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In the subsequent sections we give an overview of the results of the PhD thesis ”Hydrody-

namic behavior of hyperbolic two-component systems”. We start with a short introduction of

the considered topics and the main motivation of the thesis. Then we describe the investigated

family of models and the results.

1 Introduction

The main problem of non-equilibrium statistical physics is the study of the dynamics of inter-

acting particle systems, their behavior in space and time. We can think, for example about

gas molecules in a room, or particles of a flowing fluid. Generally, the size of these systems is

enormous (of order 1026), thus the task of tracking every single particle is hopeless, even if we

know everything about the microscopic dynamics. There is another, much more effective ap-

proach to this problem: we have to look at the ’big picture’, i.e. the macroscopic evolution. This

means that we characterize the state of our system with the local densities of certain physically

relevant conserved quantities (particle number, momentum, energy) and the time-evolution of

these functions, which are usually driven by coupled partial differential equations, gives us the

needed description.

Hydrodynamic limit (hdl) is the device to get these pde-systems from the microscopic dy-

namics via some rescaling of space and time. In the physics literature there are a number of

well-known phenomenological derivations of the hydrodynamic limit for several systems, start-

ing with the classical work of Euler, Navier, Stokes, etc. See e.g. [11], [6]. It is a challenging

and important program of mathematical physics to give mathematically rigorous versions of

these derivations. For completely deterministic systems (e.g. which are governed by Newtonian

mechanics) this is still an unsolved problem. However, if we add some stochastic elements to

the evolution, the problem becomes more treatable (but far from trivial!). In the last couple of

decades considerable advances have been made in the theory of hydrodynamic limits for stochas-

tic systems (see the monographs [12, 5, 2]). Much effort has been made in the analysis of lattice

gas models with conserved quantities (e.g. simple exclusion, zero range, Ginzburg-Landau mod-

els). These can be viewed as an approximation for the deterministic systems, but they also turn

up as models for numerous phenomena in biology, chemistry and physics (e.g. deposition and

growth models, biological chemotaxis).

2 Motivation

In the thesis we prove results for the hydrodynamic behavior of certain one dimensional lattice

models motivated by a conjecture of B. Tóth and W. Werner. This section serves to describe

this conjecture and to state the main objective of the thesis.

In [13] B. Tóth proved limit theorems about the so-called ’true self-avoiding walk’ which is

a discrete-time random process on Z. The process is a negatively reinforced nearest-neighbor

random walk: if the random walker is at a given lattice point then he chooses to go left or
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right in the next step with probabilities depending on the difference of the local times of the

respective neighboring edges, giving more weight to the edge he has visited fewer times. Suppose

the walker puts down a unit brick in each step on the edge he has just jumped through, building

a wall during the course of its walk. Then the height of this wall at a given edge is equal to

the respective value of the local time function and the movement of the walker is driven by the

negative gradient of the wall (he rather goes ’downhill’ than ’uphill’, going through edges he

has visited rarer).

In [17] the authors constructed a continuous process as a scaling limit of this discrete-valued

process, we can view the process as the continuous-time movement of a particle on R which is

building a wall (its local time) following similar rules as the discrete version. They also proved

that the process obeys some dynamical driving mechanism corresponding to these rules. If we

denote its position at time t by Xt and its local time (or the height of the wall) at a time t and

position x by h(t, x) then the movement of the particle is driven by the slope of the wall:

’dXt = −∂xh(t,Xt)dt’, (1)

and the wall is ’built up’ by the presence of the particle:

’∂th(t, x) = δ(Xt − x)’. (2)

Of course, these equations do not make sense in this form (hence the inverted commas), but

they can be made rigorous. For the details of the construction and primary properties of

the process we refer the reader to the original paper. We only remark one interesting and

unusual feature: the process Xt has the 2/3 scaling: (α−2/3Xαt, t ≥ 0) has the same law as

(Xt, t ≥ 0). In fact ((α−2/3Xαt, α
−1/3h(α2/3x), αt), t ≥ 0, x ∈ R) has the same joint law as

((Xt, h(x, t)), t ≥ 0, x ∈ R).

