2018. 10. 16. 14:00 - 2018. 10. 16. 15:30
Rényi Intézet, Nagyterem
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Számelmélet szeminárium

Leírás

A weak version of Clausen von Staudt says that generalized Bernoulli numbers $B_{n,\chi}$ have bounded denominators, when $\chi$ varies over Dirichlet characters. One can ask the same question for critical values of $L$-functions attached to modular forms, but there seem to be no results on this in the literature. We will give an affirmative answer in the case of standard $L$-functions for Siegel modular forms. The main tool is an integral representation of such $L$-functions using Eisenstein series.