0.1 Methods to Calculate $\pi_1(X)$

0.1.1 Using deformation retractions

The idea here is that we can get rid of "unnecessary" chunks of space. Unnecessary - from the point of view of calculating the fundamental group. For example, with the cylinder $\{(x, y, z) | x^2 + y^2 = 1\} \subset \mathbb{R}^3$ it is intuitively clear that the fundamental group is determined by the number of times a loop goes around it and this is preserved if we contract the whole cylinder down to the circle $\{(x, y, 0) | x^2 + y^2 = 1\}$ - we. So how much a loop varies in the z direction is irrelevant from the point of view of the corresponding element of the fundamental group.

We now want to develop this intuitive idea precisely.

Definition 0.1.1: Given $A \subset X$, a continuous, surjective map $r : X \to A$ is called a **retraction** if r(a) = a for all $a \in A$. We also say that A is a **retract** of X.

Remark: Consider the inclusion map $i : A \to X$, $i(a) = a \forall a \in A$. If $r : X \to A$ is a retraction, we automatically have that, $r \circ i = \text{Id}_A$. So, for the induced homomorphisms, $r_* : \pi_1(X, a_0) \to \pi_1(A, a_0)$ and $i_* : \pi_1(A, a_0) \to \pi_1(X, a_0)$, we have $r_* \circ i_* = 1_{\pi_1(A, a_0)}$. Thus r_* has to be onto and i_* is 1-1.

- **Example 0.1.2:** (1.) Consider the constant map $r : \mathbb{R}^2 \to \{(0,0)\}$. This is a retraction onto $A = \{(0,0)\}$.
- (2.) $r : \{(x, y, z) : x^2 + y^2 = 1\} \to S^1 \subset \mathbb{R}^2$ where r is the projection r(x, y, z) = (x, y). Then r is a retraction of the cylinder onto the circle.

Example 0.1.3: (a.) Give an example of a continuous map $f: \overline{D}^2 \to S^1$

- (b.) Give an example of a continuous, onto map $f:\overline{D}^2\to S^1$
- (c.) Give an example of a continuous, onto map $f:\overline{D}^2\to S^1$, that keeps S^1 fixed pointwise.

The last question above asks for a retraction \overline{D}^2 onto S^1 . In fact, there is no such map, for if such a map f = r existed, then $r_* \circ i_* = \mathrm{Id}_{S^1}$. This would mean that the composition

$$\pi_1(S_1) \xrightarrow{i_*} \pi_1(\bar{D}^2) \xrightarrow{f_*} \pi_1(S^1)$$

should be the identity isomorphism on $\pi_1(S^1)$. But $\pi_1(\bar{D}^2)$ is trivial and $\pi_1(S^1) \cong \mathbb{Z}$, so this is impossible.

A very famous consequence of this fact is the **Brouwer fixed point theorem**:

Theorem 0.1.4: $\forall f:\overline{D}^2 \to \overline{D}^2$ continuous maps $\exists x \in \overline{D}^2$ with f(x) = x.

We proved this in class.

Now, consider the following

Definition 0.1.5: *A* is a **deformation retract** of *X* if there exists a homotopy $H: X \times [0, 1] \to X$ map which is continuous such that

$$H(x,0) = x \quad \forall x \in X,$$
$$H(x,1) \in A \quad \forall x \in X,$$
$$H(a,t) = a \quad \forall t \in [0,1]$$

Note that this definition implies

- for each fixed $x \in X$, the mapping $\alpha : [0,1] \to X$, $\alpha(t) = H(x,t)$ is a path from x to some $a = H(x,1) \in A$ (so X can be deformed onto A along paths);
- the mapping $r: X \to A$, r(x) = H(x, 1) is a retraction of X onto A.

Example 0.1.6: 1. $X = \mathbb{R}^2$ can be deformation retracted onto $A = \underline{0}$ via

$$H((x, y), t) = (1 - t)(x, y) = ((1 - t)x, (1 - t)y)$$

2. $X = \mathbb{R}^2$ can be deformation retracted onto A = x-axis= x, 0 via

$$H((x, y), t) = (x, (1 - t)y)$$

3. $X = \mathbb{R}^3 \setminus \{(0,0)\}$ can be deformation retracted onto $A = S^2$ via

$$H(\underline{x},t) = (1-t)\underline{x} + t\frac{\underline{x}}{||\underline{x}||}$$

4. $X = \mathbb{R}^3 \setminus \{z - \text{axis}\}$ can be deformation retracted onto the cylinder $A = \{(x, y, z) \mid x^2 + y^2 = 1\}$ via

$$H((x, y, z), t) = ((1 - t)x + t\frac{x}{\sqrt{x^2 + y^2}}, (1 - t)y + t\frac{y}{\sqrt{x^2 + y^2}}, z)$$

Finally, we also have the following lemma which shows that if a subset A is a deformation retract of a space X then they have the same, i.e. isomorphic fundamental groups.

Lemma 0.1.7: If $A \subset X$ and $a_0 \in A$ and A is a deformation retract of X, then

$$\pi_1(X, a_0) \cong \pi_1(A, a_0)$$

Proof. We know A is a deformation retract of X. This implies that $\exists r : X \to A$ retraction such that r(x) = H(x, 1) for some homotopy $H : X \times [0, 1] \longrightarrow X$ with boundary conditions

 $H(x,0) = x \quad \forall x \in X,$ $H(x,1) \in A \quad \forall x \in X,$ $H(a,t) = a \quad \forall t \in [0,1]$

We claim that the induced homomorphism $r_* : \pi(X, a_0) \to \pi(A, a_0)$ is an isomorphism. Thus we have to show that r_* is onto and 1-1.

<u> r_* is onto</u>: let $\langle \alpha \rangle \in \pi(A, a_0)$ is $\alpha : [0, 1] \to A$ is a loop based at a_0 in A. Consider the inclusion map $i : A \to X$. Then $i \circ \alpha : [0, 1] \to X$ is a loop based at a_0 in X. Note that $r_*(\langle i \circ \alpha \rangle) = \langle r \circ i \circ \alpha \rangle = \langle \alpha \rangle$, since $r \circ i = Id_A$.

 $\underline{r_* \text{ is } 1-1}$: First we show the following: let $\alpha : [0,1] \to X$ be a loop based at a_0 in X. Then $r \circ \alpha : [0,1] \to A$ is a loop based at a_0 in A and so $i \circ r \circ \alpha$ is a loop based at a_0 in X.

We have that α is homotopic to $i \circ r \circ \alpha$ via $G : [0,1] \times [0,1] \to X$ where

$$G(s,t) = H(\alpha(s),t)$$

Now, suppose for two loops $\alpha, \beta : [0,1] \to X$ based at a_0 in A we have

$$r_*(<\alpha>) = r_*(<\beta>).$$

That means, by definition of induced homomorphisms, that

 $< r \circ \alpha > = < r \circ \beta >$

 \mathbf{SO}

$$r \circ \alpha \simeq r \circ \beta \in \text{ in } A.$$

Therefore

$$i \circ r \circ \alpha \simeq i \circ r \circ \beta$$
 in X.

On the other hand, as shown above, we have

$$\alpha \simeq i \circ r \circ \alpha \in \text{ in } X$$

and

 $\beta \simeq i \circ r \circ \beta \in \text{ in } X.$

So by transitivity,

 $\alpha \simeq \beta$