It is natural to consider the case when instead of one particle we have many building the

same wall. Corresponding to the discrete case, in [18] a 1 dimensional particle system with 2

conserved quantities was introduced (the ’bricklayer’ model): we have several particles (brick-

layers) positioned on the lattice sites of Z who are building a wall from unit-bricks piled above

the edges of the lattice. Each bricklayer jumps to a neighboring site with rates depending on

the negative gradient of the wall at its position (with the ’downhill’ jump getting bigger rate

than the ’uphill’ jump) and at each jump a unit brick is deposited to the column above the

respective edge. This way holes in our walls are tend to be filled quickly by the bricklayers. The

two conserved quantities are the particle number and discrete negative gradient of the wall. In

the next section we will discuss a whole family of similar models in more detail.

In the continuous setting we would get the following picture: a continuously distributed

cloud of particles is building a wall with their movement driven by the slope of the wall. If we

denote the density of the particles at x and time t by ρ(t, x) and u(t, x) := −∂xh(t, x), then

from (1), (2) and some formal computations we get the following partial differential equation
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system:
{

∂tρ + ∂x(ρu) = 0,

∂tu + ∂xρ = 0.
(3)

As noted in [18], this pde-system can also be viewed as a general phenomenological descrip-

tion of a deposition/domain growth – or, in biological term: chemotaxis – mechanism: ρ(t, x) is

the density of population performing the deposition h(t, x) is the height of the deposition and

u(t, x) := −∂xh(t, x). The physics of the phenomenon is contained in the following two rules:

(a) The velocity field of the population is proportional to the negative gradient of the height

of the deposition. That is, the population is pushed towards the local decrease of the

deposition height. This rule, together with the conservation of total mass of the population

leads to the continuity equation, the first equation in (3).

(b) The deposition rate is proportional to ρ:

∂th ∼ ρ, (4)

i.e. the deposition is done additively by the population. This, after differentiating with

respect to x, gives the second equation of (3).

In [18] from the previously mentioned bricklayer model the pde (3) was derived using formal,

non-rigorous hydrodynamic limit and low density perturbation analysis. It was conjectured

there that the arguments can be made rigorous and should hold for a large class of models with

two conserved quantities. In the paper there were made connections to the Kardar-Parisi-Zhang

equation (KPZ equation) which is one of the most famous models in the physical literature for

growing interfaces (c.f. [4]). It gives a general phenomenological description of a surface growing

to normal direction to its boundary, with a ’tension’ that tries to keep the surface together (fills

the holes quickly). This resembles properties of our growing wall built by the bricklayers. The

KPZ equation itself is (in mathematical sense) an ill-posed non-linear pde with a stochastic

term which takes the following form in one dimension:

∂th = ∇h− (∂xh)2 + W (5)

where W = W (t, x) is a space-time white noise.

Motivated by the KPZ equation we modify rule (b) in the phenomenological description of

the deposition/domain growth mechanism of [18] by adding term proportional to (∂xh)2 in (4):

∂th ∼ ρ + γ(∂xh)2. (6)

This means that the deposition is not only done solely by the population, but there is also some

self-generated deposition (in the spirit of KPZ). Differentiating this with respect to x we get

the following pde system instead of (3):
{

∂tρ + ∂x(ρu) = 0,

∂tu + ∂x(ρ + γu2) = 0,
(7)
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where γ is a real parameter. This is a system of hyperbolic conservation laws with behavior

depending largely on the value of γ. Hyperbolicity means that the Jacobian of the pde has two

different real eigenvalues. The most important consequence of the hyperbolicity is the following:

there is no global strong solution, arbitrary smooth initial conditions yield shocks in finite time

(apart from some very specially prepared initial conditions).

Now we are ready to state the main objective of the thesis:

We want to derive (7) as a mathematically rigorous universal low-density hydrodynamic limit

for a large class of one dimensional interacting particle systems with two conserved quantities.

3 Models

We consider one dimensional lattice models and in order to keep the state space finite we work

with the discrete tori Tn := Z/nZ with n ∈ N. We will denote the continuous torus R/Z by T.

