DECOMPOSITIONS OF EDGE-COLORED INFINITE COMPLETE GRAPHS INTO MONOCHROMATIC PATHS

MÁRTON ELEKES, DÁNIEL T. SOUKUP, LAJOS SOUKUP, AND ZOLTÁN SZENTMIKLÓSSY

Abstract

For $r \in \mathbb{N} \backslash\{0\}$ an r-edge coloring of a graph or hypergraph $G=(V, E)$ is a map $c: E \rightarrow\{0, \ldots, r-1\}$. Extending results of Rado and answering questions of Rado, Gyárfás and Sárközy we prove that - every r-edge colored complete k-uniform hypergraph on \mathbb{N} can be partitioned into r monochromatic tight paths with distinct colors (a tight path in a k uniform hypergraph is a sequence of distinct vertices such that every set of k consecutive vertices forms an edge), - for all natural numbers r and k there is a natural number M such that the every r-edge colored complete graph on \mathbb{N} can be partitioned into M monochromatic $k^{t h}$ powers of paths apart from a finite set (a $k^{t h}$ power of a path is a sequence v_{0}, v_{1}, \ldots of distinct vertices such that $|i-j| \leq k$ implies that $\left\{v_{i}, v_{j}\right\}$ is an edge), - every 2 -edge colored complete graph on \mathbb{N} can be partitioned into 4 monochromatic squares of paths, but not necessarily into 3 , - every 2-edge colored complete graph on ω_{1} can be partitioned into 2 monochromatic paths with distinct colors.

1. Introduction

Our goal is to find partitions of edge-colored infinite graphs and hypergraphs into nice monochromatic subgraphs. In particular, we are interested in partitioning the vertices of complete graphs and hypergraphs into monochromatic paths and powers of paths.

An r-edge coloring of a graph or hypergraph $G=(V, E)$ is a map $c: E \rightarrow$ $\{0, \ldots, r-1\}$, where $r \in \mathbb{N} \backslash\{0\}$. Investigations began in the '80s with a result of Rado [8] implying that every r-edge colored complete graph on \mathbb{N} can be partitioned into r monochromatic paths with distinct colors. We will abbreviate this statement as

$$
K_{\mathbb{N}} \sqsubset(\mathfrak{P a t h}, \ldots, \mathfrak{P a t h})_{r} .
$$

In Section 3, answering a question of Gyárfás and Sárközy from [3] we extend this result for hypergraphs by proving that every r-edge colored complete k-uniform

[^0]hypergraph on \mathbb{N} can be partitioned into r monochromatic tight paths with distinct colors (Theorem 3.3):
$$
K_{\mathbb{N}}^{k} \sqsubset(\mathfrak{T i g h t} \mathfrak{P a t h}, \ldots, \mathfrak{T i g h t} \mathfrak{P a t h})_{r}
$$

Furthermore, Erdős, Gyárfás and Pyber [1] conjectured that the vertices of every r-edge colored complete graph can be covered with r disjoint monochromatic cycles.

This conjecture was disproved by Pokrovskiy [6]. However, the case $k=2$ of Theorem 3.3(2) yields that the corresponding version of the conjecture above holds for countable infinite graphs: Given an r-edge coloring of $K_{\mathbb{N}}$, we can partition the vertices into r disjoint cycles and 2-way infinite paths of distinct colors.

In Section 4, we prove that for all natural numbers r and k there is a natural number M such that the every r-edge colored complete graph on \mathbb{N} can be partitioned into M monochromatic $k^{t h}$ powers of paths apart from a finite set (Theorem 4.6):

$$
K_{\mathbb{N}} \sqsubset^{*}\left(k^{\text {th }}-\mathfrak{P o w e r} \text { of } \mathfrak{P a t h}\right)_{r, M} .
$$

Using a recent result of Pokrovskiy on finite graphs we show that every 2-edge colored complete graph on \mathbb{N} can be partitioned into 4 monochromatic squares of paths:

$$
K_{\mathbb{N}} \sqsubset(\mathfrak{P a t h} \mathfrak{S q u a r e})_{2,4} .
$$

Finally, in Section 5, we give a partial answer to a question of Rado from [8] (the definitions are postponed to the section): every 2-edge colored complete graph on ω_{1} can be partitioned into 2 monochromatic paths of distinct colors:

$$
K_{\omega_{1}} \sqsubset(\mathfrak{P a t h}, \mathfrak{P a t h})_{2} .
$$

The paper ends with the short Section 6 on further results (without proofs) and open problems.

2. Notations, Preliminaries

The cardinality of a set X is denoted by $|X|$. For a set X and $k \in \mathbb{N}$ we will denote the set of k-element subsets of X by $[X]^{k}$. The set of all subsets of X is denoted by $\mathcal{P}(X)$. A graph is an ordered pair $G=(V, E)$ so that $E \subset[V]^{2}$, and a hypergraph is an ordered pair $H=(V, E)$ so that $E \subset \mathcal{P}(V)$; we will use the notation $V(G), E(G)$ for the vertices and edges of a graph or hypergraph G. A hypergraph $H=(V, E)$ is k-uniform if $E \subset[V]^{k}$.

For a graph $G=(V, E)$ and $v \in V$ we write

$$
N_{G}(v)=\{w \in V:\{v, w\} \in E\},
$$

and for $F \subset V$

$$
N_{G}[F]=\bigcap\left\{N_{G}(v): v \in F\right\} .
$$

For a graph G and $X \subset V(G)$ we let $G[X]$ denote the induced subgraph $\left(X,[X]^{2} \cap\right.$ $E(G))$.

Let $c: E \rightarrow\{0, \ldots, r-1\}$ be an r-edge coloring of a graph $G=(V, E)$. For an edge $\{v, w\} \in E$ we will simply write $c(v, w)$ instead of $c(\{v, w\})$. For $v \in V$ and $i<r$ also let

$$
N_{G}(v, i)=\left\{w \in N_{G}(v): c(v, w)=i\right\}
$$

and for $F \subset V$ and $i<r$ let

$$
N_{G}[F, i]=\bigcap\left\{N_{G}(v, i): v \in F\right\} .
$$

As we always work with a fixed coloring, this notation will lead to no misunderstanding (and sometimes we will even drop the subscript G).

We will use $K_{\mathbb{N}}$ to denote $\left(\mathbb{N},[\mathbb{N}]^{2}\right)$, that is, the complete graph on \mathbb{N}. A path in a graph is a finite or one-way infinite sequence of distinct vertices such that each pair of consecutive vertices is connected by an edge. If P is a finite path and Q is a disjoint path such that the end-point of P is connected by an edge with the starting point of Q then $P^{\frown} Q$ denotes their concatenation. We say that Q end extends P if P is an initial segment of Q.

Definition 2.1. Let $G=(V, E)$ be a graph and $A \subset V$. We say that A is infinitely linked iff there are infinitely many disjoint finite paths between any two distinct points of A. We say that A is infinitely connected iff there are infinitely many disjoint finite paths inside A between any two distinct points of A.

Remark. An easy recursive construction shows that A is infinitely linked iff for every two distinct members v and w of A and every finite set $F \subset V(G) \backslash\{v, w\}$ there is a path connecting the two points and avoiding F. Similarly, A is infinitely connected if we can additionally require that the path is inside A.

If we fix an edge coloring c of G with r colors, $i<r, \mathcal{P}$ is a graph property (e.g. being a path, being infinitely connected...) and $A \subset V$ then we say that A has property \mathcal{P} in color i (with respect to c) iff A has property \mathcal{P} in the graph $\left(V, c^{-1}(i)\right.$). In particular, by a monochromatic path we mean a set P which is a path in some color.

Lemma 2.2. Let $G=\left(V,[V]^{2}\right)$ be a complete countably infinite graph. Given any edge coloring $c:[V]^{2} \rightarrow\{0, \ldots, r-1\}$, there is a partition $d_{c}: V \rightarrow\{0, \ldots, r-1\}$ and a color $i_{c}<r$ so that

$$
N[F, i] \cap V_{i_{c}} \text { is infinite for all } i<r \text { and finite set } F \subset V_{i}=d_{c}^{-1}\{i\} .
$$

In particular, V_{i} is infinitely linked in color i for all $i<r$ and $V_{i_{c}}$ is infinitely connected in color i_{c}.
Proof. Let U be a non-trivial ultrafilter on V, see e.g. [5]. (In other words, take a finitely additive $0 / 1$-measure on V assigning measure 0 to singletons, and let U be the class of sets of measure 1.) For $i<r$ define $V_{i}=\{v \in V: N(v, i) \in U\}$ (e.g. $d_{c} \upharpoonright V_{i} \equiv i$), and let i_{c} be the unique element of $\{0, \ldots, r-1\}$ with $V_{i_{c}} \in U$. It is not hard to check that this works.

The next lemma looks slightly technical at first sight. However, note that for our first application, that is for the proof of Rado's theorem we can ignore the sets A_{j}, as well as the last clause.

Lemma 2.3. Suppose that $G=(V, E)$ is a countably infinite graph and c is an edge coloring. Suppose that $\left\{C_{j}: j<k\right\}$ is a finite family of subsets of V and that each C_{j} is infinitely linked in some color i_{j}. Moreover, for $j<k$ let $A_{j} \subseteq C_{j}$ be arbitrary subsets.

Then we can find disjoint sets P_{j} so that
(a) P_{j} is a path (either finite or one-way infinite) in color i_{j} for all $j<k$,
(b) if A_{j} is infinite then so is $A_{j} \cap P_{j}$,
(c) $\bigcup\left\{P_{j}: j<k\right\} \supset \bigcup\left\{C_{j}: j<k\right\}$.

Moreover, if a C_{j} is infinite then we can choose the first point of P_{j} freely from C_{j}.
Proof. Let v_{0}, v_{1}, \ldots be a (possibly finite) enumeration of $\bigcup\left\{C_{j}: j<k\right\}$.
For all the infinite C_{j}, fix distinct $x_{j} \in C_{j}$ as starting points for the $P_{j} \mathrm{~s}$. We define disjoint finite paths $\left\{P_{j}^{n}: j<k\right\}$ by induction on $n \in \mathbb{N}$ so that
(i) P_{j}^{n} is a path of color i_{j} with first point x_{j},
(ii) P_{j}^{n+1} end extends P_{j}^{n} (as a path of color i_{j}),
(iii) the last point of the path P_{j}^{n} is in C_{j},
(iv) if A_{j} is infinite then the last point of $P_{j}^{2 n}$ is in A_{j},
for all $j<k$, and
(v) if $v_{n} \notin \bigcup_{j<k} P_{j}^{2 n}$ and $v_{n} \in C_{j}$ then v_{n} is the last point of $P_{j}^{2 n+1}$.

