- Geometry
- Topology

- Curriculum vitae
- List of publications
- List of all publications, and of citations beginning with 2016
- List of publications and citations, ending with 2015
- L. Fejes T\'oth, E. Makai, Jr., On the thinnest non-separable lattice of convex plates
- E. Makai, Jr., On the thinnest non-separable lattice of convex bodies
- E. Makai, Jr., V. Soltan, Lower bounds on the numbers of shadow-boundaries and illuminated regions of a convex body
- P. Erd\H os, E. Makai, Jr., J. Pach, Nearly equal distances in the plane
- E. Makai, Jr., H. Martini, The cross-section body, plane sections of convex bodies and approximation of convex bodies, II
- B. Aupetit, E. Makai, Jr., J. Zem\'anek, Strict convexity of the singular value sequences
- \'A. Cs\'asz\'ar, E. Makai, Jr., Characterization of the function classes $C(Y)|X$
- E. Makai, Jr., On a theorem of I. Juh\'asz on the image weight spectrum
- T. Hausel, E. Makai, Jr., A. Sz\H ucs, Polyhedra inscribed and circumscribed to convex bodies
- E. Makai, Jr., Bodies associated with convex bodies (in Hungarian)
- E. Makai, Jr., S. Vre\'cica, R. \v Zivaljevi\'c, Plane sections of convex bodies of maximal volume
- E. Makai, Jr., H. Martini, T. \'Odor, Maximal sections and centrally symmetric bodies
- T. Hausel, E. Makai, Jr., A. Sz\H ucs, Inscribing cubes and covering by rhombic dodecahedra via equivariant topology
- K. B\"or\"oczky, G. Kert\'esz, E. Makai, Jr., The minimum area of a simple polygon with given side lengths (FIGURES IN NEXT FILE)
- FIGURES TO: K. B\"or\"oczky, G. Kert\'esz, E. Makai, Jr., The minimum area of a simple polygon with given side lengths
- E. Makai, Jr., J. Pach, J. Spencer, New results on the distribution of distances determined by separated point sets
- E. Makai, Jr., H. Martini, T. \'Odor, On an integro-differential transform on the sphere
- B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zem\'anek, The connected components of the idempotents in the Calkin algebra, and their liftings (add to Refs.: J. Esterle, J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras, preprint, 2003)
- E. Makai, Jr., H. Martini, Projections of normed linear spaces with closed subspaces of finite codimensions as kernels
- G. Averkov, E. Makai, Jr., H. Martini, Characterizations of central symmetry for convex bodies in Minkowski spaces
- \'A. Cs\'asz\'ar, E. Makai, Jr., Further remarks on $\delta $- and $\theta $-modifications
- E. Makai, Jr., An addendum to our paper "Further remarks on $\delta $- and $\theta $-modifications"
- K. J. B\"or\"oczky, E. Makai, Jr., M. Meyer, S. Reisner, Volume product in the plane --- lower estimates with stability
- E. Makai, Jr., H. Martini, Centrally symmetric convex bodies and sections having maximal quermassintegrals
- E. Makai, Jr., The recent status of the volume product problem
- E. Makai, Jr., The hereditary monocoreflective subcategories of Abelian groups and $R$-modules
- B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zem\'anek, Local and global liftings of analytic families of idempotents in Banach algebras (FIGURE IN NEXT FILE)
- FIGURE TO: B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zem\'anek, Local and global liftings of analytic families of idempotents in Banach algebras
- N. V. Abrosimov, E. Makai, Jr., A. D. Mednykh, Yu. G. Nikonorov, G. Rote, The infimum of the volumes of convex polytopes of any given facet areas is $0$
- E. Makai, Jr., H. Martini, T. \'Odor, On a theorem of D. Ryabogin and V. Yaskin about detecting symmetry
- E. Makai, Jr., Epireflective subcategories of Top, T_2Unif, Unif, closed under epimorphic images, or being algebraic
- E. Makai, Jr., J. Zem\'anek, Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra
- E. Makai, Jr., H. Martini, Unique local determination of convex bodies
- E. Makai, Jr., J. Zem\'anek, On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings (Preliminary version)
- E. Makai, Jr., E. Peyghan, B. Samadi, Weak and strong structures and the $T_{3.5}$ property for generalized topological spaces

Address: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences H-1053 Budapest, Reáltanoda u. 13-15. H-1364 Budapest, P. O. Box: 127 Phone: (36-1) 483-8300 Fax: (36-1) 4838333 e-mail:makai.endre@renyi.mta.hu