We have a finite local spin state denoted by Ω which is the set of the possible observables at a

given site. The state space of the interacting particle system is

Ωn := ΩTn
,

configurations will be denoted by

ω := (ωj)j∈Tn ∈ Ωn.

The dynamics of our process will be Markovian in continuous time and we only allow elementary

jumps (changes of the configuration) which effect two neighboring sites. If at a given time

the process is in the configuration ω, then at sites j, j + 1 the spins ωj , ωj+1 can change to

ω′j , ω
′
j+1 with some rate depending only on ωj , ωj+1, ω

′
j , ω

′
j+1. Thus the dynamics is governed

by translation invariant local rules. We denote the rate function by r : Ω × Ω × Ω× Ω → R+,

thus r(ωj , ωj+1; ω′j , ω
′
j+1) is the rate of the previously described elementary jump.

We will consider models with two (discrete) conserved quantities which are denoted by

ζ : Ω → Z, η : Ω → Z.

We also use the notations ζj = ζ(ωj), ηj = η(ωj). We only allow elementary jumps which

conserve the sums
∑

j∈Tn ζj ,
∑

j∈Tn ηj . This means that if we have an elementary jump which

changes (ωj , ωj+1) to (ω′j , ω
′
j+1) with a positive rate then

ζj + ζj+1 = ζ ′j + ζ ′j+1,

ηj + ηj+1 = η′j + η′j+1.

The conserved quantities have to be different: we assume that ζ, η and the constant 1 function

on Ω are linearly independent.

It is easy to see, that (possibly shifting η to be always nonnegative) we can always interpret

our model locally as a growing or decaying wall made by unit bricks piled on the edges of the
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lattice and built by bricklayers positioned on lattice sites. ηj is the number of bricklayers at

site j and ζj is the difference between the height of the columns on (j − 1, j) and (j, j + 1) (see

Figure 1). Then an elementary move of the process affecting the sites (j − 1, j) corresponds to

one of the following changes:

– a couple of particles jump from j − 1 to j, or vice versa,

– a couple of bricks are deposited on or removed of the top of the column standing on the edge

(j − 1, j),

– a combination of the two previous things.

j-2 j-1 j j+1 j+2

h: 2 1 4 0 2

z: 3 -1 -2 -2 1

j-2 j-1 j j+1 j+2

h: 2 4 1 0 2

z: 3 -3 0 -2 1

Figure 1: The picture shows a possible elementary move in the bricklayer setting. 3 particles
jumped from j to j − 1 and 2 bricks were deposited on the top of the column standing on
(j − 1, j).

For a precise formulation of the infinitesimal generator on Ωn we first define the map Θω′,ω′′
j :

Ωn → Ωn for every ω′, ω′′ ∈ Ω, j ∈ Tn:

(
Θω′,ω′′

j ω
)

i
=





ω′ if i = j
ω′′ if i = j + 1
ωi if i 6= j, j + 1.

The infinitesimal generator of the process defined on Ωn is

Lnf(ω) =
∑

j∈Tn

∑

ω′,ω′′∈Ω

r(ωj , ωj+1;ω′, ω′′)(f(Θω′,ω′′
j ω)− f(ω)).

We denote by X n
t the Markov process on the state space Ωn with infinitesimal generator Ln.

We impose several technical, mostly combinatorial conditions on the rate function r. Because

of the length constraints of this outline we do not give a full description of these conditions, we

only list a couple of the fundamental consequences:

(1) There are no hidden conservations besides
∑

ζj and
∑

ηj .

(2) There exists a probability measure π on Ω which puts positive weight on every element and

for which the product measure πn :=
∏

j∈Tn π is stationary for X n
t (for any n).
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(3) The process is not reversible, we do not have the detailed balanced condition.

Actually, we will have a whole family of stationary measures similar to πn. For every θ, τ ∈ R
let G(θ, τ) be the moment generating function defined below:

G(θ, τ) := log
∑

ω∈Ω

eθζ(ω)+τη(ω)π(ω).

