
Centrally symmetri onvex bodies and

setions having maximal quermassintegrals

E. Makai, Jr.

∗

Alfréd Rényi Mathematial Institute

Hungarian Aademy of Sienes

P.O.B. 127, H-1364 Budapest, HUNGARY

makai�renyi.hu

www.renyi.hu/

∼
makai

H. Martini

∗∗

Tehnishe Universität Chemnitz

Fakultät für Mathematik

D-09107 Chemnitz, GERMANY

martini�mathematik.tu-hemnitz.de

www.tu-hemnitz.de/mathematik/geometrie

Stud. Si. Math. Hungar. 49 (2) (2012), 189-199

DOI: 10.1556/SSMath.49.2012.2.1197

Abstrat

Let d ≥ 2, and let K ⊂ R
d
be a onvex body ontaining the origin

0 in its interior. In a previous paper we have proved the following.

The body K is 0-symmetri if and only if the following holds. For

eah ω ∈ Sd−1
, we have that the (d− 1)-volume of the intersetion of

K and an arbitrary hyperplane, with normal ω, attains its maximum

if the hyperplane ontains 0. An analogous theorem, for 1-dimensional

setions and 1-volumes, has been proved long ago by Hammer ([2℄).

In this paper we deal with the ((d − 2)-dimensional) surfae area, or

with lower dimensional quermassintegrals of these intersetions, and

prove an analogous, but loal theorem, for small C2
-perturbations, or

C3
-perturbations of the Eulidean unit ball, respetively.
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1 Introdution

Let d ≥ 2, and let K ⊂ R
d
be a entered, i.e., 0-symmetri onvex body.

We have observed in [3℄, Problem 3.10, that by the Aleksandro�-Fenhel

inequalities (f., e.g., [4℄) we have the following statement. Let 0 ≤ l ≤ d− 2
be an integer, let ω ∈ Sd−1

, let t ∈ R, and let ω⊥
be the orthoomplement of

ω in R
d
. Then the quermassintegrals

Wl

[

(K ∩ (ω⊥ + tω))− tω
]

,

onsidered in ω⊥
, attain their maxima for t = 0. In the same Problem 3.10,

we have posed the question, whether the onverse impliation holds. For

l = 0, i.e., for the ase of (d−1)-volume, we proved this onverse impliation,

f. [3℄, Corollary 3.2.

In this paper, we deal with the ases 1 ≤ l ≤ d − 2, and prove an in�nites-

imal variant of the onverse impliation, for small C2
-perturbations of the

Eulidean unit ball for l = 1, and for small C3
-perturbations of the Eulidean

unit ball for 2 ≤ l ≤ d− 2.

2 Preliminaries

We write R
d
for the d-dimensional Eulidean spae, and Sd−1

for its unit

sphere, where d ≥ 2. The origin is denoted by 0. We writeWi for the (k− i)-
dimensional quermassintegrals of onvex bodies in a�ne k-subspaes of Rd

([1℄, [4℄).

Basially we use the notations of [3℄. Variable points of Sd−1
are denoted by

ω, ξ, η. We use polar oordinates on Sd−1
. That is, for some ξ ∈ Sd−1

, that

we onsider as the north pole, and for ω ∈ Sd−1
, we write

ω = ξ sinψ + η cosψ, where η ∈ ξ⊥ ∩ Sd−1, and − π/2 ≤ ψ ≤ π/2 .
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Thus, ξ⊥ ∩ Sd−1
is the equator and ψ is the geographi latitude, that will be

more onvenient to us than the ustomarily used ϕ = π/2 − ψ. Then we

write

ω = (η, ψ) .

In partiular,

(η, 0) = η .

A funtion f := Sd−1 → R is even, or odd, if, for all ω ∈ Sd−1
, we have

f(−ω) = f(ω), or f(−ω) = −f(ω), respetively.

