Transfinite Sequences of Continuous and Baire Class 1 Functions

Márton Elekes and Kenneth Kunen*

August 6, 2004

Abstract

The set of continuous or Baire class 1 functions defined on a metric space X is endowed with the natural pointwise partial order. We investigate how the possible lengths of well-ordered monotone sequences (with respect to this order) depend on the space X.

Introduction

Any set \mathcal{F} of real valued functions defined on an arbitrary set X is partially ordered by the pointwise order; that is, $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in X$. Then, $f < g$ iff $f \leq g$ and $g \nleq f$; equivalently, $f(x) \leq g(x)$ for all $x \in X$ and $f(x) < g(x)$ for at least one $x \in X$. Our aim will be to investigate the possible lengths of the increasing or decreasing well-ordered sequences of functions in \mathcal{F} with respect to this order. A classical theorem (see Kuratowski [5], §24.III, Theorem 2') asserts that if \mathcal{F} is the set of Baire class 1 functions (that is, pointwise limits of continuous functions) defined on a Polish space X (that is, a complete separable metric space), then there exists a monotone sequence of length ξ in \mathcal{F} iff $\xi < \omega_1$. P. Komjáth [3] proved that the corresponding question concerning Baire class α functions for $2 \leq \alpha < \omega_1$ is independent of ZFC.

*Partially supported by NSF Grant DMS-0097881.

2000 Mathematics Subject Classification: Primary 26A21; Secondary 03E17, 54C30.

Key words and Phrases: Baire class 1, separable metric space, transfinite sequence of functions.
1 Sequences of Continuous Functions

In the present paper we investigate what happens if we replace the Polish space X by an arbitrary metric space.

Section 1 considers chains of continuous functions. We show that for any metric space X, there exists a chain in $C(X, \mathbb{R})$ of order type ξ iff $|\xi| \leq d(X)$. Here, $|A|$ denotes the cardinality of the set A, while $d(X)$ denotes the density of the space X, that is

$$d(X) = \max(\min\{|D| : D \subseteq X & \overline{D} = X\}, \omega).$$

In particular, for separable X, every well-ordered chain has countable length, just as for Polish spaces.

Section 2 considers chains of Baire class 1 functions on separable metric spaces. Here, the situation is entirely different from the case of Polish spaces, since on some separable metric spaces, there are well-ordered chains of every order type less than ω_2. Furthermore, the existence of chains of type ω_2 and longer is independent of ZFC + \negCH. Under MA, there are chains of all types less than c^+, whereas in the Cohen model, all chains have type less than ω_2.

We note here that instead of examining well-ordered sequences, which is a classical problem, we could try to characterize all the possible order types of linearly ordered subsets of the partially ordered set \mathcal{F}. This problem was posed by M. Laczkovich, and is considered in detail in [2].

1 Sequences of Continuous Functions

Lemma 1.1 For any topological space X: If there is a well-ordered sequence of length ξ in $C(X, \mathbb{R})$, then $\xi < d(X)^+$.

Proof. Let $\{f_\alpha : \alpha < \xi\}$ be an increasing sequence in $C(X, \mathbb{R})$, and let $D \subseteq X$ be a dense subset of X such that $d(X) = \max(|D|, \omega)$. By continuity, the $f_\alpha|D$ are all distinct; so, for each $\alpha < \xi$, choose a $d_\alpha \in D$ such that $f_\alpha(d_\alpha) < f_{\alpha+1}(d_\alpha)$. For each $d \in D$ the set $E_d = \{\alpha : d_\alpha = d\}$ is countable, because every well-ordered subset of \mathbb{R} is countable. Since $\xi = \bigcup_{d \in D} E_d$, we have $|\xi| \leq \max(|D|, \omega) = d(X)$.

The converse implication is not true in general. For example, if X has the countable chain condition (ccc), then every well-ordered chain in $C(X, \mathbb{R})$ is countable (because $X \times \mathbb{R}$ is also ccc). However, the converse is true for metric spaces:
Lemma 1.2 If (X, ϱ) is any metric space and \prec is any total order of the cardinal $d(X)$, then there is a chain in $C(X, \mathbb{R})$ which is isomorphic to \prec.

Proof. First, note that every countable total order is embeddable in \mathbb{R}, so if $d(X) = \omega$, then the result follows trivially using constant functions. In particular, we may assume that X is infinite, and then fix $D \subseteq X$ which is dense and of size $d(X)$. For each $n \in \omega$, let D_n be a subset of D which is maximal with respect to the property $\forall d, e \in D_n \ [d \neq e \rightarrow \varrho(d, e) \geq 2^{-n}]$. Then $\bigcup_n D_n$ is also dense, so we may assume that $\bigcup_n D_n = D$. We may also assume that \prec is a total order of the set D. Now, we shall produce $f_d \in C(X, \mathbb{R})$ for $d \in D$ such that $f_d < f_e$ whenever $d \prec e$.