It should be easy to carry out this induction applying that each A_{j} is infinitely linked in color i_{j}. Finally, we let $P_{j}=\cup\left\{P_{j}^{n}: n \in \mathbb{N}\right\}$ for $j<k$ which finishes the proof.

In particular, we have the following trivial corollary:
Corollary 2.4. If a countable graph is infinitely connected then it is a single one-way infinite path. If a countable set of vertices A is infinitely linked then it is covered by a single one-way infinite path.

More importantly, the above lemmas yield
Theorem 2.5 (R. Rado [8]). For every r-edge coloring of $K_{\mathbb{N}}$ we can partition the vertices into r disjoint paths of distinct colors.

Proof. Apply Lemma 2.2 and find a partition $\mathbb{N}=\left\{V_{i}: i<r\right\}$ so that each V_{i} is infinitely linked in color i. Now apply Lemma 2.3 with $C_{i}=V_{i}$ (and $A_{i}=\emptyset$) to get the desired partition into monochromatic paths.

To abbreviate the formulation of certain result we introduce the following notation.

Definition 2.6. Let G be a graph and \mathfrak{F} be a class of graphs. We write

$$
G \sqsubset(\mathfrak{F})_{r, m}
$$

if given any r-edge coloring $c: E(G) \rightarrow\{0, \ldots, r-1\}$ the vertex set of G can be partitioned into m monochromatic elements of \mathfrak{F}.

We write

$$
G \sqsubset(\mathfrak{F}, \mathfrak{F}, \ldots, \mathfrak{F})_{r}
$$

if given any r-edge coloring $c: E(G) \rightarrow\{0, \ldots, r-1\}$ the vertex set of G can be partitioned into r monochromatic elements of \mathfrak{F} in distinct colors.

In particular, $G \sqsubset(\mathfrak{P a t h})_{r, m}$ holds if given any r-edge coloring c of G the vertex set of G can be partitioned into m monochromatic paths.

We write \sqsubset^{*} instead of \sqsubset if we can partition the vertex set apart from a finite set.
Using our new notation, Theorem 2.5 can be formulated as follows:

$$
K_{\mathbb{N}} \sqsubset(\mathfrak{P a t h}, \ldots, \mathfrak{P a t h})_{r} .
$$

3. Partitions of hypergraphs

In this section, we briefly look at a generalization of Rado's result, Theorem 2.5 above, to hypergraphs. Let $k \in \mathbb{N} \backslash\{0\}$.

Definition 3.1. A loose path in a k-uniform hypergraph is a finite or one-way infinite sequence of edges, e_{1}, e_{2}, \ldots such that $\left|e_{i} \cap e_{i+1}\right|=1$ for all i, and $e_{i} \cap e_{j}=\emptyset$ for all i, j with $i+1<j$.

A tight path in a k-uniform hypergraph is a finite or one-way infinite sequence of distinct vertices such that every set of k consecutive vertices forms an edge.

Remark. Occasionally, we will refer to loose and tight cycles and two-way infinite paths as well, with the obvious analogous definitions.

The following result was proved recently:
Theorem 3.2 (A. Gyárfás, G. N. Sárközy [3, Theorem 3.]). Suppose that the edges of a countably infinite complete k-uniform hypergraph are colored with r colors. Then the vertex set can be partitioned into monochromatic finite or one-way infinite loose paths of distinct colors.

In the introduction of [3], the authors asked if one can find a partition into tight paths instead of loose ones. We prove the following:

Theorem 3.3. Suppose that the edges of a countably infinite complete k-uniform hypergraph are colored with r colors. Then
(1) the vertex set can be partitioned into monochromatic finite or one-way infinite tight paths of distinct colors,
(2) the vertex set can be partitioned into monochromatic tight cycles and two-way infinite tight paths of distinct colors.

Proof. (1) Note that the case of $k=2$ is Rado's Theorem 2.5 above; we will imitate his original proof here.

Let $c:[\mathbb{N}]^{k} \rightarrow\{0, \ldots, r-1\}$. A set $T \subset\{0, \ldots, r-1\}$ of colors is called perfect iff there are disjoint finite subsets $\left\{P_{t}: t \in T\right\}$ of \mathbb{N} and an infinite set $A \subset \mathbb{N} \backslash \bigcup_{t \in T} P_{t}$ such that for all $t \in T$
(a) P_{t} is a tight path in color t,
(b) if $1 \leq i<k$ and x is the set of the last i vertices from the tight path P_{t} and $y \in[A]^{k-i}$, then $c(x \cup y)=t$.
Since \emptyset is perfect, we can consider a perfect set T of colors with maximal number of elements.

Claim 3.3.1. If the vertex disjoint finite tight paths $\left\{P_{t}: t \in T\right\}$ and the infinite set A satisfy (a) and (b) then for all $v \in \mathbb{N} \backslash \bigcup_{t \in T} P_{t}$ there is a color $t^{\prime} \in T$, a finite sequence $v_{1}, v_{2}, \ldots, v_{k-1}$ from A, and an infinite set $A^{\prime} \subset A$ such that the tight paths

$$
\left\{P_{t}: t \in T \backslash\left\{t^{\prime}\right\}\right\} \cup\left\{P_{t^{\prime}} \frown\left(v_{1}, v_{2}, \ldots, v_{k-1}, v\right)\right\}
$$

and A^{\prime} satisfy (a) and (b) as well.
Proof of the Claim. Define a new coloring $d:[A]^{k-1} \rightarrow\{0, \ldots, r-1\}$ by the formula $d(x)=c(x \cup\{v\})$. By Ramsey's Theorem, there is an infinite d-homogeneous set $B \subset A$ in some color t^{\prime}. Then $t^{\prime} \in T$, since otherwise $T \cup\left\{t^{\prime}\right\}$ would be a bigger perfect set witnessed by $P_{t^{\prime}}=\{v\},\left\{P_{t}: t \in T\right\}$ and B.

Now pick distinct $v_{1}, v_{2}, \ldots, v_{k-1}$ from B and let $A^{\prime}=B \backslash\left\{v_{1}, \ldots, v_{k-1}, v\right\}$.
Finally, by applying the claim repeatedly, we can cover the vertices with $|T|$ tight paths of distinct colors.
(2) Let $c:[\mathbb{N}]^{k} \rightarrow\{0, \ldots, r-1\}$. Write $V_{-1}=\mathbb{N}$. Using Ramsey's Theorem, by induction on $n \in \mathbb{N}$ choose $d(n)<r$ and $V_{n} \in\left[V_{n-1}\right]^{\mathbb{N}}$ such that

$$
\begin{equation*}
c(\{n\} \cup O)=d(n) \text { for all } O \in\left[V_{n}\right]^{k-1} . \tag{3.1}
\end{equation*}
$$

For $i<r$ let

$$
\begin{equation*}
A_{i}=\{n \in \mathbb{N}: d(n)=i\} . \tag{3.2}
\end{equation*}
$$

Let $K=\left\{i<r: A_{i}\right.$ is finite $\}$. By induction on $i \in K$ we will define tight cycles $\left\{P_{i}: i \in K\right\}$ such that

$$
\bigcup_{i^{\prime}<i, i^{\prime} \in K} A_{i^{\prime}} \subseteq \bigcup_{i^{\prime}<i, i^{\prime} \in K} P_{i^{\prime}}
$$

while some of the P_{i} 's might be empty.
Assume that $\left\{P_{i^{\prime}}: i^{\prime}<i, i^{\prime} \in K\right\}$ is defined and suppose $i \in K$. Enumerate $A_{i} \backslash \bigcup_{i^{\prime}<i, i^{\prime} \in K} P_{i^{\prime}}$ as $\left\{x_{i}^{j}: j<t\right\}$.

Choose disjoint $k-1$ element sets

$$
\begin{equation*}
Y_{i}^{j} \subseteq \bigcap_{j<t} V_{x_{i}^{j}} \backslash \bigcup_{i^{\prime}<i, i^{\prime} \in K} P_{i^{\prime}} \text { for } j<t \tag{3.3}
\end{equation*}
$$

Consider an ordering \prec_{i} on $P_{i}=\left\{x_{i}^{j}: j<t\right\} \cup \bigcup_{j<t} Y_{i}^{j}$ such that

$$
x_{i}^{0} \prec_{i} Y_{i}^{0} \prec_{i} x_{i}^{1} \prec_{i} Y_{i}^{1} \prec_{i} \cdots \prec_{i} x_{i}^{t-1} \prec_{i} Y_{i}^{t-1} .
$$

Then \prec_{i} witnesses that P_{i} is a tight cycle in color i.
Now, let

$$
P=\bigcup_{i \in K} P_{i}
$$

and for each $i \in\{0, \ldots, r-1\} \backslash K$ we define a 2-way infinite tight path P_{i} as follows.

By induction, for every integer $z \in \mathbb{Z}$ and $i \in\{0, \ldots, r-1\} \backslash K$ choose disjoint sets $\left\{x_{i}^{z}\right\} \in\left[A_{i} \backslash P\right]^{1}$ and $Y_{i}^{z} \in[\mathbb{N} \backslash P]^{k-1}$ such that

$$
Y_{i}^{z} \subset V_{x_{i}^{z}} \cap V_{x_{i}^{z+1}}
$$

and

$$
\bigcup_{i \in\{0, \ldots, r-1\} \backslash K} A_{i} \subset P \cup \bigcup\left\{\left\{x_{i}^{z}\right\}, Y_{i}^{z}: i \in\{0, \ldots, r-1\} \backslash K, z \in \mathbb{Z}\right\}
$$

Consider an ordering \prec_{i} on $P_{i}=\left\{x_{i}^{z}: z \in \mathbb{Z}\right\} \cup \bigcup_{z \in \mathbb{Z}} Y_{i}^{z}$ such that

$$
\ldots \prec_{i} Y_{i}^{-2} \prec_{i} x_{i}^{-1} \prec_{i} Y_{i}^{-1} \prec_{i} x_{i}^{0} \prec_{i} Y_{i}^{0} \prec_{i} x_{i}^{1} \prec_{i} Y_{i}^{1} \prec_{i} \ldots
$$

Then \prec_{i} witnesses that P_{i} is a 2-way infinite tight path in color i.

