Connectedness

Definition 0.0.1: (X, 7) is disconnected if there exist nonempty open sets U, V' such that
UNV=0and X =UUV.

Also, a space is connected if it is not disconnected.

Exercise 0.0.2: Show that (X, 7) is disconnected if and only if
a.) there exist nonempty closed sets U,V such that UNV =0 and X =U UV,
b.) there exists a proper subset U C X which is both open and closed in X.

Exercise 0.0.3: Think through: any X with the anti-discrete topology is connected. Any
X (that has at least two points) with the discrete topology is disconnected.

Definition 0.0.4: Given (X, 7), a subset A C X is disconnected if the topological space
(A, 74) is disconnected, where 74 is the subspace topology on A.
Also, a A is connected if it is not disconnected.

Example 0.0.5: a.) Let X = [0, 1]U[2, 3] (with the subspace topology of the usual topology
of R). Then U = [0,1] and V = [2,3] are open in X, disjoint, whose union is X, so X is
disconnected.

b.) Let X = Q (again with the subspace topology of the usual topology of R). Then
clearly,

X = [(~00,v2)NQ] U [(V2,00) N Q]
where U = (—00,v/2) N Q and V = (v/2,00) N Q are open and disjoint in Q, so Q is

disconnected.
Note that U = (—o0, v/2)NQ = (—o0, v/2]NQ so that U is also closed in Q (and similarly
V' is closed in Q as well.)

To get many examples of connected sets, next we will show that every interval [ is connected
in R (if R has the usual topology). So here I is one of
(a,b) where oo < a <b < oo or
(a,b] where co < a <b < o0 or
[a,b) where co < a < b < oo or
[a, b] where co < a < b < 0o where, by definition
I =(a,b) ={z € R|a < z < b} with the other cases defined similarly.

Lemma 0.0.6: Every interval I of R is connected.

Proof: This proof is for I = (—00,00). The other cases can be proved similarly.

Assume, by contradiction, that I = R = (—o0, 00) is not connected (i.e. disconnected).
We will use that this means there exist non-empty, disjoint, closed sets U,V in R such that
R=UUV.

Since U,V are non-empty, there exist ag € U and by € V. Consider z = ‘“’QLbO Clearly,
ag < z < by, so z € I and thus either z € U or z € V.

Case 1: If z € U, then let a; = z and b; = by.

Case 2: If z € V, then let a1 = ag and b; = z.



Note that with this notation we have ag < a; < b; < by.

By induction, for each n € N, given a,, < b, such that a, € U and b, € V, consider
z= %. Clearly, a,, < z < b,, so z € I and thus either z € U or z € V.

Case 1: If z € U, then let a, 1 = z and b, 1 = b,.

Case 2: If z € V, then let a,,.1 = a, and b, 1 = z.

Note that with this notation we have two sequences

aogalg...gang...

and
bo>b; >by>...>0b,> ..

where a; € U and b; € V Vi € N and also a; < b; Vi,j € N.
Since (a;) is monotone increasing and bounded from above by e.g. by, it is convergent,
moreover lim a; = sup;{a;}. Denote this number by L.
1—00

—

Also, since (b;) is monotone decreasing and bounded from below by e.g. aj, it is conver-
gent, moreover lim b; = inf{b;}. Denote this number by M.

5 1—00
In addition, b; — a; = 2% so that lim (b; — a;) = 0. Since the (a;), (b;) sequences are
_1—>00
convergent, we have 0 = lim (b; —a;) = lim b, — lim a; =M — Lso L =M.
_,1—$00 100 L, 1—00

But a; € UVi and U is closed in [ = R, so L = M € U. Similarly, b; € VVi and V is
closedin =R M =L € V. But then U NV # () and that is a contradiction. B

Connectedness is a topological invariant, so it helps distinguish topological spaces. That
it is a topological invariant follows from the next lemma.

Lemma 0.0.7: If f : X — Y is continuous and onto and X is connected, then Y is connected
as well.

Proof: Assume by contradiction that Y is disconnected, that is, there exist non-empty,
disjoint open sets U,V such that Y = U U V.

Since f is continuous, we have W = f~1(U) € 7x and Z = f~1(V) € 7x.

The assumptions on U,V imply that W, Z are non-empty and disjoint with X = W U Z,
so X is disconnected. But that is a contradiction.

Example 0.0.8: Classify the intervals [0, 1], [0,1) and (0,1) up to homeomorphism. That
is, decide which are homeomorphic and which are not.

Solution: Let A=[0,1], B=10,1) and C' = (0, 1).

A = [0, 1] is compact, since it is a closed and bounded set in R. (Since we are in R the
Heine-Borel theorem applies.)

The sets B,C are not closed, so they are not compact. Compactness is a topological
invariant, so A is not homeomorphic to either B or C.

