contains every (ground model) member of IM. Hence the
following de�nition is natural.

De�nition 1.1 An ideal I of subsets of the naturals is called tall if there is no
co-in�nite set that almost contains every member of I. Let I be a tall ideal and
P be a forcing notion. We say that I is P-indestructible if I remains tall after
forcing with P.

This notion is thoroughly investigated for various well-known ideals and
forcing notions, for instance Hernández-Hernández and Hru²ák proved that the
ideal of density zero subsets (see. De�nition 2.1) of the natural numbers is
random-indestructible. (Indeed, just combine [3, Thm 3.14], which is a result
of Brendle and Yatabe, and [3, Thm 3.4].) B. Farkas asked if there is a simple
and direct proof of this fact. In this note we provide such a proof.

This proof actually led us to a covering theorem (Thm. 2.5) which we �nd
very interesting in its own right from the measure theory point of view. First
we prove this theorem in Section 2 by a probabilistic argument, then we apply
it in Section 3 to reprove that the density zero ideal is random-indestructible
(Corollary 3.3), and �nally we pose some problems in Section 4.

2 A covering theorem

Cardinality of a set A is denoted by |A|.

De�nition 2.1 A set A ⊂ N is of density zero if limn→∞
|A∩{0,...,n−1}|

n = 0.
The ideal of density zero sets is denoted by Z.

A ⊂∗ B means that B almost contains A, that is, A \ B is �nite. The
following is well-known.

Fact 2.2 Z is a P-ideal, that is, for every sequence Zn ∈ Z there exists Z ∈ Z
so that Zn ⊂∗ Z for every n ∈ N.

Lemma 2.3 Let (X,A, µ) be a measure space of σ-�nite measure, and let

{An}n∈N be a sequence of measurable sets. Suppose that there exists 0 = N0 <
N1 < N2 < . . . so that ANk−1 , . . . , ANk−1 is a cover of X for every k ∈ N+,

and also that k divides Nk − Nk−1 for every k ∈ N+. Then there exists a set

Z ∈ Z so that {An}n∈Z covers µ-a.e. every x ∈ X in�nitely many times.
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Proof. Write {Nk−1, . . . , Nk−1} = W k
0 ∪· · ·∪W k

k−1, where theW
k
i 's are the k

disjoint arithmetic progressions of di�erence k. Let {ξk}k∈N+ be a sequence of
independent random variables so that ξk is uniformly distributed on {0, . . . , k−
1}. De�ne

Z = ∪k∈N+W k
ξk
.

It is easy to see that Z ∈ Z. Hence it su�ces to show that with probability 1
µ-a.e. x ∈ X is covered in�nitely many times by {An}n∈Z .

Let us now �x an x ∈ X. Let Ek be the event {x ∈ ∪n∈Wk
ξk

An},
that is, x is covered by the set chosen in the kth block. As the kth block
is a cover of X, Pr(Ek) ≥ 1

k , so
∑
k∈N+ Pr(Ek) = ∞. Moreover, the

events {Ek}k∈N+ are independent. Hence by the second Borel-Cantelli Lemma
Pr(In�nitely many of the Ek's occur) = 1. So every �xed x is covered in�nitely
many times with probability 1, but then by the Fubini theorem with probability
1 µ-a.e. x is covered in�nitely many times, and we are done. (To be more pre-
cise, let (Ω,S, P r) be the probability measure space, then Z(ω) = ∪k∈NW

k
ξk(ω).

Since the sets {(x, ω) : x ∈ An} and {(x, ω) : ξk(ω) = n} are clearly A × S-
measurable, it is straightforward to show that

{(x, ω) : x is covered in�nitely many times by {An}n∈Z(ω)} ⊂ X × Ω

is A× S-measurable, and hence Fubini applies.) �

Lemma 2.4 Let (X,A, µ) be a measure space of �nite measure, and let

{An}n∈N be a sequence of measurable sets that covers µ-a.e. every x ∈ X
in�nitely many times. Then there exists a set Z ∈ Z so that {An}n∈Z still

covers µ-a.e. every x ∈ X in�nitely many times.

Proof. Let ε > 0 be arbitrary and set N0 = 0. By the continuity of measures,
there exists N1 so that µ(X \ (AN0 ∪ · · · ∪ AN1−1)) ≤ ε

2 . Since {An}n≥N1 still
covers µ-a.e. x ∈ X in�nitely many times, we can continue this procedure,
and recursively de�ne 0 = N0 < N1 < N2 < . . . so that µ(X \ (ANk−1 ∪ · · · ∪
ANk−1)) ≤ ε

2k
for every k ∈ N+. We can also assume (by choosing larger Nk's

at each step) that k divides Nk −Nk−1 for every k ∈ N+.
Let Xε = ∩k∈N+(ANk−1 ∪ · · · ∪ANk−1), then µ(X \Xε) ≤ ε. Let us restrict

A, the An's and µ to Xε, and apply the previous lemma with this setup to
obtain Zε.

Let us now consider ε = 1, 1
2 ,

1
3 , . . . , then for every m ∈ N+ every x ∈ X 1

m
is

covered in�nitely many times by {An}n∈Z 1
m

. Since Z is a P-ideal, there exists a

Z ∈ Z such that Z 1
m
⊂∗ Z for every m. Hence for every m ∈ N+ every x ∈ X 1

m

is covered in�nitely many times by {An}n∈Z . But then we are done, since µ-a.e.
x ∈ X is in ∪mX 1

m
. �

Theorem 2.5 Let (X,A, µ) be a measure space of σ-�nite measure, and let

{An}n∈N be a sequence of measurable sets that covers µ-a.e. every x ∈ X
in�nitely many times. Then there exists a set Z ⊂ N of density zero so that

{An}n∈Z still covers µ-a.e. every x ∈ X in�nitely many times.
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Proof. Write X = ∪Xm, where each Xm is of �nite measure. For each Xm

obtain Zm by the previous lemma. Then a Z ∈ Z such that Zm ⊂∗ Z for every
m clearly works. �

The following example shows that the purely topological analogue of Theo-
rem 2.5 is false.