In thermodynamic terms G(θ, τ) corresponds to the Gibbs free energy, see [8]. We define the

probability measures

πθ,τ (ω) := π(ω) exp(θζ(ω) + τη(ω)−G(θ, τ)) (8)

on Ω. Then for any θ, τ ∈ R and n the measures

πn
θ,τ :=

∏

j∈Tn

πθ,τ

are stationary for X n
t . We denote the expectations of the conserved quantities with respect to

πθ,τ by

u(θ, τ) := Eπθ,τ
(ζ) =

∑

ω∈Ω

ζ(ω)πθ,τ (ω) = G′
θ(θ, τ),

v(θ, τ) := Eπθ,τ
(η) =

∑

ω∈Ω

η(ω)πθ,τ (ω) = G′
τ (θ, τ).

It is easy to show that the function (θ, τ) 7→ (u(θ, τ), v(θ, τ)) is invertible, we denote the inverse

function by (u, v) 7→ (θ(u, v), τ(u, v)). The domain of this inverse function is called the physical

domain, it is denoted by D and

D = co{(η(ω), ζ(ω)) : ω ∈ Ω}

where co stands for the convex hull. With slight abuse of notation we shall denote:

πθ(u,v),τ(u,v) =: πu,v, πn
θ(u,v),τ(u,v) =: πn

u,v,

this gives another natural parametrization for our family of stationary product measures.

Denoting by (u, v) 7→ S(u, v) the convex conjugate (Legendre transform) of the strictly

convex function (θ, τ) 7→ G(θ, τ):

S(u, v) := sup
θ,τ

(
uθ + vτ −G(θ, τ)

)
, (9)

we have θ(u, v) = S′u(u, v), τ(u, v) = S′v(u, v). In probabilistic terms: S(u, v) is the rate function

for joint large deviations of (
∑

j ζj ,
∑

j ηj), in thermodynamic terms: S(u, v) corresponds to the

equilibrium thermodynamic entropy (see [8]).
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Because of the nearest neighbor interactions we get that the infinitesimal generator acts on

the conserved quantities as follows:

Lnζi = −φ(ωi, ωi+1) + φ(ωi−1, ωi) =: −φi + φi−1,

Lnηi = −ψ(ωi, ωi+1) + ψ(ωi−1, ωi) =: −ψi + ψi−1,

with functions φ : Ω × Ω → R, ψ : Ω × Ω → R. The explicitly computable functions φ, ψ are

called microscopic fluxes, their expectations with respect to π2
u,v are called macroscopic fluxes:

Φ(u, v) := Eπ2
u,v

φ(ω1, ω2),

Ψ(u, v) := Eπ2
u,v

ψ(ω1, ω2).

As we will see, the macroscopic flux functions Φ(u, v), Ψ(u, v) will govern the macroscopic evolu-

tion of density-profiles of the conserved quantities. These functions depend on the microscopic

model.

There are several detailed concrete examples of microscopic models fitting to this framework

in Section 2.2 of the thesis (or [15]).

4 Eulerian scaling

Hydrodynamic limit gives the macroscopic behavior of the density-profiles of the conserved

quantities via some suitable scaling of space and time. The scaling of space will be the same in

all the results of the thesis: we rescale it by n. This means that we represent Tn with n sites

on the continuous torus T, with distance 1/n between the neighboring sites.

There are several heuristical derivations which (formally) yield that under Eulerian scaling

(which means the rescaling of time and space by n) the macroscopic density-profiles of the

conserved quantities ζ, η evolve according to the equation{
∂tu + ∂xΦ(u, v) = 0,

∂tv + ∂xΨ(u, v) = 0,
(10)

which is usually a hyperbolic conservation law.