4. Covers by $k^{T H}$ powers of paths

Our aim is to prove a stronger version of Rado's theorem; in order to state this result we need the following
Definition 4.1. Suppose that $G=(V, E)$ is a graph and $k \in \mathbb{N} \backslash\{0\}$. The $k^{\text {th }}$ power of G is the graph $G^{k}=\left(V, E^{k}\right)$ where $\{v, w\} \in E^{k}$ iff there is a finite path of length $\leq k$ from v to w.

We will be interested in partitioning an edge colored copy of $K_{\mathbb{N}}$ into finitely many monochromatic $k^{\text {th }}$ powers of paths.

Figure 1. Powers of paths.
We will investigate this problem by introducing the following game.

Definition 4.2. Assume that H is a graph, $W \subset V(H)$ and $k \in \mathbb{N}$. The game $\mathfrak{G}_{k}(H, W)$ is played by two players, Adam and Bob, as follows. The players choose disjoint finite subsets of $V(H)$ alternately:

$$
A_{0}, B_{0}, A_{1}, B_{1}, \ldots
$$

Bob wins the game $\mathfrak{G}_{k}(H, W)$ iff
(A) $W \subset \bigcup_{i \in \mathbb{N}} A_{i} \cup B_{i}$, and
(B) $H\left[\bigcup_{i \in \mathbb{N}} B_{i}\right]$ contains the $k^{t h}$ power of a (finite or one way infinite) Hamiltonian path (that is, a path covering all the vertices).
For $k=1$, we have the following
Observation 4.3. If $H=(V, E)$ is a countable graph and $W \subset V$ then the following are equivalent:
(1) W is infinitely linked,
(2) Bob wins $\mathfrak{G}_{1}(H, W)$.

Proof. (1) \Rightarrow (2): By our assumption, Bob can always connect an uncovered point of W to the end-point of the previously constructed path while avoiding vertices played so far. This shows the existence of a winning strategy for Bob.
$(2) \Rightarrow(1):$ Fix any two distinct points $v, w \in W$ and a finite set $F \subset V \backslash\{v, w\}$. Let Adam start with $A_{0}=F$ and continue with $A_{i}=\emptyset$; the Hamiltonian path P constructed by Bob's strategy will go through a and b while $P \cap F=\emptyset$.

Now, we show how to produce a partition of the vertices into $k^{\text {th }}$ powers of paths using winning strategies of Bob:

Lemma 4.4. Suppose that $H=(V, E), V=\bigcup\left\{W_{i}: i<M\right\}$ with $M \in \mathbb{N}$ and let $H_{i}=\left(V, E_{i}\right)$ for some $E_{i} \subset E$. If Bob wins $\mathfrak{G}_{k}\left(H_{i}, W_{i}\right)$ for all $i<M$ then V can be partitioned into $\left\{P_{i}: i<M\right\}$ so that P_{i} is a $k^{\text {th }}$ power of a path in H_{i}.

Proof. We will conduct M games simultaneously as follows: the plays of Adam and Bob in the $i^{\text {th }}$ game will be denoted by $A_{0}^{i}, B_{0}^{i}, A_{1}^{i}, B_{1}^{i}, \ldots$ for $i<M$. Let σ^{i} denote the winning strategy for Bob in $\mathfrak{G}_{k}\left(H_{i}, W_{i}\right)$, that is, if we set $B_{n}^{i}=\sigma^{i}\left(A_{0}^{i}, B_{0}^{i}, \ldots, A_{n}^{i}\right)$ then Bob wins the game.

Now, we define A_{n}^{i}, B_{n}^{i} by induction using the lexicographical ordering $<_{\text {lex }}$ on $\{(n, i): n \in \mathbb{N}, i<M\}$. First, let $A_{0}^{0}=\emptyset$ and $B_{0}^{0}=\sigma^{0}\left(A_{0}^{0}\right)$. In general, assume that A_{m}^{j} and B_{m}^{j} are defined for $(m, j)<_{\text {lex }}(n, i)$, and we let

$$
\begin{equation*}
A_{n}^{i}=\bigcup\left\{B_{m}^{j}:(m, j)<_{l e x}(n, i)\right\} \backslash\left(\bigcup\left\{A_{m}^{i}, B_{m}^{i}: m<n\right\}\right) \tag{4.1}
\end{equation*}
$$

and

$$
B_{n}^{i}=\sigma^{i}\left(A_{0}^{i}, B_{0}^{i}, \ldots, A_{n}^{i}\right) .
$$

One easily checks that the above defined plays are valid; indeed, for a fix $i<M$ the finite sets $\left\{A_{n}^{i}, B_{n}^{i}: n \in \mathbb{N}\right\}$ defined above are disjoint.

Next, let $P_{i}=\bigcup\left\{B_{n}^{i}: n \in \mathbb{N}\right\}$ for $i<M$. As Bob wins the $i^{\text {th }}$ game we have that P_{i} is a $k^{\text {th }}$ power of path in H_{i}. Note that $P_{i} \cap P_{j}=\emptyset$ if $i \neq j<M$. Indeed, if $(m, j)<_{l e x}(n, i)$, then

$$
B_{n}^{i} \cap B_{m}^{j} \subset B_{n}^{i} \cap\left(A_{n}^{i} \cup\left(\bigcup\left\{A_{m}^{i}, B_{m}^{i}: m<n\right\}\right)=\emptyset\right.
$$

by (4.1).
To finish the proof, we prove

$$
\begin{equation*}
V=\left\{P_{i}: i<M\right\} \tag{4.2}
\end{equation*}
$$

Indeed, first note that $W_{i} \subset \bigcup_{n \in \mathbb{N}} A_{n}^{i} \cup B_{n}^{i}$ as Bob wins the $i^{\text {th }}$ game and hence

$$
V=\bigcup_{n \in \mathbb{N}, i<M} A_{n}^{i} \cup B_{n}^{i}
$$

Second, by (4.1), we have

$$
A_{n}^{i} \subset \bigcup\left\{B_{m}^{j}:(m, j)<_{l e x}(n, i)\right\}
$$

and so

$$
\bigcup_{n \in \mathbb{N}, i<M} A_{n}^{i} \subset \bigcup_{n \in \mathbb{N}, i<M} B_{n}^{i}
$$

and hence $V=\left\{P_{i}: i<M\right\}$.
The next theorem provides conditions under which Bob has a winning strategy:
Theorem 4.5. Assume that H is a countably infinite graph, $W \subset V(H)$ is nonempty and $k \in \mathbb{N}$. If there are subsets W_{0}, \ldots, W_{k} of $V(H)$ such that $W_{0}=W$ and

$$
\begin{equation*}
W_{j+1} \cap N_{H}[F] \text { is infinite for each } j<k \text { and finite } F \subset \bigcup_{i \leq j} W_{i} \tag{4.3}
\end{equation*}
$$

then Bob wins $\mathfrak{G}_{k}(H, W)$.
Proof. We can assume that $\mathrm{V}(H)=\mathbb{N}$.
Consider first the easy case when W_{0} is finite. Adam plays a finite set A_{0} in the first round. Write $N=\left|W_{0} \backslash A_{0}\right|$. Let Bob play $B_{0}=W_{0} \backslash A_{0}=\left\{b_{n, 0}: n<N\right\}$. In the $j^{t h}$ round for $1 \leq j \leq k$, let Bob play an N-element set

$$
\begin{equation*}
B_{j}=\left\{b_{n, j}: n<N\right\} \subset W_{j} \cap N_{H}\left[\bigcup_{i<j} B_{i}\right] \tag{4.4}
\end{equation*}
$$

which avoids all previous choices, i.e. $B_{j} \cap \bigcup\left\{A_{i^{\prime}}, B_{i}: i^{\prime} \leq j, i<j\right\}=\emptyset$. For $j>k$ let Bob play $B_{j}=\emptyset$.

We claim that
(A) $W_{0} \subseteq \bigcup\left\{A_{n}, B_{n}: n \in \mathbb{N}\right\}$, and
(B) $P=\left\{b_{n, j}: n<N, j \leq k\right\}$ is the $k^{t h}$-power of a path.
(A) is clear because $W_{0} \subseteq A_{0} \cup B_{0}$.

To check (B) consider the lexicographical order of the indexes. Let $(m, i) \neq(n, j) \in$ $\{0, \ldots, N-1\} \times\{0, \ldots, k\}$. Then $b_{m, i}$ and $b_{n, j}$ are the $((k+1) m+i)^{t h}$ and $((k+$ 1) $n+j)^{t h}$ elements, respectively, in the lexicographical order.

Figure 2. $b_{n, j}$ and its k successors.

Assume that $|((k+1) m+i)-((k+1) n+j)| \leq k$; then $i \neq j$ and, without loss of generality, we can suppose that $i<j$. Then we have $b_{m, i} \in \bigcup_{i^{\prime}<j} B_{i^{\prime}}$, so $b_{n, j} \in N_{H}\left(b_{m, i}\right)$ by (4.4). In other words, $\left\{b_{m, i}, b_{n, j}\right\}$ is an edge in H which yields (B).

Consider next the case when W_{0} is infinite; let us outline the idea first in the case when $k=2$. Bob will play one element sets at each step and aims to build a oneway infinite square of a path following the lexicographical ordering on $\mathbb{N} \times\{0,1,2\}$. However, he picks the vertices in a different order, denoted by \unlhd later, which is demonstrated in Figure 3.

Figure 3. The two orderings.

This way Bob makes sure that when he chooses the $12^{\text {th }}$ element he already picked its two successors (in the $7^{\text {th }}$ and $11^{\text {th }}$ plays) and two predecessors (in the $8^{\text {th }}$ and $4^{\text {th }}$ plays) in the lexicographical ordering, hence we can ensure the edge relations here.

Now, we define the strategy more precisely. In each round Bob will pick a single element $b_{n, j}$ for some $(n, j) \in \mathbb{N} \times\{0,1, \ldots, k\}$ such that $\left\{b_{n, j}:(n, j) \in \mathbb{N} \times\{0,1, \ldots, k\}\right\}$ will be the $k^{t h}$ power of a path in the lexicographical order of $\mathbb{N} \times\{0,1, \ldots, k\}$.

As we said earlier, Bob will not choose the points $b_{n, j}$ in the lexicographical order of $\mathbb{N} \times\{0,1, \ldots, k\}$, i.e. typically the $((k+1) n+j)^{t h}$ move of Bob, denoted by $B_{(k+1) n+j}$, is not $\left\{b_{n, j}\right\}$.