In R
d
we will use polar oordinates ω, ̺, with ω ∈ Sd−1

, and ̺ ∈ [0,∞) (i.e.,
the point ω̺ ∈ R

d
has polar oordinates ω, ̺). Also, for �xed ξ ∈ Sd−1

, we

will use ylindrial oordinates η, r, t, with η ∈ ξ⊥ ∩ Sd−1
, and r ∈ [0,∞)

(together polar oordinates in ξ⊥), and t ∈ R. Here, for x ∈ R
d
, we have

t = 〈x, ξ〉 , and x = rη + tξ .

For x ∈ bdK, we will also write, in ylindrial oordinates,

x = r(ξ, η, t)η + tξ ,

where the �rst variable of r refers to ξ, and the last variable means that we

onsider the radial funtion of the intersetion K ∩ (ξ⊥+ tξ), with respet to

the �origin� tξ.

We have, for x ∈ R
d
, that

̺ cosψ = r, and ̺ sinψ = t . (1)

Di�erentiating these formulas with respet to ψ, and then setting ψ = 0, we
obtain

∂r

∂ψ
|ψ=0 =

∂̺

∂ψ
|ψ=0, and

∂t

∂ψ
|ψ=0 = ̺|ψ=0 . (2)

For terms unde�ned in this paper, f., e.g., [1℄, and [4℄.
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3 Theorem

Theorem. Let d ≥ 3 and 2 ≤ k ≤ d − 1 be integers, and let λ0 ∈ (0,∞).
Suppose that for eah λ ∈ [0, λ0], we have that Kλ

is a onvex body in R
d

with radial funtion ̺λ(ω), for ω ∈ Sd−1
. Let ̺0(ω) ≡ 1, and let ̺λ(ω) be a

C2
-funtion of (λ, ω) ∈ [0, λ0] × Sd−1

. Assume that for eah λ ∈ [0, λ0], for
any linear k-subspae Lk ⊂ R

d
, the funtion y 7→ W1(K

λ ∩ (Lk + y)) has a
maximum at y = 0. Then

∂̺λ

∂λ
(ω)|λ=0

is an even funtion of ω. If 2 ≤ l ≤ k − 1, and ̺λ(ω) is a C3
-funtion of

(λ, ω) ∈ [0, λ0]×S
d−1

, and we replae in the above hypothesis W1 by Wl, then

the same onlusion holds.

Clearly, we ould have written, in the hypothesis of the theorem, that Kλ

is a star body, sine, by the other assumptions, Kλ
is a onvex body with

positive Gauss urvature for eah λ ∈ [0, λ0] (after possibly dereasing λ0).

We observe that for the ase k = 1, and for the ase l = 0, we have the

theorems ited in the abstrat, f. [2℄, Theorem 1, and [3℄, Corollary 3.2.

These assert that, in this ase, atually eah Kλ
is entered, whih is of ourse

a stronger statement than the statement of the theorem of this paper. There

is still one quermassintegral, namely Wk. However, this is, independently of

its argument, equal to the volume of the unit ball in R
k
, so, in this ase the

hypotheses of our theorem do not imply anything.

4 Proof

We begin with the following

Proposition ([3℄, Theorem 3.8). Let f : Sd−1 → R be a C1
-funtion (or,

more generally, a Lipshitz funtion). Further, let, for eah ξ ∈ Sd−1
(or,

more generally, for almost all ξ ∈ Sd−1
), the equality

∫

ξ⊥∩Sd−1

∂f

∂ψ
(η, 0)dη = 0
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hold. Then f is an even funtion.

Proof of the Theorem. As in the proof of Theorem 3.1 of [3℄, we may

suppose k = d − 1. In fat, for any linear (k + 1)-subspae Lk+1 of R
d
, we

have that Kλ∩Lk+1 also satisfy the hypotheses of the theorem. Furthermore,

if for eah Lk+1, the restrition of the funtion

∂̺λ

∂λ
(ω)|λ=0

to Lk+1 is even, then also this funtion itself is even. So, from now on, let

k = d− 1.