This means the following. Suppose that u0(·), v0(·) are real functions on T with (u0(x), v0(x)) ∈
D for x ∈ T. Fix a microscopic model and take its versions for every n on Ωn with space rescaled

by n. Assume that we have initial (random) configurations of our processes such that the den-

sities of ζ, η approximate the functions u0(·), v0(·). Then letting the systems run up to time nt

the density-profiles of ζ, η will approximate the functions u(t, ·), v(t, ·) which are the solutions

of (10) with initial conditions u(0, x) = u0(x), v(0, x) = v0(x). The approximation of a deter-

ministic function by the density-profile can be defined in several ways. A natural definition is

the following weak approximation: for any smooth test function g : T→ R
1
N

∑

j∈Tn

g(j/N)ζj(nt) P−→
∫

T
g(x)u(t, x) dx,

(11)
1
N

∑

j∈Tn

g(j/N)ηj(nt) P−→
∫

T
g(x)v(t, x) dx.
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Then the (heuristic) result may be summarized the following way: if the previous limits hold

for t = 0 for any test function g then they will hold at any t > 0.

Theorem 1 will give a rigorous version of this result. There is essentially one robust, model-

independent method for proving hydrodynamic limits which works for hyperbolic interacting

particle systems with two conserved quantities: H.T. Yau’s relative entropy method, introduced

in [20]. For attractive one component systems there exist stronger results (c.f. [9]), but these

cannot be extended to our case. It does not depend much on the microscopic properties on the

model, but this great generality has one drawback: the proof only works for smooth solutions of

the limiting pde. (Smooth actually means some finite differentiability conditions.) However, as

we already mentioned, hyperbolic conservation laws with generic initial conditions cannot have

globally smooth solutions. Thus, the relative entropy method can only apply up to a finite time,

before the first appearance of shocks. We note, that [7] gives the first major result about the

Eulerian hydrodynamic limit for multi-component hyperbolic systems, namely for Hamiltonian

systems perturbed by a weak noise.

Before stating the theorem, we need to take a brief look at the relative entropy method. If

µ, π are measures on the same probability space (Ω) then we denote their relative entropy by

H(µ|π) and it is defined as

H(µ|π) := sup
‖f‖∞<∞

{
Eµf − log Eπef

}
.

If the density dµ
dπ exists then

H(µ|π) = Eµ

(
log

dµ

dπ

)
= Eπ

(
dµ

dπ
log

dµ

dπ

)
.

Relative entropy gives a way to measure the distance of two probability measures on the same

probability space (although it is not a distance in the topological sense). The basic idea of

the relative entropy method is the following: instead of comparing the density profiles of the

conserved quantities of our process to a pair of deterministic functions, we try to ’guess’ the

distribution itself and compare the real distribution to this ’educated guess’. We usually look

at the system after it ran for a long time (nt in this case, with a large n), thus it is reasonable

to believe that at least locally, the distribution of our process looks like the canonical stationary

distribution. Therefore, if we think that the density profiles of ζ, η approximate a pair of

functions (u(t, ·), v(t, ·)) then the following distribution on Ωn is a ’good guess’ for the real

distribution of the process:

νn
t :=

∏

j∈Tn

πu(t, j
n),v(t, j

n). (12)

The measure νn
t is our time-dependent reference measure to which we compare the distribution

of the process. We denote the real distribution at microscopic time nt by µn
t . Then the following

theorem is true:
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Theorem 1. Suppose (u(t, x), v(t, x)) is a solution of (10) which is smooth for t ∈ [0, T ] and

(u(0, x), v(0, x)) ∈ D for x ∈ T. Then if

H(µn
0 |νn

0 ) = o(n),

then

H(µn
t |νn

t ) = o(n),

uniformly for t ∈ [0, T ].

The theorem states that if the initial distribution is close to νn
0 in the relative entropy sense then

the distribution at time nt will be close to νn
t in the same sense. The fact, that ’close’ should

mean o(n) is easily justified (see [15]). It might not be transparent if there is any connection

at all between this setting and the weak approximation defined in (11). Actually, the following

corollary holds:

Corollary 1. Under the conditions of Theorem 1, for any t ∈ [0, T ], the following limits hold

for any smooth test function g : T→ R as n →∞
1
n

∑

j∈Tn

g(j/n)ζj(t)
P−→

∫

T
g(x)u(t, x) dx,

1
n

∑

j∈Tn

g(j/n)ηj(t)
P−→

∫

T
g(x)v(t, x) dx.

