2021. 05. 11. 14:00 - 2021. 05. 11. 15:30
Online, Zoom webinar
-
-
Esemény típusa: szeminárium
Szervezés: Intézeti
-
Számelmélet szeminárium

Leírás

Abstract: Combining two elementary proofs, we decrease the gap between the upper
and lower bounds  by 0.2% in a classical combinatorial number theory problem.
We show that the maximum size of a Sidon set of $\{ 1, 2, ..., n\}$ is at most
$\sqrt{n}+ 0.998n^{1/4}$ for sufficiently large  n.

A joint work with J. Balogh and  S. Roy  (both are from University of
Illinois at Urbana-Champaign).

For Zoom access please contact Andras Biro (biro.andras[a]renyi.hu).