Example 2.6 There exists a sequence Un of clopen sets covering every point

of the Cantor space in�nitely many times so that for every Z ∈ Z there exists

a point covered only �nitely many times by {Un : n ∈ Z}.

Proof. By an easy recursion we can de�ne a sequence Un of clopen subsets
of the Cantor set C and a sequence of naturals 0 = N0 < N1 < . . . with the
following properties.

1. UNk−1 , . . . , UNk−1 (called a `block') is a disjoint cover of C,

2. every block is a re�nement of the previous one,

3. if Un is in the kth block and is partitioned into Ut, . . . , Us in the k + 1st

block (called the `immediate successors of Un') then s ≥ 2t.

Let Z ∈ Z be given, and let n0 be so that |Z∩{0,...,n−1}|
n < 1

2 for every n ≥ n0.
By 3. {Un : n ∈ Z} cannot contain all immediate successors of any Um above
n0. Therefore, starting at a far enough block, we can recursively pick a Uni
from each block so that ni /∈ Z for every i, and {Uni}i∈N is a nested sequence
of clopen sets. But then the intersection of this sequence is only covered �nitely
many times by {Un : n ∈ Z}. �

Remark 2.7 We can `embed' this example to any topological space containing
a copy of the Cantor set by just adding the complement of the Cantor set to all
Un's. Of course, the new Un's will only be open, not clopen.

3 An application: The density zero ideal is

random-indestructible

In this section we give a simple and direct proof of the random-indestructibility
of Z, which was �rst proved in [3].

[N]ω denotes the set of in�nite subsets of N. It carries a natural Polish space
topology where the sub-basic open sets are the sets of the form [n] = {A ∈
[N]ω : n ∈ A} and their complements. Let λ denote Lebesgue measure.

Lemma 3.1 For every Borel function f : R → [N]ω there exists a set Z ∈ Z
such that f(x) ∩ Z is in�nite for λ-a.e. x ∈ R.
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Proof. Let An = f−1([n]), then An is clearly Borel, hence Lebesgue measur-
able. For every x ∈ R

x ∈ An ⇐⇒ x ∈ f−1([n]) ⇐⇒ f(x) ∈ [n] ⇐⇒ n ∈ f(x). (3.1)

Since every f(x) is in�nite, (3.1) yields that every x ∈ R is covered by in�nitely
many An's. By Theorem 2.5 there exists a Z ∈ Z such that for λ-a.e. x ∈ R we
have x ∈ An for in�nitely many n ∈ Z. But then by (3.1) for λ-a.e. x ∈ R we
have n ∈ f(x) for in�nitely many n ∈ Z, so f(x) ∩ Z is in�nite. �

Recall that random forcing is B = {p ⊂ R : p is Borel, λ(p) > 0} ordered by
inclusion. The random real r is de�ned by {r} = ∩p∈G p, where G is the generic
�lter. For the terminology and basic facts concerning random forcing consult
e.g. [5], [4], [1], or [6]. In particular, we will assume familiarity with coding of
Borel sets and functions, and will freely use the same symbol for all versions of
a Borel set or function. The following fact is well-known and easy to prove.

Fact 3.2 Let B ⊂ R be Borel. Then p  “r ∈ B” i�y λ(p \B) = 0.

Corollary 3.3 The ideal of density zero subsets of the natural numbers is

random-indestructible, that is, random forcing does not add a co-in�nite set

of naturals that almost contains every ground model density zero set.

Proof. For a Borel function f : R→ [N]ω and a set Z ∈ Z let

Bf,Z = {x ∈ R : f(x) ∩ Z is in�nite},

then by the previous lemma for every f there is a Z so that Bf,Z is of full
measure. By Fact 3.2 for every f there is a Z so that 1B  “f(r)∩Z is in�nite”.
Hence for every f 1B  “∃Z ∈ Z ∩ V so that f(r) ∩ Z is in�nite”. But every
y ∈ [N]ω∩V [r] is of the form f(r) for some ground model (coded) Borel function
f : R → [N]ω, so we obtain that for every y ∈ [N]ω ∩ V [r] 1B  “∃Z ∈ Z ∩
V so that y ∩ Z is in�nite”. Therefore 1B  “∀y ∈ [N]ω∃Z ∈ Z ∩ V so that y ∩
Z is in�nite”, and setting x = N \ y yields 1B  “∀x ⊂ ω co-in�nite ∃Z ∈
Z ∩ V so that Z 6⊂∗ x�, so we are done. �

Remark 3.4 Clearly, Z is also B(κ)-indestructible, since every new real is al-
ready added by sub-poset isomorphic to B. (B(κ) is the usual poset for adding
κ many random reals by the measure algebra on 2κ.)

4 Problems

There are numerous natural directions in which one can ask questions in light
of Corollary 3.3 and Theorem 2.5. As for the former one, one can consult e.g.
[2] and the references therein. As for the latter one, it would be interesting to
investigate what happens if we replace the density zero ideal by another well-
known one, or if we replace the measure setup by the Baire category analogue,
or if we consider non-negative functions (summing up to in�nity a.e.) instead
of sets, or even if we consider κ-fold covers and ideals on κ.
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