The proof of Theorem 1 follows the standard steps of the relative entropy method, but there is

one novelty. In order to complete the proof, we need the following symmetry relation between

the macroscopic fluxes Φ,Ψ, reminiscent of the Onsager reciprocity relations which can be

proved using the existence of a stationary measure with product structure.

Lemma 1.

∂τΨ(u(θ, τ), v(θ, τ)) = ∂θΦ(u(θ, τ), v(θ, τ)).

This symmetry relation is an important element of the proof, but also allows us to show some

interesting (although not surprising) facts about the pde (10):

Corollary 2. The system of conservation laws (10) is (weakly) hyperbolic inside the domain

D. Furthermore, the equilibrium thermodynamic entropy (u, v) 7→ S(u, v) is a globally convex

Lax entropy for the system (10).

Weak hyperbolicity means, that the Jacobian(
Φ′u(u, v) Φ′v(u, v)
Ψ′

u(u, v) Ψ′
v(u, v)

)
(13)

can be diagonalized in a real sense. A Lax-entropy is a function S(u, v) for which there exists

a flux function F (u, v) such that if u(t, x), v(t, x) are smooth solutions of (10) then

∂tS(u, v) + ∂xF (u, v) = 0.

Essentially, this is an extra conservation law.

The results of this section are published in [15].

9



5 Deriving the universal pde (7)

5.1 Perturbation analysis

In this section we use the variable ρ instead of v for the density of the conserved quantity η.

Using the results of the Eulerian scaling we can give a formal, non-rigorous derivation the pde

(7). Suppose that minω∈Ω η(ω) = 0 (this is a natural assumption if we interpret η as the number

of particles at a given site) and that our microscopic model has a left-right reflection-symmetry.

The latter is implemented the following way. There is an involution

R : Ω → Ω, R ◦R = Id

which acts on the conserved quantities as follows:

η(Rω) = η(ω), ζ(Rω) = −ζ(ω),

and for which

π(Rω) = π(ω) and r(Rω2, Rω1; Rω′2, Rω′1) = r(ω1, ω2;ω′1, ω
′
2).

This means, that changing the direction of the lattice, our wall evolves with the same dynamics.

We note that the pde (7) has this reflection-symmetry: if (ρ(t, x), u(t, x)) is a solution then so

is (ρ(t,−x),−u(t,−x)).

Under the previous assumptions we get the following asymptotics for the macroscopic fluxes:

Φ(ρ, u) = a (ρ + γu2)
(
1 +O(ρ + u2)

)
,

(14)
Ψ(ρ, u) = b ρu

(
1 +O(ρ + u2)

)
,

if ρ, |u| ¿ 1. Using these asymptotics the pde (7) may be derived by perturbing the constant

(0, 0) solution of the Eulerian pde
{

∂tu + ∂xΦ(ρ, u) = 0,

∂tρ + ∂xΨ(ρ, u) = 0.
(15)

Let ρ0(x) and u0(x) be given profiles and assume that ρε(t, x), uε(t, x) is a solution of the

Eulerian pde (15) with initial condition

ρε(0, x) = ε2ρ0(x), uε(0, x) = ε u0(x).

Then, at least formally, if ε → 0

ε−2ρε(ε−1t, x) → ρ(t, x), ε−1uε(ε−1t, x) → u(t, x),

where ρ(t, x), u(t, x) is the solution of the pde (7) with initial conditions

ρ(0, x) = ρ0(x), u(0, x) = u0(x).

Actually, the constants a, b from the asymptotics also appear in the equation, but they can be

scaled out by simple linear transformations to get (7). It is important to note that the constant

γ cannot be scaled out of the equations and that is the only trace left of the microscopic model

in the pde-system.
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5.2 The main result

From the perturbation analysis we can guess how we should derive (7) as a ’universal’ hy-

drodynamic limit. Fix a microscopic model with the previous assumptions (min η = 0 and

reflection-symmetry), a small constant β > 0 and suppose that ρ(t, x), u(t, x) is the solution of

the pde (7) with initial conditions

ρ(0, x) = ρ0(x), u(0, x) = u0(x).