To describe Bob's strategy we should define another order on $\mathbb{N} \times\{0,1, \ldots, k\}$ as follows:

$$
(m, i) \unlhd(n, j) \text { iff } \quad(m+i<n+j) \text { or }(m+i=n+j \text { and } i \leq j) .
$$

Write $(m, i) \triangleleft(n, j)$ iff $(m, i) \unlhd(n, j)$ and $(m, i) \neq(n, j)$. Clearly every (n, j) has just finitely many \triangleleft-predecessors. Let $f(\ell)$ denote the $\ell^{\text {th }}$ element of $\mathbb{N} \times\{0,1, \ldots, k\}$ in the order \triangleleft.

Bob will choose $B_{\ell}=\left\{b_{f(\ell)}\right\}$ in the $\ell^{\text {th }}$ round as follows: if $f(\ell)=(n, j)$, then
(a) if $j=0$ then

$$
\begin{equation*}
b_{n, j}=\min \left(W_{0} \backslash\left(\bigcup_{s \leq \ell} A_{s} \cup \bigcup_{t<\ell} B_{t}\right)\right) \tag{4.5}
\end{equation*}
$$

(b) if $j>0$ then

$$
\begin{equation*}
b_{n, j} \in W_{j} \cap N_{H}\left[\left\{b_{m, i}:(m, i) \triangleleft(n, j), i<j\right\}\right] . \tag{4.6}
\end{equation*}
$$

Bob can choose a suitable $b_{n, j}$ by (4.3) as $\left\{b_{m, i}:(m, i) \triangleleft(n, j), i<j\right\}$ is a finite subset of $\bigcup_{i<j} W_{i}$.

We claim that
(A) $W_{0} \subseteq \bigcup\left\{A_{n}, B_{n}: n \in \mathbb{N}\right\}$, and
(B) $P=\left\{b_{n, j}: n \in \mathbb{N}, j \leq k\right\}$ is the $k^{t h}$-power of a path.
(A) is clear because in (4.5) we chose the minimal possible element.

Let $(m, i) \neq(n, j) \in \mathbb{N} \times\{0, \ldots, k\}$. Then $b_{m, i}$ and $b_{n, j}$ are the $((k+1) m+i)^{t h}$ and $((k+1) n+j)^{t h}$ elements, respectively, in the lexicographical order. Assume that $|((k+1) m+i)-((k+1) n+j)| \leq k$. Then $i \neq j$ and $|m-n| \leq 1$.

Without loss of generality, we can assume that $i<j$. Then $|m-n| \leq 1$ implies $m+i \leq n+j$ and hence $(m, i) \triangleleft(n, j)$. Since $i<j$ as well, $b_{n, j} \in N_{H}\left(b_{m, i}\right)$ must hold by (4.6). In other words, $\left\{b_{m, i}, b_{n, j}\right\}$ is an edge in H which yields (B).

We arrive at one of our main results:
Theorem 4.6. For all positive natural numbers k, r and an r-edge coloring of $K_{\mathbb{N}}$ the vertices can be covered by $r^{(k-1) r+1}$ one-way infinite monochromatic $k^{\text {th }}$ powers of paths and a finite set.

Proof. The set of sequences of length m (at most m, respectively) whose members are from a set X is denoted by X^{m} ($X^{\leq m}$, respectively).

Recall that for each r-edge coloring c of $K_{\mathbb{N}}$ Lemma 2.2 gives a partition of the vertices, which we will denote by $d_{c}: \mathbb{N} \rightarrow\{0, \ldots, r-1\}$, and a special color $i_{c}<r$. We define a set $A_{s} \subset \mathbb{N}$ for each finite sequence $s \in\{0, \ldots, r-1\} \leq(k-1) r+1$ by induction on $|s|$ as follows:

- let $A_{\emptyset}=\mathbb{N}$,
- if A_{s} is defined and finite then let

$$
\begin{equation*}
A_{s \frown 0}=A_{s} \text { and } A_{s \frown i}=\emptyset \text { for } 1 \leq i<r, \tag{4.7}
\end{equation*}
$$

- if A_{s} is defined and infinite then let

$$
\begin{equation*}
A_{s \frown i}=\left\{u \in A_{s}: d_{c\left\lceil A_{s}\right.}(u)=i\right\} \text { for } i<r . \tag{4.8}
\end{equation*}
$$

Fix an arbitrary $s \in\{0, \ldots, r-1\}^{(k-1) r+1}$ such that A_{s} is infinite. Then there is a color $i_{s}<r$ and a k-element subset $H_{s}=\left\{h_{1}>h_{2}>\cdots>h_{k}\right\}$ of $\{0, \ldots,(k-1) r\}$ such that

$$
s\left(h_{j}\right)=i_{s}
$$

for all $j=1, \ldots, k$. Let $W_{0}=A_{s}$ and $W_{j}=A_{s \mid h_{j}}$ for $j=1, \ldots, k$. Note that the choice of i_{s} ensures that

$$
W_{j+1} \cap N_{G_{s}}[F] \text { is infinite }
$$

for each $j<k$ and finite set $F \subset \bigcup_{i \leq j} W_{i}$, where $G_{s}=\left(\mathbb{N}, c^{-1}\left\{i_{s}\right\}\right)$. Thus, by Theorem 4.5, Bob has a winning strategy in the game $\mathfrak{G}_{k}\left(G_{s}, A_{s}\right)$.

Playing the games

$$
\begin{equation*}
\left\{\mathfrak{G}_{k}\left(G_{s}, A_{s}\right): s \in\{0, \ldots, r-1\}^{(k-1) r+1} \text { and } A_{s} \text { is infinite }\right\} \tag{4.9}
\end{equation*}
$$

simultaneously, that is, applying Lemma 4.4 we can find at most $r^{(k-1) r+1}$ many $k^{t h}$ powers of disjoint monochromatic paths which cover \mathbb{N} apart from the finite set $\bigcup\left\{A_{s}: A_{s}\right.$ is finite $\}$.

In the case of $k=r=2$, we have the following stronger result:
Theorem 4.7. (1) Given an edge coloring of $K_{\mathbb{N}}$ with 2 colors, the vertices can be partitioned into ≤ 4 monochromatic path-squares (that is, second powers of paths):

$$
K_{\mathbb{N}} \sqsubset(\mathfrak{P a t h} \mathfrak{S q u a r e})_{2,4} .
$$

(2) The result above is sharp: there is an edge coloring of $K_{\mathbb{N}}$ with 2 colors such that the vertices cannot be covered by 3 monochromatic path-squares:

$$
K_{\mathbb{N}} \not \subset(\mathfrak{P a t h} \mathfrak{S q u a r e})_{2,3} .
$$

To prove Theorem 4.7 we need some further preparation. First, in [7, Corollary 1.10] Pokrovskiy proved the following: Let $k, n \geq 1$ be natural numbers. Suppose that the edges of K_{n} are colored with two colors. Then the vertices of K_{n} can be covered with k disjoint paths of color 1 and a disjoint $k^{\text {th }}$ power of a path of color 0 .

Second, we will apply the following

Lemma 4.8. Assume that $P=v_{0}, v_{1}, \ldots$ is a finite or one-way infinite path in a graph G and there is $W \subset V(G) \backslash P$ so that

$$
\begin{equation*}
\left(W \cap \mathrm{~N}_{G}\left[\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\}\right]\right) \text { is infinite for all } v_{i} \in P . \tag{4.10}
\end{equation*}
$$

Let \mathcal{F} be a countable family of infinite subsets of W. Then G contains a square of a path R which covers P while $R \backslash P \subset W$, and $F \backslash R$ is infinite for all $F \in \mathcal{F}$. Moreover, if P is finite then R can also be chosen to be finite.

Proof. Let F_{0}, F_{1}, \ldots be an enumeration of \mathcal{F} in which each element shows up infinitely often.

Pick distinct vertices $w_{0}, f_{0}, w_{1}, f_{1}, \ldots$ from W such that

$$
w_{i} \in \mathrm{~N}_{G}\left[\left\{v_{2 i}, v_{2 i+1}, v_{2 i+2}, v_{2 i+3}\right\}\right] \text { and } f_{i} \in F_{i}
$$

Then

$$
\begin{equation*}
R=v_{0}, v_{1}, w_{0}, v_{2}, v_{3}, w_{1}, v_{4}, \ldots, v_{2 i}, v_{2 i+1}, w_{i}, v_{2 i+2}, v_{2 i+3}, w_{i+1}, \ldots \tag{4.11}
\end{equation*}
$$

is a square of a path which covers $P, R \backslash P \subset W$, and $\left\{f_{n}: n \in \mathbb{N}, F_{n}=F\right\} \subseteq F \backslash R$ for all $F \in \mathcal{F}$.

The last statement concerning the finiteness of R is obvious.
Proof of Theorem 4.7(1). Fix a coloring $c:[\mathbb{N}]^{2} \rightarrow\{0,1\}$ and let $G_{i}=\left(\mathbb{N}, c^{-1}\{i\}\right)$ for $i<2$.

We will use the notation of Lemma 2.2. Let $c_{0}=c$ and let

$$
\begin{equation*}
A_{0}=\left\{v \in \mathbb{N}: d_{c_{0}}(v)=i_{c_{0}}\right\} \text { and } B_{0}=\mathbb{N} \backslash A_{0} \tag{4.12}
\end{equation*}
$$

Let $c_{1}=c_{0} \upharpoonright B_{0}$ and provided B_{0} is infinite we let

$$
\begin{equation*}
A_{1}=\left\{v \in B_{0}: d_{c_{1}}(v)=i_{c_{1}}\right\} \text { and } B_{1}=B_{0} \backslash A_{1} \tag{4.13}
\end{equation*}
$$

We can assume that $i_{c_{0}}=0$ without loss of generality.
Case 1: B_{0} is finite.
First, $G\left[B_{0}\right]$ can be written as the disjoint union of two paths P_{0} and P_{1} of color 1 and a square of a path Q of color 0 by the above mentioned result of Pokrovskiy [7, Corollary 1.10]. Applying Lemma 4.8 for $G=G_{1}, P=P_{0}, W=A_{0}$ and $\mathcal{F}=\emptyset$ it follows that there is a finite square of a path R_{0} in color 1 which covers P_{0} and $R_{0} \backslash P_{0} \subset A_{0}$. Applying Lemma 4.8 once more for $G=G_{1}, P=P_{1}, W=A_{0} \backslash R_{0}$ and $\mathcal{F}=\emptyset$ it follows that there is a finite square of a path R_{1} in color 1 which covers P_{1}, and $R_{1} \backslash P_{1} \subset A_{0} \backslash R_{0}$. Let $A_{0}^{\prime}=A_{0} \backslash\left(R_{0} \cup R_{1}\right)$.