For each n, if $c \in D_n$, define $\varphi^n_c(x) = \max(0, 2^{-n} - \varrho(x, c))$. For each $d \in D$, let $\psi^n_d = \{\varphi^n_c : c \in D_n \& c \prec d\}$. Since every $x \in X$ has a neighborhood on which all but at most one of the φ^n_c vanish, we have $\psi^n_d \in C(X, [0, 2^{-n}])$, and $\psi^n_d \leq \psi^n_e$ whenever $d \prec e$. Thus, if we let $f_d = \sum_{n<\omega} \psi^n_d$, we have $f_d \in C(X, [0, 2])$, and $f_d \leq f_e$ whenever $d \prec e$. But also, if $d \in D_n$ and $d \prec e$, then $\psi^n_d(d) = 0 < 2^{-n} = \psi^n_e(d)$, so actually $f_d < f_e$ whenever $d \prec e$. \[\square\]

Putting these lemmas together, we have:

Theorem 1.3 Let (X, ϱ) be a metric space. Then there exists a well-ordered sequence of length ξ in $C(X, \mathbb{R})$ iff $\xi < d(X)^{+}$.

Corollary 1.4 A metric space (X, ϱ) is separable iff every well-ordered sequence in $C(X, \mathbb{R})$ is countable.

2 Sequences of Baire Class 1 Functions

If we replace continuous functions by Baire class 1 functions, then Corollary 1.4 becomes false, since on some separable metric spaces, we can get well-ordered sequences of every type less than ω_2. To prove this, we shall apply some basic facts about \subseteq^* on $\mathcal{P}(\omega)$. As usual, for $x, y \subseteq \omega$, we say that $x \subseteq^* y$ iff $x \setminus y$ is finite. Then $x \subseteq^* y$ iff $x \setminus y$ is finite and $y \setminus x$ is infinite. This \subseteq^* partially orders $\mathcal{P}(\omega)$.

Lemma 2.1 If $X \subseteq \mathcal{P}(\omega)$ is a chain in the order \subseteq^*, then on X (viewed as a subset of the Cantor set $2^\omega \cong \mathcal{P}(\omega)$), there is a chain of Baire class 1 functions which is isomorphic to (X, \subset^*).
Proof. Note that for each \(x \in X \),
\[
\{ y \in X : y \subseteq^* x \} = \bigcup_{m \in \omega} \{ y \in X : \forall n \geq m \ [y(n) \leq x(n)] \}
\]
which is an \(F_\sigma \) set in \(X \). Likewise, the sets \(\{ y \in X : y \supseteq^* x \} \), \(\{ y \in X : y \subset^* x \} \),
and \(\{ y \in X : y \supset^* x \} \), are all \(F_\sigma \) sets in \(X \), and hence also \(G_\delta \) sets. It follows
that if \(f_\chi : X \to \{0, 1\} \) is the characteristic function of \(\{ y \in X : y \subset^* x \} \), then \(f_\chi : X \to \mathbb{R} \) is a Baire class 1 function. Then, \(\{ f_\chi : x \in X \} \) is the required chain. \(\square \)

Lemma 2.2 For any infinite cardinal \(\kappa \), suppose that \((\mathcal{P}(\omega), \subset^*) \) contains a
chain \(\{ x_\alpha : \alpha < \kappa \} \) (i.e., \(\alpha < \beta \to x_\alpha \subset^* x_\beta \}). Then \((\mathcal{P}(\omega), \subset^*) \) contains a
chain \(X \) of size \(\kappa \) such that every ordinal \(\xi < \kappa^+ \) is embeddable into \(X \).

Proof. Let \(S = \bigcup_{1 \leq n < \omega} \kappa^n \). For \(s = (\alpha_1, \ldots, \alpha_{n-1}, \alpha_n) \in S \), let \(s^+ = (\alpha_1, \ldots, \alpha_{n-1}, \alpha_n + 1) \). Starting with the \(x_{(\alpha)} = x_\alpha \), choose \(x_s \in \mathcal{P}(\omega) \) by
induction on length \((s) \) so that \(x_s = x_{s^0} \subset^* x_{s^\alpha} \subset^* x_{s^\beta} \subset^* x_{s^+} \) whenever \(s \in S \) and \(0 < \alpha < \beta < \kappa \). Let \(X = \{ x_s : s \in S \} \). Then, whenever \(x, y \in X \)
with \(x \subset^* y \), the ordinal \(\kappa \) is embeddable in \((x, y) = \{ z \in X : x \subset^* z \subset^* y \} \).
From this, one easily proves by induction on \(\xi < \kappa^+ \) (using cf(\(\xi \)) \(\leq \kappa \)) that \(\xi \)
is embeddable in each such interval \((x, y) \). \(\square \)

Since \(\mathcal{P}(\omega) \) certainly contains a chain of type \(\omega_1 \), these two lemmas yield:

Theorem 2.3 There is a separable metric space \(X \) on which, for every \(\xi < \omega_2 \),
there is a well-ordered chain of length \(\xi \) of Baire class 1 functions.