If at time t = 0 the density-profiles of η, ζ approximate the functions n−2βρ0(·), n−βu0(·) then

at time n1+βt they should approximate the functions n−2βρ(t, ·), n−βu(t, ·). Note that this is

not Eulerian scaling.

For a given ρ(t, x), u(t, x) solution of the pde (7) we define the time-dependent reference

measure νn
t as

νn
t :=

∏

j∈Tn

πn−2βρ(t, j
n),n−βu(t, j

n).

We compare this to the real distribution of our process at time n1+βt which we denote with

µn
t . In order to enhance convergence to local equilibrium and thus help estimating some error

terms in the hydrodynamic limiting procedure we also add some ’extra speed’ to the symmetric

part of the infinitesimal generator. To be more precise: we also have a symmetric rate function

s with similar properties as r and the elementary change (ωj , ωj+1) → (ω′j , ω
′
j+1) is performed

with rate r(ωj , ωj+1; ω′j , ω
′
j+1) + nδs(ωj , ωj+1; ω′j , ω

′
j+1). We also need the logarithmic-Sobolev

inequality for s. The parameter δ is positive and less than 1. It is chosen in a way that the

effect of the symmetric part is not seen in the hydrodynamic limit. Now we are ready to state

the theorem.

Theorem 2. Fix a microscopic model for which the parameter γ is greater than 1. Suppose

that ρ(t, x), u(t, x) is a smooth solution of the pde (7) for t ∈ [0, T ]. Choose β ∈ (0, 1/2) and

δ ∈ (1/2, 1) so that 2δ − 8β > 1, δ + 3β < 1 and define µn
t , νn

t as before. If

H(µn
t |νn

t ) = o(n1−2β)

holds at t = 0 then it will hold uniformly for t ∈ [0, T ].

This theorem is of the same structure as Theorem 1 and it has a similar corollary.

Corollary 3. Assume the conditions of Theorem 2. Let g : T → R be a smooth test function.

Then for any t ∈ [0, T ]

n2β−1
∑

j∈Tn

g(
j

n
)ηj(t)

P→
∫

T
g(x)ρ(t, x) dx,

nβ−1
∑

j∈Tn

g(
j

n
)ζj(t)

P→
∫

T
g(x)u(t, x) dx.

11



The restriction γ > 1 comes from the fact that the geometrical structure of the pde is

different for γ < 1 and γ > 1. Interestingly, this change of geometric structure is also responsible

for a change in the treatability of (7) from the pde point of view. For γ < 1 it is not even possible

to prove the Lax’s maximum principle, i.e. that bounded initial conditions yield a bounded

solution. The proof of Theorem 2 is not merely a simple application of the relative entropy

method, it also uses nontrivial elements of pde theory. In order to control the fluctuations

of some terms with Poissonian (rather than Gaussian) decay coming from the low density

approximations we have to apply refined pde estimates, in particular Lax entropies of these pde

systems play a key role in the main part of the proof.

The results of this section are also contained in the paper [15] (a submitted preprint).

6 Perturbation of a hyperbolic equilibrium point

The result of Theorem 2 may be interpreted as the description of the hydrodynamic behavior

for the perturbation of a singular equilibrium point. Indeed, the point (0, 0) (around which

we considered the perturbation) is not hyperbolic for the Eulerian pde (15), the Jacobian is a

multiple of the matrix (
0 0
1 0

)
.

However, most of the points in D are hyperbolic, thus it is a natural question to ask what the

behavior of the perturbation will be if we perform it around a ’common’ hyperbolic point. This

section deals with this question, we will use the notations of Section 4.

Suppose (u0, v0) ∈ D is a (strongly) hyperbolic point of the pde (10). In order to simplify

notations, we assume that the Jacobian (13) at (u0, v0) is diagonal:
(

λ 0
0 µ

)
,

λ 6= µ ∈ R are the two eigenvalues. We can always reduce the general case to this via some

linear transformation of the conserved quantities. Let u∗(x), v∗(x) be given smooth functions

and assume, that uε(t, x), vε(t, x) is the solution of (10) with initial conditions

uε(0, x) = u0 + εu∗(x), vε(0, x) = v0 + εv∗(x).

