Chapter 1

The fundamental group

We now discuss a new topological invariant: the fundamental group. Rather than studying
invariants related to points as we did in point-set topology, this new invariant is based on
studying (types of) loops on a surface.

More generally, we first need some machinery concerning ”paths from point a to point
b” of a surface. Loops are special - closed - paths, where a = b.

Precisely:

Definition 1.0.1: A path is a continuous mapping « : [0,1] — X where (X,7x) is a
topological space, such that «(0) = a is the beginning point and «(1) = b is the endpoint of
the path.

Definition 1.0.2: We say that path o can be continuously deformed into 3, or “« is ho-
motopic to 47 - denoted o ~ 3 - if there exists a continuous map H : [0,1] x [0,1] = X
such that

H(s,0) = a(s) Vs € [0, 1]
H(s,1) = B(s) Vs € [0, 1]
o H(0,1) a(0) = B(0) Vt € [0, 1]
o H(1,t)=b=a(l)=B(1) Yt € [0,1]

The continuous mapping H is called a homotopy from « to (.

Remark 1.0.3: Suggestion: think of the variable s as determining location on the path «;,
[ and other paths, and of the variable t as time.

That is: ” H takes the path « to the path § in 1 unit of time”; more precisely, the family
fs :[0,1] = X does that, where f,(t) = H(s,t) V fixed s € [0, 1].

On the other hand, V fixed ¢, € [0, 1], the mapping ~ : [0, 1] — X with y(s) = H(s, o) is
an inbetween path.

Remark 1.0.4: In the literature there are variations on the types of homotopies used,
depending on the purpose. The one above is a homotopy of paths with fized endpoints. We
will always compare paths with the same beginning and endpoints i.e. assume «(0) = 3(0) =
a, a(1) = B(1) = b as well as consider only homotopies H with H(0,ty) = a = a(0) = 3(0)
as well as H(1,ty) = b = «a(l) = (1) V inbetween paths H(s,ty) (i.e. to € [0, 1] fixed).
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Example 1.0.5: (1.) In R? all o, 3 paths as above are homotopic. We can use the straight
line homotopy to show this:

H(s,t) = (1 —t)a(s)+tB(s) Vs, te]0,1].

(2.) Let X =R?\ {(0,0)}. Take a, 3,7 :[0,1] — X with
a(s) = (cos(ws), sin(ms))

B(s) = (cos(ms), 2sin(ms))
v(s) = (cos(ms), —sin(7s)).

We have o ~ (3, but a nor 3 is homotopic to v since the “lack of origin” is in the way.
We cannot continuously deform « or § within X to get v while keeping their endpoints
fixed, since we would have to pass over the missing origin. (A rigorous prove will be
given later.)

To show a and f are homotopic, take H(s,t) = (cos(ms), tsin(rs) + (1 — t)2sin(7s)).
To show a % v and [ % ~ rigorously, we must develop more machinery.

(3.) Consider o, : [0,1] — R? be given by a(s) = (0,cos(rs),sin(ws)) and B(s) =
(0, cos(ms), —sin(ms)).
Then it is "intuitively clear”, that o ~ 3 in X = S? but a % 3 in X = S* of the
{z =0} i.e. yz-plane.

Remark 1.0.6: We denote that a and § are homotopic by a ~ 5.

Proposition 1.0.7: ~ is an equivalence relation on the set of paths from a to b in X.

Proof. a ~ a by the homotopy H(s,t) = a(s). Next, if a ~ § via the homotopy H, then
we take F' such that F(s,t) = H(s,1 —t) to show 3 ~ a.

Lastly, to show transitivity, assume o« ~ 8 and § ~ . Then if the homotopy H takes «
to B and the homotopy F' takes S to 7y, then

H(s,2t) te0,1/2]
G(Svt) = { F(s,?t — 1) te [1/27 1}

takes o to 7 ”in one unit of time” ie. G(s,0) = «(s) and G(s,1) = B(s) for s
Check that G(0,t) and G(1,t) ”"work the right way” i.e. G(0,t) = «(0) = v(0) and G(l
a(l) = ~(1). Also, G is well defined, since for ¢t = 1/2 we have H(s,t) = H(s,1) = 8
F(s,0) = F(s,t) and G is continuous by the Pasting Lemma, stated below.
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Lemma 1.0.8: Let X = AU B, where A, B are closed in X. Suppose f : A — Y and
g : B — Y are continuous and such that f(z) =g(z) Vx € ANB.
Then the ”piecewise defined” function

flz) xz€A
H(z) = { g(x) reB

is well-defined and continuous.

