Pál Turán (1910 - 1976)

Founder of the Hungarian analytic school of number theory. He made profound achievements in approximation theory, complex function theory and graph theory. His main achievement was the development of the so-called "sum-of-sixes method" in analytic number theory, which now bears his name and has many applications in the study of the Riemann hypothesis. He summarised these results in his book On a new method in analysis and its applications, published in English and German. Many of his students live all over the world.

Pál Turán workshop-series

Turán Memorial Lectures

1978 November 21 és 24.

ALAN BAKER (Trinity College, Cambridge)

  • Applications of transcendence I-II.

1980

K. F. ROTH (Imperial College, London)

  • Irregularities of distribution and related questions

1981 November 7-9.

LENNART CARLESON (Sweden)

  • Recent results in Hp-theory

1984 április 3 és 5.

WOLFGANG M. SCHMIDT (Boulder, USA)

  • Lecture 1. Small zeros of quadratic forms
  • Lecture 2. Diophantine problems in many variables
  • Lecture 3. Exponential sums

október 9-11
ANDRZEJ SCHINZEL (Warsaw)

  • Reducibility of polynomials over an arbitrary field and over the rationals

október 31 - november, 
JEAN-PIERRE KAHANE (Paris)

  • Lecture 1. Multiplicative chaos
  • Lecture 2. Value distribution of a Gaussian (random) analytic function
  • Lecture 3. Greek mathematics and quadratic fields

1985 január 30 - február 1.

JA. G. SINAY

  • Lecture 1. Application of the Renormatization Group Method
  • Lecture 2. Mechanical models of Brownian motion
  • Lecture 3. Hydrodynamical limit transitions

szeptember 18-20
ATLE SELBERG (Institute for Advanced Study, Princeton)

  • Lectures on sieves

1987 szeptember 28-30.

ENRICO BOMBIERI (Princeton Institute for Advanced Study)

  • On the distribution of primes in large arithmetic progressions

1989 január 16-18.

G. A. MARGULIS (Institute Problemy Peredatchi Informacii)

  • Discrete subgroups and ergodic theory

1992 április 21-23.

R.A. ASKEY (Madison University)

  • Lecture 1. Inequalities for Polynomials
  • Lecture 2. Extensions of Gamma and Beta Integrals and the Related Orthogonal Polynomials
  • Lecture 3. Ramanujan: Who was he, what did he do, and why do we still care?

1994 május 18-20.

ROBERT TIJDEMAN (University of Leiden)

  • Lecture 1. The abc-conjecture
  • Lecture 2. Arithmetic progressions with equal products I
  • Lecture 3. Arithmetic progressions with equal products II

1995 október 31 - november 2.

HENRYK IWANIEC (Rutgers University)

  • Lecture 1. Equidistribution of roots of quadrativ congruences to prime moduli
  • Lecture 2. The lattice points inside a sphere
  • Lecture 3. Gaussian primes

1996 május 20, 21, és 23.

LAX PÉTER (New York University)

  • Lecture 1. The distribution of lattice points in Euclidean spaces
  • Lecture 2. The distribution of lattice points in Hyperbolic spaces
  • Lecture 3. Factorization of bounded analytic functions

1998 február 17-19.

SHARON SHELAH (Hebrew University Jerusalem)

  • Lecture 1. Hilbert's First Problem Revisited
  • Lecture 2. Non structure Theory
  • Lecture 3. Nine Forcing Notions: The theory of iteration for the continuum

2000 október 3-5.

H. L. MONTGOMERY (Univ. of Michigan)

  • Lecture 1. The local distribution of prime numbers and the zeros of the Reimann zeta function
  • Lecture 2. Beuring's generalized primes
  • Lecture 3. Greedy sums of distinct squares

2002 november 26-28.

P. SARNAK (Univ. of Princeton)

  • Lecture 1. Sums of squares and Hilbert's 11th problem
  • Lecture 2. The spectra of modular surfaces
  • Lecture 3. The spectra of modular surfaces continued

2004 május 26-28.

EFIM ZELMANOV (Univ. of California)

  • Lecture 1. Profinite groups I: The Golod-Shafarevich condition
  • Lecture 2. Profinite groups II. Linear pro-p groups
  • Lecture 3. Lie (super)algebras graded by root systems

2006 november 21-23.

HILLEL FÜRSTENBERG (Einstein Institute of Mathematics, The Hebrew University of Jerusalem)

  • Lecture 1. Number Theory, Combinatorics and Recurrence in Dynamical Systems; the Correspondence Principle
  • Lecture 2. Ergodicity, Mixing, Conventional and non-Conventional Ergodic Theorems
  • Lecture 3. The Long Term Memory of Dynamical Systems and the Strange Role of Nilpotent Groups and Nilflows

2007 szeptember 24-26.

MIKHAIL GROMOV (IHS, France and the Courant Institute, NY, USA)

  • Combinatorics and Morse Theory

2009 február 17-19.

NOGA ALON (Tel Aviv University, Israel)

  • Lecture 1. The Probabilistic Method
  • Lecture 2. Polynomials in Discrete Mathematics
  • Lecture 3. The Structure of Large Graphs

2011 június 1-3.

YUVAL PERES (Microsoft Research; Adjunct Professor at The University of Washington and at UC Berkeley)

2017 március 28-30.

HARALD HELFGOTT (University of Göttingen)

2022 április. 25., június 14. és 16.

GIL KALAI ( Hebrew University of Jerusalem, Israel)