Applying standard perturbation techniques (e.g. the method of geometric optics, see [1] or [3])

it can be shown that (at least formally):

uε(t, x) ≈ u0 + εu(εt, x− λt) +O(ε2),

vε(t, x) ≈ v0 + εv(εt, x− µt) +O(ε2),

as ε → 0 where u(t, x) and v(t, x) are the solutions of two decoupled partial differential equations.

These are Burgers’ equations, if Φ′′uu(u0, v0) 6= 0, respectively, Ψ′′
vv(u0, v0) 6= 0, and linear

transport equations otherwise.

12



From the (formal) perturbation result we can guess the hydrodynamic picture. Fix a small

positive parameter β. Suppose we have a microscopic model with two conserved quantities and

the initial distribution is such that the macroscopic density profiles are close to the functions

u0 + n−βu∗(x), v0 + n−βv∗(x). Then at microscopic time n1+βt the density profiles should be

close to the functions u0 + n−βu(t, x − nβλt), v0 + n−βv(t, x − nβµt). The precise formulation

of this result in the relative entropy setting will be similar to the previous results. First, we

construct a time-dependent reference measure: fix the functions u(t, x), v(t, x) which are smooth

in [0, T ]×T and solutions of the respective partial differential equations we get from the formal

perturbation. Then we define:

νn
t :=

∏

j∈Tn

πu0+nβu(t, j
n
−nβλt),v0+n−βv(t, j

n
−nβµt),

and we denote by µn
t the real distribution of the process on Ωn at time n1+βt. We also need one

additional condition on the rate function r: a uniform bound on the inverse of the spectral gap

of the generator which is quadratic in the system-size. We do not need speeded up symmetric

rates as in Theorem 2. Now we can state our last theorem.

Theorem 3. Fix a parameter β with 0 < β < 1
5 and define µn

t and νn
t as before. If

H(µn
t |νn

t ) = o(n1−2β)

holds at t = 0 then it will hold uniformly for t ∈ [0, T ].

If we assume the uniform logarithmic-Sobolev condition on our rate function r (this is

stronger then the spectral gap condition) then the result of Theorem 3 holds for 0 < β < 1
3 .

From Theorem 3 we get the following corollary.

Corollary 4. Assume the conditions of Theorem 3. Let g : T → R be a smooth test function.

Then for any t ∈ [0, T ]
∣∣∣∣∣∣
n−1+β

∑

j∈Tn

g(
j

n
)
(
ζj(n1+βt)− u0

)
−

∫

T
g(x)

(
u(t, x− λnβt)

)
dx

∣∣∣∣∣∣
P→ 0,

∣∣∣∣∣∣
n−1+β

∑

j∈Tn

g(
j

n
)
(
ηj(n1+βt)− v0

)
−

∫

T
g(x)

(
v(t, x− µnβt)

)
dx

∣∣∣∣∣∣
P→ 0.

This result is an extension of [10] and [14] where the analogue result was proved for systems

with one conservation law: i.e. perturbations of equilibrium of order n−β evolve according to the

Burgers’ equation if time is rescaled by n1+β. In [10] the respective result is proved for the so-

called totally asymmetric stick process (a 1 dimensional system with one conserved quantity)

with coupling methods, but in a stronger form: for 0 < β < 1
2 and for all t, even after the

appearance of shocks. The upper bound 1
2 for β is sharp, since at β = 1

2 the equilibrium

fluctuations of the constant profile could not be distinguished from the perturbation. In [14] it

13



was shown with the application of the Yau’s method, that the previous result holds universally,

for a wide family of one-component systems, but that result is only valid for 0 < β < 1
5 and in

the regime of smooth solution (similarly to Theorem 3).

The proof of Theorem 3 is an application of Yau’s relative entropy method and it also

strongly relies on the Onsager-type relation of Lemma 1. The reason for the decoupling of the

resulting pde system is the hyperbolicity, basically, the two different eigenvalues (sound speeds)

cause the equations to separate.

The results of this section are contained in the paper [19] (a submitted preprint).
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