The proof is left as an exercise.

Remark 1.0.9: The equivalence class of o under ~ is denoted by («).

We will now define an operation on special paths.

Suppose we have two paths a and 8 : [0, 1] — X such that the second one starts where
the first one ends i.e. (1) = £(0). In this situation, we can define a new path by "running
along the first one and then the second, twice as fast”:

Definition 1.0.10: Given paths «, 5 : [0,1] — X such that (1) = §(0), their concatena-
tion is a new path

B | a(2s) s €[0,1/2]
(axB)(s) = axf(s) = { B(2s—1) se[1/2,1]

Proposition 1.0.11: x respects the equivalence classes under ~. That is, if & ~ o/ and
B~ then axf~a xpf.

Remark 1.0.12: If we can show this, then the following definition makes sense: (a) * (f) =
(a* B), whenever « and [ are two paths that can be concatenated (i.e. if a(1) = 5(0)).

Proof. Let F' be a homotopy taking a to o/, and G be a homotopy taking 3 to 5. We want
a new homotopy H taking a * 3 to o/ * §'. Let

F(2s,1) s €[0,1/2]
H(‘S?t) = { G(QS — 1,t) s € [1/27 1]

Note that H was obtained by concatenating, for each fixed time ¢t = ty, the "inbetween

paths” v(s) = F(s,to) and d(s) = G(s, tp).
Exercise 1.0.13: Verify that H(0,t), H(1,t), H(s,0), H(s,1) "work the right way”. Note,
that H is continuous, by the Pasting Lemma.

|
Now we are ready to define the fundamental group of a topological space (X, 7x).

Fix a basepoint xy € X. Recall that a loop is a path a for which «(0) = «(1). Clearly,
we can always concatenate two loops with the same base point.

Proposition 1.0.14: The set of equivalence classes of loops based at a point zy with the
operation of concatenation  is an algebraic group, which we denote (X, o).
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Conjectures: Unit element: (xq), where zg : [0,1] — X maps s — 7 Vs € [0, 1].

Inverses: Given (), we let {(a)~! = (a™1),where a7!(s) = a(1 — s).

The proof that concatenation of equivalence classes of loops based at zy € X is asso-
ciative, as well as that that the above candidates are indeed the unit and inverse elements
consists of finding appropriate homotopies. This is discussed briefly in class.

Then we get that m (X, z¢) is an algebraic group, indeed.

Exercise 1.0.15: Use straightline homotopy, to show that all loops a ~ x4 for zy € R? so
that 1, (R?, z) = 0 ("it is trivial”).
Just intuitively, give examples of other spaces with a trivial fundamental group.

Exercise 1.0.16: Find nonhomotopic loops and try to guess what the fundamental group
of the following spaces is:

the cylinder X = {22 + y? = 1} C R3, the plane take-away a point, the torus, the plane
take-away two points, the real projective plane.

1.0.1 Dependence on the basepoint.

Is the base point important, i.e. does the choice of xy in 7 (X, xy) matter? In general, yes.
Let X = ST U{(3,0)}. If 2o = (3,0), then 7 (X, z¢) is trivial, but it is not, if zg € S*.

However

Lemma 1.0.17: If X is path-connected, then 7 (X, z¢) = m (X, x;) for all g, 2, € X.

Proof: Since X is path-connected, there exists a path « : [0, 1] — X such that v(0) = x
and (1) = .

Then let ¢ : 7(X,z0) = m (X, 1) be defined by ¢(< a >) =< v ! xa %y > and let
(X, ) 2 (X, 1) be defined by ¢(< 8 >) =< vy Bx v >.

Check that ¢ and ¢ are group homomorphisms, that is

d<a>x<f>)=¢(<a>) o< B>),

and a similar statement is true for ¢, as well as that ¢ o) = 1;(x,) and Y 0 ¢ = 11(x 2)-
These last two equations show that ¢ and v are bijections, so are in fact group isomorphisms.Hl

From now on we assume that X is path-connected and (up to isomorphism) may use 7 (X)
for the fundamental group.

1.0.2 The fundamental group is a topological invariant.

We want to show that m; (X, zg) is a topological invariant. That is: if X ~ Y are homeo-
morphic, then (X, xg) = m (Y, yo) (group isomorphism). We need to find a way to pass
from topology to algebra, and we do this by the “induced homomorphism.”