Now, by Theorem 4.5, Bob wins the game $\mathfrak{G}_{2}\left(G_{0}, A_{0}^{\prime}\right)$ witnessed by the sequence $\left(A_{0}^{\prime}, A_{0}^{\prime}, A_{0}^{\prime}\right)$; thus $G\left[A_{0}^{\prime}\right]$ can be covered by a single square of a path S of color 0 by Lemma 4.4. That is, G can be covered by 4 disjoint monochromatic squares of paths: R_{0}, R_{1}, Q and S.
Case 2: B_{0} is infinite and $i_{c_{1}}=0$.
Note that, by Theorem 4.5, Bob wins the games
(i) $\mathfrak{G}_{2}\left(G_{0}, A_{0}\right)$ witnessed by $\left(A_{0}, A_{0}, A_{0}\right)$,
(ii) $\mathfrak{G}_{2}\left(G_{0}, A_{1}\right)$ witnessed by $\left(A_{1}, A_{1}, A_{1}\right)$,
(iii) $\mathfrak{G}_{2}\left(G_{1}, B_{1}\right)$ witnessed by $\left(B_{1}, A_{1}, A_{0}\right)$.

Hence, the vertices can be partitioned into two squares of paths of color 0 and a single square of a path of color 1 by Lemma 4.4.
Case 3: B_{0} is infinite and $i_{c_{1}}=1$.
Since we applied Lemma 2.2 twice to obtain A_{0} and B_{0}, and A_{1} and B_{1}, and $B_{1} \subseteq B_{0}$ we know that
(a) Bob wins the game $\mathfrak{G}_{2}\left(G_{0}, A_{0}\right)$ witnessed by $\left(A_{0}, A_{0}, A_{0}\right)$;
(b) Bob wins the game $\mathfrak{G}_{2}\left(G_{1}, A_{1}\right)$ witnessed by $\left(A_{1}, A_{1}, A_{1}\right)$;
(c) $N[F, 1] \cap A_{0}$ is infinite for every finite set $F \subset B_{1}$;
(d) $N[F, 0] \cap A_{1}$ is infinite for every finite set $F \subset B_{1}$;
(e) $N[F, 0] \cap A_{0}$ is infinite for every finite set $F \subset A_{0}$;
(f) $N[F, 1] \cap A_{1}$ is infinite for every finite set $F \subset A_{1}$.

First, partition B_{1} into two paths P_{0} and P_{1} of color 0 and 1, respectively. Indeed, if B_{1} is infinite this can be done by Theorem 2.5 and if B_{1} is finite one considers two disjoint paths P_{0} and P_{1} in B_{1} of color 0 and 1 with $\left|P_{0}\right|+\left|P_{1}\right|$ maximal (as outlined in a footnote in [2]); it is easily seen that $P_{0} \cup P_{1}$ must be B_{1}.

Now, our plan is to cover P_{0} and P_{1} with disjoint squares of paths R_{0} and R_{1} of color 0 and 1, respectively, such that $R_{0} \backslash P_{0} \subset A_{1}, R_{1} \backslash P_{1} \subset A_{0}$ while
(a') Bob wins the game $\mathfrak{G}_{2}\left(G_{0}, A_{0} \backslash R_{1}\right)$ witnessed by $\left(A_{0} \backslash R_{1}, A_{0} \backslash R_{1}, A_{0} \backslash R_{1}\right)$,
(b') Bob wins the game $\mathfrak{G}_{2}\left(G_{1}, A_{1} \backslash R_{0}\right)$ witnessed by $\left(A_{1} \backslash R_{0}, A_{1} \backslash R_{0}, A_{1} \backslash R_{0}\right)$.
Let

$$
\mathcal{F}_{0}=\left\{N[F, 0] \cap A_{0}: F \subset A_{0} \text { finite }\right\}
$$

and

$$
\mathcal{F}_{1}=\left\{N[F, 1] \cap A_{1}: F \subset A_{1} \text { finite }\right\}
$$

and note that these families consist of infinite sets by (e) and (f) above. Apply Lemma 4.8 for $G=G_{0}, W=A_{1}, P=P_{0}$ and $\mathcal{F}=\mathcal{F}_{1}$ to find a square of a path R_{0} in G_{0} which covers $P_{0}, R_{0} \backslash P_{0} \subset A_{1}$ and $F \backslash R_{0}$ is infinite for all $F \in \mathcal{F}_{1}$, that is,

$$
\begin{equation*}
N[F, 1] \cap\left(A_{1} \backslash R_{0}\right) \text { is infinite for every finite set } F \subset A_{1} . \tag{4.14}
\end{equation*}
$$

Apply Lemma 4.8 once more for $G=G_{1}, W=A_{0}, P=P_{1}$ and $\mathcal{F}=\mathcal{F}_{0}$ to find a square of a path R_{1} in G_{1} with $R_{1} \backslash P_{1} \subset A_{0}$ which covers P_{1} and $F \backslash R_{1}$ is infinite for all $F \in \mathcal{F}_{0}$, that is,

$$
\begin{equation*}
N[F, 0] \cap\left(A_{0} \backslash R_{1}\right) \text { is infinite for every finite set } F \subset A_{0} . \tag{4.15}
\end{equation*}
$$

Then, by Theorem 4.5, (4.15) yields (a'), and (4.14) yields (b').
Hence $\left(A_{0} \backslash R_{1}\right) \cup\left(A_{1} \backslash R_{0}\right)$ can be partitioned into two monochromatic squares of paths by Lemma 4.4 which in turn gives a partition of all the vertices into 4 monochromatic squares of paths.

Proof of Theorem 4.7(2). Fix a partition (A, B, C, D) of \mathbb{N} such that A is infinite, $|B|=|C|=4$, and $|D|=1$. Define the coloring $c:[\mathbb{N}]^{2} \rightarrow\{0,1\}$ as follows see Figure 4:

$$
\begin{equation*}
c^{-1}\{1\}=\{\{a, v\}: a \in A, v \in B \cup C \cup D\} \cup[B]^{2} \cup[C]^{2} \tag{4.16}
\end{equation*}
$$

Figure 4.

If P is a monochromatic square of a path which intersects both A and $B \cup C \cup D$, then P should be in color 1 , so $P \cap A$ should be finite. Thus every partition of $K_{\mathbb{N}}$ into monochromatic squares of paths should contain an infinite 0-monochromatic square of a path $S \subset A$.

It suffices to show now that $B \cup C \cup D$ cannot be covered by two monochromatic squares of paths. Let $D=\{d\}$.

First, if P is a 1-monochromatic square of a path then $P^{\prime}=P \cap(B \cup C \cup D)$ is a 1-monochromatic path. As two 1-monochromatic paths cannot cover $B \cup C \cup D$, two 1-monochromatic squares of paths will not cover $B \cup C \cup D$ neither.

Second, if Q is a 0 -monochromatic square of a path which intersects $B \cup C \cup D$ then $Q \subset B \cup C \cup D$. Assume that $d \notin Q$ and let $Q=x_{1}, x_{2}, \ldots$. If $x_{1} \in B$ then $x_{2} \in C$ so x_{3} does not exists because Q is 0 -monochromatic square of a path. Hence $d \notin Q$ implies $|Q \cap B| \leq 1$ and $|Q \cap C| \leq 1$. If $d \in Q$, then cutting Q into two by d and using the observation above we yield that $|Q \cap B| \leq 2$ and $|Q \cap C| \leq 2$. In turn, two 0-monochromatic squares of paths cannot cover $B \cup C \cup D$.

Finally using just one 0 -monochromatic square of a path Q we cannot cover ($B \cup$ $C) \backslash Q$ by a single 1-monochromatic square of a path because there is no 1-colored edge between $B \backslash Q \neq \emptyset$ and $C \backslash Q \neq \emptyset$.

5. Monochromatic path decompositions of $K_{\omega_{1}}$

The aim of this section is to extend Rado's Theorem 2.5 to 2-edge colored complete graphs of size ω_{1}.

First, we need to extend certain definitions to the uncountable setting.

Definition 5.1 (Rado [8]). We say that a graph $P=(V, E)$ is a path iff there is a well ordering \prec on V such that

$$
\left\{w \in N_{P}(v): w \prec v\right\} \text { is } \prec \text {-cofinal below } v
$$

for all $v \in P$.
Observation 5.2. Suppose that $P=(V, E)$ is a graph and \prec is a well ordering of V. Then the following are equivalent:
(1) \prec witnesses that P is a path,
(2) every $v, w \in V$ are connected by $a \prec$-monotone finite path in P.

In particular, each vertex is connected to its \prec-successor by an edge and so this general definition of a path coincides with the usual path notion for finite graphs.

The order type of (V, \prec) above is called the order type of the path. We will say that a path Q end extends the path P iff $P \subset Q, \prec_{Q} \upharpoonright P=\prec_{P}$ and $v \prec_{Q} w$ for all $v \in P, w \in Q \backslash P$. If R and S are two paths so that the first point of S has \prec_{R}-cofinally many neighbors in R then $R \cup S$ is a path which end extends R and we denote this path by $R^{\wedge} S$.

Let $K_{\omega_{1}}$ denote $\left(\omega_{1},\left[\omega_{1}\right]^{2}\right)$, i.e. the complete graph on ω_{1}. Now we are ready to formulate the main result of this section.

Theorem 5.3.

$$
K_{\omega_{1}} \sqsubset(\mathfrak{P a t h}, \mathfrak{P a t h})_{2} .
$$

That is, given any coloring of the edges of $K_{\omega_{1}}$ with 2 colors, the vertices can be partitioned into two monochromatic paths of distinct colors.
5.1. Further preliminaries. In the course of the proof we need more definitions.

Definition 5.4. Let $G=(V, E)$ be a graph, κ a cardinal and let $A \subset V$. We say that A is κ-linked iff there are κ many disjoint finite paths between any two points of A. We say that A is κ-connected iff there are κ many disjoint finite paths inside A between any two points of A.

We will apply this definition with $\kappa=\omega$ or ω_{1}. We leave the (straightforward) proof of the next observation to the reader:
Observation 5.5. Let $G=(V, E)$ be a graph, κ an infinite cardinal and let $A \subset V$. The following are equivalent:
(1) A is κ-linked (κ-connected),
(2) for every $v, w \in A$ and $F \subseteq V \backslash\{v, w\}$ of size $<\kappa$ there is a finite path P connecting v and w in $V \backslash F$ (in $A \backslash F$ respectively).
In the construction of a path longer than ω, the difficulty lies in constructing the limit elements. Definition 5.6 will be crucial in overcoming this difficulty; the idea is first finding all limit vertices of the path and then connecting these points appropriately.

