2021. 10. 05. 14:15 - 2021. 10. 05. 15:30
Rényi, Nagyterem + Zoom
-
-
Esemény típusa:
szeminárium
Szervezés:
Intézeti
-
Számelmélet szeminárium
Leírás
Abstract:
We prove the Alon-Jaeger-Tarsi conjecture for sufficiently large primes.
Namely, we show that for any finite field $\mathbb{F}$ of size $61<|\mathbb F|\ne 79$ and any nonsingular matrix $M$ over $\mathbb{F}$ there exists a vector $x$ such that neither $x$ nor $Mx$ has a 0 component.
For this we use a combination of the polynomial method, and different versions of the group ring method and connections between them.
Joint work with Péter Pál Pach.
For Zoom access please contact Andras Biro (biro.andras[a]renyi.hu).