Let t0 ∈ (0,∞) be so small that the losed ball about 0, of radius t0, is
ontained in eah Kλ

, where λ ∈ [0, λ0] (possibly dereasing λ0). From now

on, let t ∈ (−t0, t0). This implies that K∩(ξ⊥+ tξ) is a ((d−1)-dimensional)

onvex body in ξ⊥ + tξ.

1. First we treat the ase l = 1.

Let us �x a point ξ ∈ Sd−1
, that we onsider as the north pole. Let Sλ(ξ, t)

denote the ((d − 2)-dimensional) surfae area of Kλ ∩ (ξ⊥ + tξ), onsidered
as a ((d− 1)-dimensional) onvex body in ξ⊥ + tξ. We have

Sλ(ξ, t) =

∫

ξ⊥∩Sd−1

dSλ(ξ, t) =

∫

ξ⊥∩Sd−1

rλ(ξ, η, t)d−2 1

〈η, nλ(η, t)〉
dη , (3)

where rλ(ξ, η, t) is the radial funtion of Kλ ∩ (ξ⊥ + tξ), with respet to the

�origin� tξ, and nλ(η, t) ∈ ξ⊥ ∩ Sd−1
is the outer normal unit vetor of the

surfae element dSλ(ξ, t) at η ∈ ξ⊥ ∩ Sd−1
, taken in ξ⊥ + tξ.

From now on, we onsider λ ∈ [0, λ0] as �xed, and drop the upper indies

λ. Also, to simplify the formulas, we omit those variables of our funtions,

whose omission does not lead to misunderstanding.

We determine

∂

∂t
S(ξ, t)|t=0 ,
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that equals 0 by the hypothesis of the theorem. We may di�erentiate under

the integral sign. We have

(∂/∂t)

(

rd−2 1

〈η, n(η)〉

)

=

(d− 2)rd−3(∂r/∂t)
1

〈η, n(η)〉
− rd−2 1

〈η, n(η)〉2
∂

∂t
〈η, n(η)〉 ,

(4)

and we have to evaluate this at t = 0.

Letting t = 0, i.e., by (1), ψ = 0, we have by (2) ∂t/∂ψ = ̺, hene

∂

∂t
=
∂ψ

∂t

∂

∂ψ
=

1

̺

∂

∂ψ
.

Therefore, (4) equals

(d− 2)rd−31

̺

∂r

∂ψ

1

〈η, n(η)〉
− rd−2 1

〈η, n(η)〉2
1

̺

∂

∂ψ
〈η, n(η)〉 .

Here the �rst term is, using r = ̺ (f. (1)),

(d− 2)̺d−4 ∂̺

∂ψ

1

〈η, n(η)〉
, (5)

and the seond term is

−̺d−3 1

〈η, n(η)〉2
∂

∂ψ
〈n, n(η)〉 . (6)

Now it will be onvenient to write ̺ =: 1 + ε, where ε : Sd−1 → R is a

C2
-funtion, of C2

-norm tending to 0 for λ → 0. We alulate (5) and (6),

till terms of degree 1 in ε, but negleting terms of degree at least 2 in ε.

Then (5) beomes

(d− 2)(1 + ε)d−4 ∂ε

∂ψ

1

〈η, n(η)〉
.
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Here, beause of the third fator, we may write ε = 0 in the seond and

fourth fators, getting

(d− 2)
∂ε

∂ψ
. (7)

On the other hand, (6) ontains (∂/∂ψ)〈η, n(η)〉 as a fator. We are going

to show that this is an expression of seond order in ε. We have

n(η) =
(1,−∂ε/∂x1, . . . ,−∂ε/∂xd−1)

√

1 + (∂ε/∂x1)2 + . . .+ (∂ε/∂xd−1)
2
,

where x1, . . . , xd−1 are the oordinates on Sd−1
, in a neighbourhood of η,

given by the inverse of the exponential map at η ∈ Sd−1
. (The exponential

map maps vetors u, in a neighbourhood of the origin η of the tangent plane
of Sd−1

at η, to the point ω ∈ Sd−1
of the geodesi on Sd−1

, starting from

η, in the diretion of u, with ω being at a geodesi distane ‖u‖ from η.)
Therefore,

〈η, n(η)〉 =
1

√

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2
.