Recall that a set $\mathcal{V} \subset[V]^{\omega}$ is a club (closed and unbounded) iff
(1) $\bigcup\left\{V_{n}: n \in \omega\right\} \in \mathcal{V}$ for every increasing sequence $\left\{V_{n}: n \in \omega\right\} \subset \mathcal{V}$, and
(2) for all $W \in[V]^{\omega}$ there is $U \in \mathcal{V}$ so that $W \subset U$.

Remark. An easy transfinite induction shows that every club on a set of size ω_{1} contains a club that is a well-ordered strictly increasing family of the form $\left\{V_{\alpha}: \alpha<\right.$ $\left.\omega_{1}\right\}$. Hence from now on we will tacitly assume that all clubs are of this form.
Definition 5.6. Suppose that $G=(V, E)$ is a graph with $|V|=\omega_{1}$. We say that $A \subset V$ is a trail iff there is a club $\left\{V_{\alpha}: \alpha<\omega_{1}\right\} \subset[V]^{\omega}$ so that for all $\alpha<\omega_{1}$ there is $v_{\alpha} \in A \backslash V_{\alpha}$ such that for all $\alpha^{\prime}<\alpha$

$$
\begin{equation*}
N_{G}\left(v_{\alpha}\right) \cap\left(V_{\alpha} \backslash V_{\alpha^{\prime}}\right) \cap A \text { is infinite. } \tag{5.1}
\end{equation*}
$$

Figure 5. Trails.

An important example of a path is the graph $H_{\omega_{1}, \omega_{1}}$ i.e. $\left(\omega_{1} \times 2, E\right)$ where

$$
E=\left\{\{(\alpha, 0),(\beta, 1)\}: \alpha \leq \beta<\omega_{1}\right\}
$$

$H_{\omega_{1}, \omega_{1}}$ is a bipartite graph and we call the set of vertices in $H_{\omega_{1}, \omega_{1}}$ with degree ω_{1}, (that is, $\omega_{1} \times\{0\}$) the main class of $H_{\omega_{1}, \omega_{1}}$.

Observation 5.7. The main class of $H_{\omega_{1}, \omega_{1}}$ is ω_{1}-linked and is a trail (indeed, let $V_{\alpha}=\omega \alpha \times 2$).

If G is any graph and $A \subset V(G)$ is a trail then
(1) C is a trail for any $A \subset C \subset V(G)$,
(2) $C \backslash B$ is a trail for any $B \in[C]^{\omega}$,
(3) if $\left\{W_{\alpha}: \alpha<\omega_{1}\right\} \subset\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ are clubs and $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ witnesses that A is a trail then so does $\left\{W_{\alpha}: \alpha<\omega_{1}\right\}$.

We will make use of the following lemma regularly but the reader should feel free to skip the proof when first working through this section.

Lemma 5.8. Let $G=(V, E)$ be a graph with $|V|=\omega_{1}$, and let $A \subseteq V$ be uncountable. Then there is a club $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ of V such that
(1) V_{α} is an initial segment of ω_{1} and if $\xi \in V_{\alpha}$ then $\xi+1 \in V_{\alpha}$ as well,
(2) if A is ω_{1}-linked (ω_{1}-connected) then $A \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ is infinite and ω-linked (ω-connected) in $V_{\alpha+1} \backslash V_{\alpha}$,
(3) if A is a trail then $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ witnesses this and, using the notation of Definition 5.6, the node v_{α} can be chosen in $V_{\alpha+1} \backslash V_{\alpha}$.

Proof. Let $\mathcal{M}=\left\{M_{\alpha}: 0<\alpha<\omega_{1}\right\}$ be an \in-chain of countable elementary submodels of $H\left(\omega_{2}\right)$ such that $G, A, \prec \in M_{1}, V \subseteq \bigcup \mathcal{M}$ and let $M_{0}=\emptyset$. Let $V_{\alpha}=V \cap M_{\alpha}$ for $\alpha<\omega_{1}$. We claim that $\mathcal{V}=\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ is a club which satisfies the above conditions.

First, \mathcal{V} is a club as \mathcal{M} is a continuous chain and $V \subseteq \bigcup \mathcal{M}$. Condition (1) is satisfied by elementarity.

Now, suppose that A is ω_{1}-linked and fix $\alpha<\omega_{1}$. Also, fix $v, w \in V_{\alpha+1} \backslash V_{\alpha}$ and a finite set $F \subset V_{\alpha+1} \backslash V_{\alpha}$. We prove that there is a path form v to w in $V_{\alpha+1} \backslash\left(V_{\alpha} \cup F\right)$; this implies that $A \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ is ω-linked by Observation 5.5. As A is ω_{1}-linked we have that

$$
H\left(\omega_{2}\right) \models \text { there is a finite path from } v \text { to } w \text { in } V \backslash\left(V_{\alpha} \cup F\right) .
$$

Hence, by elementarity of $M_{\alpha+1}$ and by $V_{\alpha}, F, v, w \in M_{\alpha+1}$ we have

$$
M_{\alpha+1} \models \text { there is a finite path from } v \text { to } w \text { in } V \backslash\left(V_{\alpha} \cup F\right) .
$$

We choose any such path P in $M_{\alpha+1}$ and so we have $P \subseteq V_{\alpha+1} \backslash\left(V_{\alpha} \cup F\right)$ as desired. The case when A is ω_{1}-connected is completely analogous.

Finally, suppose that A is a trail. By elementarity, since $A \in M_{1}$, there is a club $\mathcal{W}=\left\{W_{\alpha}: \alpha<\omega_{1}\right\} \in M_{1}$ which witnesses that A is a trail. First, it is easy to see that $\mathcal{V} \subseteq \mathcal{W}$ and in particular, \mathcal{V} witnesses that A is a trail. Second, the node $v_{\alpha} \in V \backslash V_{\alpha}$ can be selected in $V_{\alpha+1}$ as $V_{\alpha} \in M_{\alpha+1}$ and

$$
\begin{equation*}
M_{\alpha+1} \models \text { there is } v \in V \backslash V_{\alpha} \text { such that }\left|N_{G}(v) \cap\left(V_{\alpha} \backslash V_{\alpha^{\prime}}\right) \cap A\right|=\omega \text { for all } \alpha^{\prime}<\alpha \tag{5.2}
\end{equation*}
$$

This finishes the proof of the lemma.
Finally, we state the obvious extension of Lemma 2.2.
Lemma 5.9. Given any edge coloring $c:[\kappa]^{2} \rightarrow\{0, \ldots, r-1\}$ of the complete graph on κ (where $\kappa \geq \omega$), there is a partition $d_{c}: \kappa \rightarrow\{0, \ldots, r-1\}$ and a color $i(c)<r$ so that

$$
\left|N[F, i] \cap V_{i(c)}\right|=\kappa \text { for all } i<r \text { and finite set } F \subset V_{i}=d_{c}^{-1}\{i\} .
$$

In particular, V_{i} is κ-linked in color i for all $i<r$ and $V_{i(c)}$ is κ-connected in color $i(c)$.

Proof. Repeat tho proof of Lemma 2.2 but choose the ultrafilter U on κ to be uniform, that is, $|H|=\kappa$ for every $H \in U$.
5.2. Towards the proof of Theorem 5.3. The following two lemmas express the connection between trails, ω_{1}-linked sets and paths:

Lemma 5.10. Every path of order type ω_{1} is a trail and contains an uncountable ω_{1}-linked subset.

Proof. Suppose that P is a path of order type ω_{1} witnessed by the well ordering \prec. Now, by Lemma 5.8, there is a club $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ of vertices of P such that V_{α} is a \prec-initial segment, $v \in V_{\alpha}$ implies that the \prec-successor of v is also in V_{α} and $V_{\alpha} \subset V_{\beta}$ for all $\alpha<\beta<\omega_{1}$. Let v_{α} denote the \prec-minimal element of $V \backslash V_{\alpha}$. In order to prove that P is a trail it suffices to show that

Claim 5.10.1. $N_{P}\left(v_{\alpha}\right) \cap\left(V_{\alpha} \backslash V_{\alpha^{\prime}}\right)$ is infinite for all $\alpha^{\prime}<\alpha<\omega_{1}$.
Proof. First, note that v_{α} is a \prec-limit. Fix $\alpha^{\prime}<\alpha . V_{\alpha^{\prime}}$ is an initial segment of the path P and has minimal bound $v_{\alpha^{\prime}}$. Note that $v_{\alpha^{\prime}} \prec v_{\alpha}$. By the definition of a path, the set $\left\{w \in N_{P}\left(v_{\alpha}\right): v_{\alpha^{\prime}} \prec w \prec v_{\alpha}\right\}$ is infinite and it is clearly a subset of $N_{P}\left(v_{\alpha}\right) \cap V_{\alpha} \backslash V_{\alpha^{\prime}}$ by the choice of $v_{\alpha^{\prime}}$ and v_{α}.

Second, we prove
Claim 5.10.2. The set $A=\left\{v \in V(P):\left|N_{P}(v)\right|=\omega_{1}\right\}$ is uncountable and ω_{1}-linked.

Proof. First, it suffices to show that there is a single vertex v with uncountable degree in P as every end segment of P is also a path of order type ω_{1}. Let $\left\{p_{\alpha}: \alpha<\omega_{1}\right\}$ enumerate P according to the path well order \prec. Now, for every limit $\alpha<\omega_{1}$ there is $\mu_{\alpha}<\alpha$ so that $\left\{p_{\alpha}, p_{\mu_{\alpha}}\right\} \in E(P)$; Fodor's pressing down lemma gives a stationary set $S \subset \omega_{1}$ and $\mu \in \omega_{1}$ so that $\left\{p_{\alpha}, p_{\mu}\right\} \in E(P)$ if $\alpha \in S$, that is, the degree of p_{μ} in P is uncountable.

Now take any two distinct vertices, v and w, in A and fix an arbitrary countable set $F \subset V(P) \backslash\{v, w\}$. We will find a finite path from v to w in $V(P) \backslash F$. There is $v^{\prime} \in N_{P}(v)$ and $w^{\prime} \in N_{P}(w)$ so that both v^{\prime} and w^{\prime} are \prec-above all elements of F as $v, w \in A$ and $|F| \leq \omega$. Now, there is a finite \prec-monotone path Q between v^{\prime} and w^{\prime} by Observation 5.2; Q must avoid F and hence the path $(v)^{\wedge} Q^{\wedge}(w)$ connects v and w in $V(P) \backslash F$. By Observation 5.5, A must be ω_{1}-linked.

