Pál Turán (1910 - 1976)
Founder of the Hungarian analytic school of number theory. He made profound achievements in approximation theory, complex function theory and graph theory. His main achievement was the development of the so-called "sum-of-sixes method" in analytic number theory, which now bears his name and has many applications in the study of the Riemann hypothesis. He summarised these results in his book On a new method in analysis and its applications, published in English and German. Many of his students live all over the world.
Pál Turán workshop-series
- Colloquium on General and Set-Theoretic Topology, 2003
- Groups and Probability, 2003
- Invariants in Low-Dimensional Topology, 2003
- Workshop in Extremal Combinatorics, 2003
- Workshop in Approximation Theory, 2002
- Logic, Algebra and Relativity, 2002
- Workshop on Periodicity and Quasi-periodicity, 2002
- Conference on Information Theory, Cryptography and Statistics, 2001
- Workshop on analysis, 2000
- American--Hungarian Joint Workshop on Discrete Geometry, 1999
- Discrete Geometry, 1999
- Approximation Theory, 1998
- Summer school on Low Dimensional Topology, 1998
Turán Memorial Lectures
1978 November 21 és 24.
ALAN BAKER (Trinity College, Cambridge)
- Applications of transcendence I-II.
1980
K. F. ROTH (Imperial College, London)
- Irregularities of distribution and related questions
1981 November 7-9.
LENNART CARLESON (Sweden)
- Recent results in Hp-theory
1984 április 3 és 5.
WOLFGANG M. SCHMIDT (Boulder, USA)
- Lecture 1. Small zeros of quadratic forms
- Lecture 2. Diophantine problems in many variables
- Lecture 3. Exponential sums
október 9-11
ANDRZEJ SCHINZEL (Warsaw)
- Reducibility of polynomials over an arbitrary field and over the rationals
október 31 - november,
JEAN-PIERRE KAHANE (Paris)
- Lecture 1. Multiplicative chaos
- Lecture 2. Value distribution of a Gaussian (random) analytic function
- Lecture 3. Greek mathematics and quadratic fields
1985 január 30 - február 1.
JA. G. SINAY
- Lecture 1. Application of the Renormatization Group Method
- Lecture 2. Mechanical models of Brownian motion
- Lecture 3. Hydrodynamical limit transitions
szeptember 18-20
ATLE SELBERG (Institute for Advanced Study, Princeton)
- Lectures on sieves
1987 szeptember 28-30.
ENRICO BOMBIERI (Princeton Institute for Advanced Study)
- On the distribution of primes in large arithmetic progressions
1989 január 16-18.
G. A. MARGULIS (Institute Problemy Peredatchi Informacii)
- Discrete subgroups and ergodic theory
1992 április 21-23.
R.A. ASKEY (Madison University)
- Lecture 1. Inequalities for Polynomials
- Lecture 2. Extensions of Gamma and Beta Integrals and the Related Orthogonal Polynomials
- Lecture 3. Ramanujan: Who was he, what did he do, and why do we still care?
1994 május 18-20.
ROBERT TIJDEMAN (University of Leiden)
- Lecture 1. The abc-conjecture
- Lecture 2. Arithmetic progressions with equal products I
- Lecture 3. Arithmetic progressions with equal products II
1995 október 31 - november 2.
HENRYK IWANIEC (Rutgers University)
- Lecture 1. Equidistribution of roots of quadrativ congruences to prime moduli
- Lecture 2. The lattice points inside a sphere
- Lecture 3. Gaussian primes
1996 május 20, 21, és 23.
LAX PÉTER (New York University)
- Lecture 1. The distribution of lattice points in Euclidean spaces
- Lecture 2. The distribution of lattice points in Hyperbolic spaces
- Lecture 3. Factorization of bounded analytic functions
1998 február 17-19.
SHARON SHELAH (Hebrew University Jerusalem)
- Lecture 1. Hilbert's First Problem Revisited
- Lecture 2. Non structure Theory
- Lecture 3. Nine Forcing Notions: The theory of iteration for the continuum
2000 október 3-5.
H. L. MONTGOMERY (Univ. of Michigan)
- Lecture 1. The local distribution of prime numbers and the zeros of the Reimann zeta function
- Lecture 2. Beuring's generalized primes
- Lecture 3. Greedy sums of distinct squares
2002 november 26-28.
P. SARNAK (Univ. of Princeton)
- Lecture 1. Sums of squares and Hilbert's 11th problem
- Lecture 2. The spectra of modular surfaces
- Lecture 3. The spectra of modular surfaces continued
2004 május 26-28.
EFIM ZELMANOV (Univ. of California)
- Lecture 1. Profinite groups I: The Golod-Shafarevich condition
- Lecture 2. Profinite groups II. Linear pro-p groups
- Lecture 3. Lie (super)algebras graded by root systems
2006 november 21-23.
HILLEL FÜRSTENBERG (Einstein Institute of Mathematics, The Hebrew University of Jerusalem)
- Lecture 1. Number Theory, Combinatorics and Recurrence in Dynamical Systems; the Correspondence Principle
- Lecture 2. Ergodicity, Mixing, Conventional and non-Conventional Ergodic Theorems
- Lecture 3. The Long Term Memory of Dynamical Systems and the Strange Role of Nilpotent Groups and Nilflows
2007 szeptember 24-26.
MIKHAIL GROMOV (IHS, France and the Courant Institute, NY, USA)
- Combinatorics and Morse Theory
2009 február 17-19.
NOGA ALON (Tel Aviv University, Israel)
- Lecture 1. The Probabilistic Method
- Lecture 2. Polynomials in Discrete Mathematics
- Lecture 3. The Structure of Large Graphs
2011 június 1-3.
YUVAL PERES (Microsoft Research; Adjunct Professor at The University of Washington and at UC Berkeley)
- Lecture 1. Laplacian growth
- Lecture 2. Mysteries of the abelian sandpile
- Lecture 3. Gravitational allocation to Poisson points
2017 március 28-30.
HARALD HELFGOTT (University of Göttingen)
- Lecture 1. The ternary Goldbach problem
- Lecture 2. The ternary Goldbach problem revisited, I.
- Lecture 3. The ternary Goldbach problem revisited, II.
2022 április. 25., június 14. és 16.
GIL KALAI ( Hebrew University of Jerusalem, Israel)