Definition 1.0.18: Given a continuous map f: X — Y, it “induces a homomorphism
of groups,”

f* : 7T1(X, 1’0) — 7-‘_1(}/’ f(':EO))?
defined by f.({a)) = (f o ).

Proposition 1.0.19: f, is well-defined.

Proof. We have to show that if « = fie. < a >=< f > then f.(< a>= f.(< [ >).
Let o = f via the homotopy F. In particular, F' : [0,1] x [0,1] — X. Then take

foF:[0,1] x [0,1] = Y which is continuous, since it is a composition of continuous maps.
Check that it deforms f o« to f o .

[ |
Proposition 1.0.20: f, is a homomorphism.
Proof. One can check directly that
fil<a>x<f>)=fi<a>)*f(<p>)
V<a> < p>eIl(X,z)
|

The induced homomorphisms have the following properties:

Proposition 1.0.21: Let g: X = Y, f: Y — Z. For a topological space X and zy € X,
we have that (Idx). = 1, (x ) and (f o g)« = fi 0 g..

Proof. (Idy). : m (X, zo) = m (X, ) is defined by (@) — (Idx o ) = (a).
Next, we have g : X — Y, f:Y — Z and by the definition of induced homomorphisms
(fog)e: m(X,x0) = mi(z, (f ©g)(20))
(@) = {(fog)oa)
On the other hand, f, : m(Y,v) — m1(Z, f(yo)) takes (5) — (f o ). We also have
gs = (X, 29) = m (Y, yo). Then

(f+0g9.)((@)) = fu(g:((@))) = (f o (g0 a)).

Thus the left-hand-side (f o g). is equal to the right-hand-side f, o g, by associativity of
composition.

Now, we can finally check that 7 (X, zo) is a topological invariant. If X ~ Y then there
exist continuous f: X — Y and g := f~':Y — X such that fog =1Idy and go f = Idy.
For the induced homomorphisms, we then have

fo i m (X, x0) = m (Y, f(20))

g« = (Y, 90) — m(X, 9(y0))-

We have (f o g). = (Idy).. By the previous proposition these imply that f. o g. = 1 (v
and g, o fi = 1x,(x.z). Therefore, f, and g, are bijections and so group isomorphisms.
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Exercise 1.0.22: R? is not homeomorphic to R?\ {p}.

Proof. Both are non-compact and all the topological invariants coming from point set topol-
ogy that we considered fail to distinguish the two spaces.

However, the fundamental group of the first space is trivial, while that of the second space
is non-trivial as the loop going around the missing point is not homotopic to the constant
loop (one would have to move it over the missing point). This is ”intuitively clear”, a formal
proof will be given later. |

1.1 An application: Brouwer’s fixed point theorem

Definition 1.1.1: Given A C X, a continuous, surjective map r : X — A is called a
retraction if r(a) = a for all a € A. We also say that A is a retract of X.

Remark: Consider the inclusion map i : A — X, i(a) =aVa € A. Ifr: X — Aisa
retraction, we automatically have that, r o4 = Id4. So, for the induced homomorphisms,
e m (X, a0) = m (A, a0) and i, : m (A, ag) = 71 (X, ap), we have r, 04, = 1, (4,40). Thus r,
has to be onto and i, is 1-1.

Example 1.1.2: (1.) Consider the constant map r : R* — {(0,0)}. This is a retraction
onto A = {(0,0)}.

(2) r: {(x,y,2) : 22+ y? =1} — S C R? where r is the projection r(z,y, z) = (z,y).
Then r is a retraction of the cylinder onto the circle.
Example 1.1.3: (a.) Give an example of a continuous map f : D’ — St

(b.) Give an example of a continuous, onto map f : D=5

(c.) Give an example of a continuous, onto map f : DS ! that keeps S! fixed pointwise.

The last question above asks for a retraction D? onto S'. Tn fact, there is no such map,
for if such a map f = r existed, then r, o4, = Idg:. This would mean that the composition
71(S1) = m(D?) — m(S*) would have to be the identity mapping on m;(S;). But m(D?)
is trivial and 7;(S?) = Z, so this is a contradiction.

A very famous consequence of this fact is the Brouwer fixed point theorem:

Theorem 1.1.4: Vf : D’ — D” continuous maps 3z € D~ with f(z) ==

We proved this in class.