Now, we show that the converse of Lemma 5.10 is true as well:
Lemma 5.11. Suppose that $G=(V, E)$ is a graph with $|V|=\omega_{1}$. If V is an ω_{1}-connected trail then G is a path.

Proof. Fix a club $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ as in Lemma 5.8 and pick nodes $v_{\alpha} \in V_{\alpha+1} \backslash V_{\alpha}$ showing that V is a trail.

It suffice to construct sets $P_{\alpha} \subset V$ and orderings \prec_{α} for $\alpha<\omega_{1}$ so that
(i) $\left(P_{\alpha}, \prec_{\alpha}\right)$ is a path with last point v_{α},
(ii) $P_{\alpha}=V_{\alpha} \cup\left\{v_{\alpha}\right\}$,
(iii) P_{β} end extends P_{α} for $\alpha<\beta<\omega_{1}$.

Indeed, the ordering $\bigcup\left\{\prec_{\alpha}: \alpha<\omega_{1}\right\}$ on V will witness that G is a path.
First, we set $P_{0}=\left\{v_{0}\right\}$. Next, apply Corollary 2.4 to find a path R of order type ω on vertices V_{1} with first point v_{0}; this can be done as V_{1} is ω-connected. We let $P_{1}=R^{\frown}\left(v_{1}\right)$ and note that P_{1} is a path as the infinite set $N_{G}\left(v_{1}\right) \cap V_{1}$ is cofinal in R and hence below v_{1}.

In general, suppose that we have constructed P_{α} for $\alpha<\beta$ as above. If β is a limit then let $P_{<\beta}=\bigcup\left\{P_{\alpha}: \alpha<\beta\right\}$; note that $P_{<\beta}=V_{\beta}$ is a path. It suffices to prove
Observation 5.12. $P_{\beta}=P_{<\beta} \frown\left(v_{\beta}\right)$ is a path.
Indeed, we know that $N_{G}\left(v_{\beta}\right) \cap\left(V_{\beta} \backslash V_{\alpha}\right)$ is infinite for all $\alpha<\beta$ by the definition of v_{β}.

If $\beta=\alpha+1$ then we apply Lemma 2.4 to find a path R of order type ω on vertices $V_{\alpha+1} \backslash V_{\alpha}$ with first point v_{α}; see Figure 6.

Figure 6. Extending P_{α} to $P_{\alpha+1}$.

We let $P_{\alpha+1}=P_{\alpha} \frown R^{\frown}\left(v_{\alpha+1}\right)$. Note that $P_{\alpha+1}$ is a path as the infinite set $N_{G}\left(v_{\alpha+1}\right) \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ is cofinal in R and hence below $v_{\alpha+1}$.

We note that it is proved very similarly that if a set of vertices $A \subseteq V$ is an ω_{1}-linked trail then A can be covered by a path of order type ω_{1}.

Finally, before the proof of Theorem 5.3, we prove a simple result about finding trails in 2-edge colored copies of $K_{\omega_{1}}$.
Lemma 5.13. Suppose that c is a 2-edge coloring of $K_{\omega_{1}}$ and $A \subset \omega_{1}$. Then either A is a trail in color 0 or we can find a copy of $K_{\omega_{1}}$ in color 1 (inside A).

Proof. Suppose that A is not a trail in color 0 . Let $V_{\alpha}=\omega \alpha \subset \omega_{1}$ (regarded as a set of vertices) for $\alpha<\omega_{1}$. Let $v_{\alpha}=\min \left(A \backslash V_{\alpha}\right)$ for $\alpha<\omega_{1}$. Let

$$
X=\left\{\alpha<\omega_{1}:\left|N\left(v_{\alpha}, 0\right) \cap\left(V_{\alpha} \backslash V_{\alpha^{\prime}}\right) \cap A\right|=\omega \text { for all } \alpha^{\prime}<\alpha\right\}
$$

If there is a club C in X then $\left\{V_{\alpha}: \alpha \in C\right\}$ witnesses that A is a trail in color 0 . Hence, as X cannot contain a club, there is a stationary set S in $\omega_{1} \backslash X$. We can suppose, by shrinking S to a smaller stationary set, that $\omega \alpha=\alpha$ for all $\alpha \in S$. Now for every $\alpha \in S$ there is $\nu_{\alpha}<\alpha$ and finite $F_{\alpha} \subset V_{\alpha}$ such that

$$
F_{\alpha}=N\left(v_{\alpha}, 0\right) \cap\left(V_{\alpha} \backslash V_{\nu_{\alpha}}\right) \cap A .
$$

By Fodor's pressing down lemma we can find stationary $T \subset S, \nu<\omega_{1}$ and finite set F such that

$$
F=N\left(v_{\alpha}, 0\right) \cap\left(V_{\alpha} \backslash V_{\nu}\right) \cap A
$$

for all $\alpha \in T$. It is clear now that $B=\left\{v_{\alpha}: \alpha \in T\right\} \backslash\left(V_{\nu} \cup F\right)$ is an uncountable subset of A and $c \upharpoonright[B]^{2} \equiv 1$.

Now, we are ready to prove the main result of this section:
Proof of Theorem 5.3. Fix an edge coloring $r:\left[\omega_{1}\right]^{2} \rightarrow 2$ of the complete graph $K_{\omega_{1}}=\left(\omega_{1},\left[\omega_{1}\right]^{2}\right)$. We distinguish two cases as follows:

Case 1: There is a monochromatic copy H_{0} of $H_{\omega_{1}, \omega_{1}}$.
We can suppose that H_{0} is 0 -monochromatic by symmetry and let A denote the main class of H_{0}. As A is ω_{1}-linked in color 0 , we can extend A to a maximal subset $C \subseteq \omega_{1}$ that is ω_{1}-linked in color 0 . Note that, by the maximality of C,

$$
\begin{equation*}
|N(v, 0) \cap C| \leq \omega \text { for all } v \in \omega_{1} \backslash C \tag{5.3}
\end{equation*}
$$

and in particular $\omega_{1} \backslash C$ is ω_{1}-linked in color 1.
Case 1A: $\omega_{1} \backslash C$ is countable.
Find a path P^{1} in color 1 and of order type $\leq \omega$ which covers $\omega_{1} \backslash C$ (see Corollary 2.4).

Claim 5.13.1. $C \backslash P^{1}$ is an ω_{1}-connected trail in color 0 .
Indeed, if $v, w \in C \backslash P^{1}$ and $F \subset V$ is countable then there is a path P of color 0 from v to w which avoids $F \cup P^{1}$ as C is ω_{1}-linked in color 0 ; in particular, P is also a subset of $C \backslash P^{1}$ and in turn $C \backslash P^{1}$ is ω_{1}-connected in color 0. By Observation 5.7 C is a trail in color 0 witnessed by the copy of $H_{\omega_{1}, \omega_{1}}$, and hence, using Observation 5.7 again, $C \backslash P^{1}$ remains a trail as well. This finishes the proof of the claim.

Hence, by Lemma 5.11, $C \backslash P^{1}$ is a path in color 0 which finishes the proof of Theorem 5.3 in Case 1A.

Case 1B: $\omega_{1} \backslash C$ is uncountable.
Claim 5.13.2. $\omega_{1} \backslash C$ is covered by a copy of $H_{\omega_{1}, \omega_{1}}$ in color 1 with main class $\omega_{1} \backslash C$.
Proof. Note that $|N[X, 1] \cap C|=\omega_{1}$ for all $X \in\left[\omega_{1} \backslash C\right]^{\omega}$ by (5.3). Enumerate $\omega_{1} \backslash C$ as $\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ and inductively select

$$
y_{\beta} \in N\left[X_{\beta}, 1\right] \cap C \backslash\left\{y_{\alpha}: \alpha<\beta\right\}
$$

for $\beta<\omega_{1}$ where $X_{\beta}=\left\{x_{\alpha}: \alpha \leq \beta\right\}$. Now $\left(\omega_{1} \backslash C\right) \cup\left\{y_{\alpha}: \alpha<\omega_{1}\right\}$ is the desired copy of $H_{\omega_{1}, \omega_{1}}$ in color 1 .

Let H_{1} denote this copy of $H_{\omega_{1}, \omega_{1}}$. Our goal is to mimic the proof of Lemma 5.11 and, using H_{0} and H_{1}, simultaneously construct two disjoint monochromatic paths (one in color 0 and one in color 1) which cover V.

Using Lemma 5.8 twice, the observation that the intersection of two clubs is itself a club, and also Observation 5.7, we can fix a club $\left\{V_{\alpha}: \alpha<\omega_{1}\right\}$ in ω_{1} such that $C \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ and $\left(\omega_{1} \backslash C\right) \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ are ω-linked in color 0 and 1, respectively, inside $V_{\alpha+1} \backslash V_{\alpha}$ for all $\alpha<\omega_{1}$. Furthermore, we can suppose that V_{α} intersects H_{0} and H_{1} in initial segments of their respective $H_{\omega_{1}, \omega_{1}}$ orderings for each $\alpha<\omega_{1}$.

Now, we inductively construct disjoint sets $P_{\alpha}^{0}, P_{\alpha}^{1}$ and well orderings $\prec_{\alpha}^{0}, \prec_{\alpha}^{1}$ such that
(i) $\left(P_{\alpha}^{i}, \prec_{\alpha}^{i}\right)$ is a path in color i of order type ω for $i<2$,
(ii) P_{β}^{i} end extends P_{α}^{i} for all $\alpha<\beta$ and $i<2$,
(iii) $A \cap P_{\alpha}^{0}$ is cofinal in P_{α}^{0} and $\left(\omega_{1} \backslash C\right) \cap P_{\alpha}^{1}$ is cofinal in P_{α}^{1},
(iv) $P_{\alpha}^{0} \cup P_{\alpha}^{1}=V_{\alpha}$
for all $\alpha<\omega_{1}$.
First, apply Lemma 2.3 to $G\left[V_{1}\right]$ and the sets $C_{0}=C \cap V_{1}, C_{1}=\left(\omega_{1} \backslash C\right) \cap V_{1}$, $A_{0}=A \cap V_{1}$ and $A_{1}=\emptyset$ to obtain two disjoint paths covering $V_{1}: P_{1}^{0}$ in color 0 and P_{1}^{1} in color 1 , both of order type ω. Since P_{1}^{0} and P_{1}^{1} are of order type ω, a subset of such a path is cofinal iff it is infinite. Lemma 2.3 makes sure that $A \cap P_{1}^{0}$ as well as $\left(\omega_{1} \backslash C\right) \cap P_{1}^{1}$ are infinite (note that A_{0} is infinite), hence (iii) holds.