Under \(CH \), this is best possible, since there will be only \(2^{\omega_1} = \omega_1 \) Baire class 1 functions on a separable metric space, so there could not be a chain
of length \(\omega_2 \). Under \(\neg CH \), the existence of longer chains of Baire class 1 functions depends on the model of set theory. It is consistent with \(\mathfrak{c} = 2^{\omega_1} \) being
arbitrarily large that there is a chain in \((\mathcal{P}(\omega), \subset^*) \) of type \(\mathfrak{c} \); for example, this
is true under \(MA \) (see [1]). In this case, there will be a separable \(X \) with
well-ordered chains of all lengths less than \(\mathfrak{c}^+ \). However, in the Cohen model,
where \(\mathfrak{c} \) can also be made arbitrarily large, we never get chains of type \(\omega_2 \). We
shall prove this by using the following lemma, which relates it to the rectangle problem:
Lemma 2.4 Suppose that there is a separable metric space \(Y \) with an \(\omega_2 \)-chain of Borel subsets, \(\{ B_\alpha : \alpha < \omega_2 \} \) (so, \(\alpha < \beta \rightarrow B_\alpha \subseteq \overline{B_\beta} \)). Then in \(\omega_2 \times \omega_2 \), the well-order relation \(< \) is in the \(\sigma \)-algebra generated by the set of all rectangles, \(\{ S \times T : S, T \in \mathcal{P}(\omega_2) \} \).

Proof. Each \(B_\alpha \) has some countable Borel rank. Since there are only \(\omega_1 \) ranks, we may, by passing to a subsequence, assume that the ranks are bounded. Say, each \(B_\alpha \) is a \(\Sigma^0_\mu \) set for some fixed \(\mu < \omega_1 \).

Let \(J = \omega^\omega \), and let \(A \subseteq Y \times J \) be a universal \(\Sigma^0_\mu \) set; that is, \(A \) is \(\Sigma^0_\mu \) in \(Y \times J \) and every \(\Sigma^0_\mu \) subset of \(Y \) is of the form \(A^j = \{ y : (y, j) \in A \} \) for some \(j \in J \) (see [5], §31). Now, for \(\alpha, \beta < \omega_2 \), fix \(y_\alpha \in B_{\alpha+1} \setminus B_\alpha \), and fix \(j_\beta \in J \) such that \(A^{j_\beta} = B_\beta \). Then \(\alpha < \beta \) iff \((y_\alpha, j_\beta) \in A \). Thus, \(\{(y_\alpha, j_\beta) : \alpha < \beta < \omega_2 \} \) is a Borel subset of \(\{ y_\alpha : \alpha < \omega_2 \} \times \{ j_\beta : \beta < \omega_2 \} \), and is hence in the \(\sigma \)-algebra generated by open rectangles, so \(< \), as a subset of \(\omega_2 \times \omega_2 \), is in the \(\sigma \)-algebra generated by rectangles. \(\square \)

Theorem 2.5 Assume that \(V[G] \) is an extension of \(V \) by \(\geq \omega_2 \) Cohen reals, where the ground model, \(V \), satisfies CH. Then in \(V[G] \), no separable metric space can have a chain of length \(\omega_2 \) of Baire class 1 functions.

Proof. By [4], in \(V[G] \), the well-order relation in \(\omega_2 \times \omega_2 \) is not in the \(\sigma \)-algebra generated by all rectangles. Now, suppose that \(\{ f_\alpha : \alpha < \omega_2 \} \) is a chain of Baire class one functions on the separable metric space \(X \). Let \(B_\alpha = \{ (x, r) \in X \times \mathbb{R} : r \leq f_\alpha(x) \} \). Then the \(B_\alpha \) form an \(\omega_2 \)-chain of Borel subsets of the separable metric space \(X \times \mathbb{R} \), so we have a contradiction by Lemma 2.4. \(\square \)

References

DEPARTMENT OF ANALYSIS, EÖTVÖS LORÁND UNIVERSITY, BUDAPEST, PÁXMAŠNY PÉTER SÉTÁNY 1/C, 1117, HUNGARY

Email address: emarci@cs.elte.hu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706, USA

Email address: kunen@math.wisc.edu

URL: http://www.math.wisc.edu/~kunen