Clearly, it is enough to show that, e.g.,

∂

∂x1

1
√

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2
(8)

is of seond degree of smallness in ε. However, (8) equals

−
(∂ε/∂x1)(∂

2ε/∂x21) + . . .+ (∂ε/∂xd−1) (∂
2ε/(∂xd−1∂x1))

(

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2)3/2
, (9)

and so our laim is shown.
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Altogether, by (3) and (4), and, on the one hand, by (5) and (7), on the

other hand, by (6) and (9), we have that ((∂/∂t)S(ξ, t))|t=0 is, till terms of

degree 1 in ε,

(d− 2)

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη . (10)

Sine, for eah ξ ∈ Sd−1
, (10) equals 0, the Proposition implies that ε is even.

(Reall that, by hypothesis, d ≥ 3.) Returning to the original notations,

∂̺λ

∂λ
(ω)|λ=0

is an even funtion of ω.

2. Now we treat the ase 2 ≤ l ≤ d− 2.

Atually, we will allow 1 ≤ l ≤ d− 1. Of ourse, as stated after the theorem,

for l = d − 1 the statement of the theorem does not hold. However, we will

need this ase for our formulas.

We have, for 1 ≤ l ≤ d− 1, that

W λ
l (ξ, t) :=Wl(K ∩ (ξ⊥ + tξ)) =

(1/(d− 1))

∫

bd (K∩(ξ⊥+tξ))

Hl−1(ξ, t)dS
λ(ξ, t) .

(11)

Here Hl−1(ξ, t) is
(

d−2
l−1

)−1
times the (l− 1)'st elementary symmetri funtion

of the d− 2 prinipal urvatures κ1(ξ, t), . . . , κd−2(ξ, t) of bd (K ∩ (ξ⊥ + tξ)).
Cf., e.g., [4℄, p. 291.

We write κi(ξ, t) =: 1 + δi(ξ, t), where δi is of �rst order with respet to the

C2
-norm of ε = ̺− 1.
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Letting

P :=
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1) . . . (1 + δil−1
)

−
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1 + . . .+ δil−1
)

=
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1) . . . (1 + δil−1
)

−1− ((l − 1)/(d− 2))
d−2
∑

i=1

δi ,

(12)

we have that P is a linear ombination with onstant oe�ients, of the

elementary symmetri funtions of the δi's, of degrees 2 to l − 1. Therefore,
∂P/∂t is a sum, whose summands are produts of some ∂δi/∂t, and at least

one further δj. Here ∂δi/∂t is bounded by the C3
-assumption, and the δj 's

are of �rst order with respet to the C2
-norm of ε. Hene, when alulating

the derivative of (11), with respet to t, at t = 0, we an neglet ∂P/∂t.
Hene, we may replae in (11) Hl−1 by

1 +
l − 1

d− 2

d−2
∑

i=0

δi ,

and this replaement will not a�et the alulation of the derivative of (11),

with respet to t, at t = 0.

We turn to the alulation of the derivative of (11), with respet to t, at
t = 0, whih has to be 0. As mentioned above, this equals

(1/(d− 1)) (∂/∂t)
∫

bd (K∩(ξ⊥+tξ))

dSλ(ξ, t)+

(l − 1)/ ((d− 1)(d− 2)) (∂/∂t)
∫

bd (K∩(ξ⊥+tξ))

(

d−2
∑

i=0

δi

)

dSλ(ξ, t) .
(13)

Here the �rst summand is, by 1,

d− 2

d− 1

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη .
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We are going to determine the seond summand. For this, put l = d − 1.
Then, as already mentioned, (11) is onstant, hene (13) equals 0. From this

we have

∂

∂t

∫

bd (K∩(ξ⊥+tξ))

(

d−2
∑

i=0

δi

)

dSλ(ξ, t) = −(d− 2)

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη .

Hene, for all l = 1, . . . , d− 1, we have that (13) further equals

d− 1− l

d− l

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη , (14)

whih equals 0. By the hypothesis of the theorem, we have l ≤ d− 2, hene

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη = 0 ,

for eah ξ ∈ Sd−1
. As in 1, this implies that

∂̺λ

∂λ
(ω)|λ=0

is an even funtion of ω.

5 Remark

Remark. Let λ0 ∈ (0,∞). Let K0 ⊂ R
d
be a entered onvex body, further

suppose that for eah λ ∈ (0, λ0], we have that Kλ
is a onvex body in R

d
,

with radial funtions ̺λ, for λ ∈ {0}∪(0, λ0] = [0, λ0]. Moreover, let ̺λ(ω) be
a C2

-funtion of (λ, ω) ∈ [0, λ0]× Sd−1
. We may ask whether some analogue

of our theorem holds. That is, suppose that for eah λ ∈ [0, λ0], and eah

linear (d − 1)-subspae Ld−1 ⊂ R
d
, the funtion y 7→ Wl(K

λ ∩ (Ld−1 + y))
has a maximum at y = 0. Then we may pose the question: is

∂̺λ

∂λ
(ω)|λ=0
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an even funtion of ω? However, we will show that this question, even in

the simplest unsolved ase, i.e., for d = 3, and for W1, is untreatable by our

present methods.

For d−1 = 2 we an use, for the alulation of the perimeter ofKλ∩(ξ⊥+tξ),
the simpler formula ds2 = dr2 + r2dη2. Then the equality

(

∂

∂t
W1

[

(K ∩ (ξ⊥ + tξ))− tξ
]

)

|t=0 = 0

an be rewritten as

∫

S1

1
√

̺2 + (∂̺/∂η)2

(

∂̺

∂ψ
+

1

̺

∂̺

∂η

∂2̺

∂η∂ψ

)

dη = 0 . (15)

Let us write ̺λ = ̺0+ε. We retain in (15) the terms at most linear in ε, and
investigate this situation. Clearly, the terms of degree 0 in ε together give

the integral, on S1
, of an odd funtion, i.e., 0. Now we investigate the terms

of degree 1 in ε, in the expression under the integral sign in (15). These are

the following:

[

−
1

√

(̺0)2 + (∂̺0/∂η)2
1

(̺0)2
∂̺0

∂η

∂2̺0

∂η∂ψ

−
̺0

((̺0)2 + (∂̺0/∂η)2)3/2

(

∂̺0

∂ψ
+

1

̺0
∂̺0

∂η

∂2̺0

∂η∂ψ

)]

ε

+
1

√

(̺0)2 + (∂̺0/∂η)2
∂ε

∂ψ
+

[

1
√

(̺0)2 + (∂̺0/∂η)2
1

̺0
∂2̺0

∂η∂ψ

−
∂̺0/∂η

((̺0)2 + (∂̺0/∂η)2)3/2

(

∂̺0

∂ψ
+

1

̺0
∂̺0

∂η

∂2̺0

∂η∂ψ

)]

∂ε

∂η

+
1

√

(̺0)2 + (∂̺0/∂η)2
1

̺0
∂̺0

∂η

∂2ε

∂η∂ψ

=: Aε+B ∂ε/∂ψ + C ∂ε/∂η +D∂2ε/∂η∂ψ .

(16)
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Now, let us suppose that ̺λ(ω) is a C3
funtion of (λ, ω) ∈ [0, λ0]×S

2
. Then,

retaining in (15) the terms at most linear in ε, (15) beomes, by integration

by parts,

∫

S1

[(

A−
∂C

∂η

)

ε+

(

B −
∂D

∂η

)

∂ε

∂ψ

]

dη = 0 . (17)

(We do not give the oe�ients in this formula more expliitly.) Of ourse,

the left hand side of (17) is a ontinuous linear operator in ε, for the C1
-

topology. But its solution (e.g., that the solutions among the C1
-funtions

would be just the even C1
-funtions) seems to be untreatable by our methods.
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