Suppose we have constructed $P_{\alpha}^{0}, P_{\alpha}^{1}$ as above for $\alpha<\beta$. Note that $P_{<\beta}^{0}=\bigcup\left\{P_{\alpha}\right.$: $\alpha<\beta\}$ is a path in color $0, P_{<\beta}^{1}=\bigcup\left\{P_{\alpha}^{1}: \alpha<\beta\right\}$ is a path in color 1 and $A \cap P_{<\beta}^{0}$ is cofinal in $P_{<\beta}^{0}$ while $\omega_{1} \backslash C$ is cofinal in $P_{<\beta}^{1}$. Thus if β is limit we are done. Suppose that $\beta=\alpha+1$, i.e. $P_{<\beta}^{i}=P_{\alpha}^{i}$ for $i<2$.

Claim 5.13.3. (a) There are $v_{\alpha}^{0}, w_{\alpha}^{0} \in V_{\alpha+1} \backslash V_{\alpha}$ such that $A \cap V_{\alpha} \subseteq N\left(v_{\alpha}^{0}, 0\right), w_{\alpha}^{0} \in A$ and $c\left(v_{\alpha}^{0}, w_{\alpha}^{0}\right)=0$.
(b) There are $v_{\alpha}^{1}, w_{\alpha}^{1} \in V_{\alpha+1} \backslash\left(V_{\alpha} \cup\left\{v_{\alpha}^{0}, w_{\alpha}^{0}\right\}\right)$ such that $\left(\omega_{1} \backslash C\right) \cap V_{\alpha} \subseteq N\left(v_{\alpha}^{1}, 1\right)$, $w_{\alpha}^{1} \in \omega_{1} \backslash C$ and $c\left(v_{\alpha}^{1}, w_{\alpha}^{1}\right)=1$.

Proof. (a) We know that V_{α} intersects H_{0} in an initial segment and hence any element v_{α}^{0} from $\left(V\left(H_{0}\right) \backslash A\right) \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ will satisfy $A \cap V_{\alpha} \subseteq N\left(v_{\alpha}^{0}, 0\right)$. We can now select $w_{\alpha}^{0} \in A \cap\left(V_{\alpha+1} \backslash V_{\alpha}\right)$ such that $c\left(v_{\alpha}^{0}, w_{\alpha}^{0}\right)=0$.

The proof of (b) is completely analogous to (a).

Figure 7. Extending P_{α}^{0} to $P_{\alpha+1}^{0}$.
Note that $P_{\alpha}^{i \wedge}\left(v_{\alpha}^{i}, w_{\alpha}^{i}\right)$ is still a path in color i for $i<2$; see Figure 7. Now, let us find disjoint sets $Q_{\alpha}^{0}, Q_{\alpha}^{1}$ such that
(1) Q_{α}^{i} is a path of color i and order type ω for $i<2$,
(2) $Q_{\alpha}^{0} \cup Q_{\alpha}^{1}=\left(V_{\alpha+1} \backslash V_{\alpha}\right) \backslash\left\{v_{\alpha}^{0}, v_{\alpha}^{1}\right\}$,
(3) the first point of Q_{α}^{i} is w_{α}^{i} for $i<2$,
(4) $A \cap Q_{\alpha}^{0}$ is cofinal in Q_{α}^{0} and $\left(\omega_{1} \backslash C\right) \cap Q_{\alpha}^{1}$ is cofinal in Q_{α}^{1}.

Similarly as above, this is easily done by setting $D=\left(V_{\alpha+1} \backslash V_{\alpha}\right) \backslash\left\{v_{\alpha}^{0}, v_{\alpha}^{1}\right\}$ and applying Lemma 2.3 to $G[D]$ and $C_{0}=C \cap D, C_{1}=\left(\omega_{1} \backslash C\right) \cap D, A_{0}=A \cap D$ and $A_{1}=\emptyset$. Note that

$$
P_{\alpha+1}^{i}=P_{\alpha}^{i \bumpeq}\left(v_{\alpha}^{i}\right)^{\wedge} Q_{\alpha}^{i}
$$

is as desired (for $i<2$).
Finally, let $P^{i}=\bigcup\left\{P_{\alpha}^{i}: \alpha<\omega_{1}\right\}$ for $i<2$. Then P^{0} and P^{1} are monochromatic paths of distinct colors which partition ω_{1}.

Case 2: There is no monochromatic copy of $H_{\omega_{1}, \omega_{1}}$.
Lemma 5.13 implies that any uncountable set of vertices must be a trail in both colors. Let us find an uncountable $A \subset V$ which is ω_{1}-connected in some color by Lemma 5.9. We can suppose that A is ω_{1}-connected in color 0 and extend A to a maximal ω_{1}-connected set C in color 0 .

Claim 5.13.4. $V \backslash C$ is countable and ω_{1}-linked in color 1 .
Proof. Indeed, by the maximality of C, it is easy to see that $|N(v, 0) \cap C| \leq \omega$ for every $v \in V \backslash C$; this immediately gives that $V \backslash C$ is ω_{1}-linked in color 1. Moreover, if $V \backslash C$ is uncountable then the proof of Claim 5.13 .2 shows that we can find a monochromatic copy of $H_{\omega_{1}, \omega_{1}}$ which contradicts our assumption.

Now cover $V \backslash C$ by a path P^{1} of color 1 and order type ω using Corollary 2.4. By assumption, $C \backslash P^{1}$ is still a trail and remains ω_{1}-connected in color 0; that is, $C \backslash P^{1}$ is a path P^{0} of color 0 by Lemma 5.11 . We conclude the proof by noting that $P^{0} \cup P^{1}$ is the desired partition.

6. Further results and open problems

In general, there are two directions in which one can aim to extend our results: investigate edge colored non-complete graphs; determine the exact number of monochromatic structures (paths, powers of paths) needed to cover a certain edge colored graph.

First, for state-of-the-art results and problems concerning finite graphs and partitions into monochromatic paths, we refer the reader to A. Pokrovskiy [6]. Second, let us mention some results and problems about countably infinite graphs. Let $K_{\omega, \omega}$ denote the complete bipartite graph with two countably infinite classes. The following statements can be proved very similarly to our proof of Theorem 2.5:

Claim 6.1. Let $c: E\left(K_{\omega, \omega}\right) \rightarrow r$ for some $r \in \mathbb{N}$. Then $K_{\omega, \omega}$ can be partitioned into at most $2 r-1$ monochromatic paths. Furthermore, for every $r \in \mathbb{N}$ there is $c_{r}: E\left(K_{\omega, \omega}\right) \rightarrow r$ so that $K_{\omega, \omega}$ cannot be covered by less than $2 r-1$ monochromatic paths.

Claim 6.2. For every r-edge coloring of the random graph on \mathbb{N} we can partition the vertices into r disjoint paths of distinct colors.

Regarding Theorem 4.6 we ask the following most general question:
Problem 6.3. What is the exact number of monochromatic $k^{\text {th }}$ powers of paths needed to partition the vertices of an r-edge colored complete graph on \mathbb{N} ?

Naturally, any result aside from the resolved case of $k=r=2$ (see Theorem 4.7) would be very welcome. In particular:
Problem 6.4. Can we bound the number of monochromatic $k^{\text {th }}$ powers of paths needed to partition the vertices of an r-edge colored complete graph on \mathbb{N} by a function of r and k ?

Finally, turning to arbitrary infinite complete graphs, we announce the following complete solution to Rado's problem from [8]:

Theorem 6.5 (D. T. Soukup, [9]). The vertices of a finite-edge colored infinite complete graph can be partitioned into disjoint monochromatic paths of different colour.

References

[1] P. Erdős, A. Gyárfás, L. Pyber, Vertex coverings by monochromatic cycles and trees. J. Combin. Theory Ser. B, 51(1):90-95, 1991.
[2] L. Gerencsér, A. Gyárfás, On Ramsey-type Problems, Annales Univ. Eötvös Section Math. 10 (1967), 167-170.
[3] A. Gyárfás, G. N. Sárközy, Monochromatic path and cycle partitions in hypergraphs. Electron. J. Combin. 20 (2013), no. 1, Paper 18, 8 pp.
[4] A. Gyárfás, Covering complete graphs by monochromatic paths. Irregularities of partitions (Fertőd, 1986), 89-91, Algorithms Combin. Study Res. Texts, 8, Springer, Berlin, 1989.
[5] K. Kunen, Set theory. Studies in Logic (London), 34. College Publications, London, 2011. viii+401 pp. ISBN: 978-1-84890-050-9
[6] A. Pokrovskiy, Partitioning edge-colored complete graphs into monochromatic cycles and paths, submitted to Journal of Comb. Theory.
[7] A. Pokrovskiy, Calculating Ramsey numbers by partitioning colored graphs, preprint.
[8] R. Rado, Monochromatic paths in graphs. Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977). Ann. Discrete Math. 3 (1978), 191-194.
[9] D. T. Soukup, Decompositions of edge-colored infinite complete graphs into monochromatic paths II, preprint.
[10] L. Soukup, Elementary submodels in infinite combinatorics. Discrete Math. 311 (2011), no. 15, 1585-1598.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, Budapest 1053, Hungary and Eötvös Loránd University, Department of Analysis, Pázmány P. s. 1/c, Budapest 1117, Hungary

E-mail address: elekes.marton@renyi.mta.hu
URL: http://www.renyi.hu/~emarci
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, Budapest 1053, Hungary

E-mail address: soukup@renyi.hu
URL: http://www.renyi.hu/~soukup
University of Toronto, Toronto, On, Canada
E-mail address: daniel.soukup@mail.utoronto.ca
URL: http://www.math.toronto.edu/~dsoukup
Eötvös Loránd University, Department of Analysis, Pázmány P. s. 1/c, Budapest 1117, Hungary

E-mail address: szentmiklossy@renyi.hu

[^0]: Date: February 16, 2015.
 2010 Mathematics Subject Classification. 05C63, 05C70.
 Key words and phrases. graph partition, monochromatic path, path square, infinite complete graph, uncountable complete graph, complete hypergraph, edge coloring.