Now, we claim that B is not homeomorphic to C' either. Since, suppose df : B — C
homeomorphism. Then the restriction

floay = (0,1) = (0, )\ {f(0)}



would be a homeomorphism too. (We showed in a homework that the restriction of a
homeomorphism is a homeomorphism.)
However, (0, 1) is connected, while (0,1) \ {f(0)} is not connected. This is because

(0, DAL{F(0)} = (0, £(0)) U (f(0), 1)

provides (0,1) as a disjoint union of its two non-empty open subsets U = (0, f(0)) and
V = (f(0),1). (The point is that these U and V are open in X = (0,1).)

Path-connectedness

Definition 0.0.9: A path is a continuous mapping ~ : [0, 1] — X.
We say that the path v begins at 7(0) = a and ends at (1) = b.

Note that, since [0, 1] is compact and connected in R and ~ is continuous, we have that
the image I'm(vy) C X is also compact and connected.

Definition 0.0.10: (X, 7) is path connected if ¥V a,b € X, there exists a path v : [0,1] —
X such that v(0) = a and (1) = b.

Theorem 0.0.11: If a topological space (X, Tx) is path connected, then it is connected.

Proof: Suppose the space is not connected. Then there exist disjoint, non-empty open
sets U,V C X such that X =U UV,

Pick @ € U and b € V (which exist, since U, V' are not empty). Since X is path connected
Iy :[0,1] — X such that v(0) = a and (1) = b.

Clearly, for the image of gamma we have

Im(y) = [Im(y) NUJU [Im(y) NV]

where [Im(y) N U] and [Im(y) N V] are non-empty, disjoint, open subsets of Im(y).
Thus Im(y) is disconnected. But it is the image of a connected set under a continuous
map, so must be connected. l

However, the reverse is not true: connectedness does not imply path-connectedness. Here is
a classical example of a topological space that is connected, but not path-connected.

Example 0.0.12 (The Topologist’s Sine Curve): Let Y = {(z,sin(1/x)) : = > 0} C
R?, that is: Y is (part of) the graph of y = sin(1) in R%. Note that Y is connected, since it
is path-connected.

The topologist’s sine curve is cl(Y) = {(0,b) : —1 <b < 1}UY. We prove the following
lemma to show that cl(Y') is connected

Lemma 0.0.13: If A C X is connected, then cl(A) is also connected.

Caution: be careful which topology you are considering. Here, when we say that A is
connected, we say that it cannot be written as the union of two disjoint, non-empty sets
open in A. But when we prove cl(A) is connected, we have to show that there are no disjoint
non-empty subsets open in cl(A) whose union is cl(A).



Proof:

Suppose, by way of contradiction, that cl(A) = U UV for some nonempty, disjoint U, V'
that are open in cl(A).

Since U = cl(A) \V and V = cl(A) \ U, we also have that U,V are closed in cl(A).

We showed before that this means: there exist W, Z closed in X such that U = WNcl(A)
and V = Z Ncl(A).

Then

A=ANncl(A)=AN[UUV]=[ANUJU[ANV]

Also, ANU=AnWnc(A)=AnW and ANV =ANnZNc(A)=ANZ so
A=[AnWJU[ANZ] (%)

where ANW and AN Z are closed in A, since W, Z are closed in X. Also, this is a
disjoint union, since U and V' are disjoint.

However, A is connected so (*) implies that one of AN W or AN Z must be empty.
Without loss of generality, assume that ANZ = 0. So A= ANW and therefore A C W.
But then cl(A) C W, since W is closed in X.

Thus, U = W Ncl(A) = cl(A), so V = () and that contradicts our initial assumption.

<

Back to the Topologist’s Sine curve: by the lemma we just proved, since Y is connected, we
have cl(Y) =Y U{(0,b) : —1 <b < 1} is connected too.

However, cl(Y) is not path connected as a point in cl(Y) \ Y cannot be connected to a
point of Y by a path.

Here is an outline of the proof - we will show that there is no path beginning at the origin
and ending at a point of Y. The proof is by contradiction.

Let (z1,sin %) € Y and assume that there is a v : [0,1] — cl(Y) path (i.e. continuous
function) such that v(0) = (0,0) and (1) = (21, sin I—ll)

First we will show that there is a point in [0, 1] when ~ ”leaves the y-axis”.

Consider the set W := {t € [0,1] |y(¢) € {(0,b) : —1 <b < 1}}. W is not empty, since
0 is in it. Let ¢’ = sup{t € W}. By the continuity of v, t' € W, since if t,, — t', t, € W,
Vn € N, we must have v(t,) — v(t') (Sequences t,, — t', t,, € W, Vn € N exist, by definition
of suprema.)

Now, consider pr,, the projection on x, which is also continuous. We then have (pr, o
Y)(tn) — (prz o y)(t'), by continuity of pr, oy. But (pr, o y)(t,) = 0, so (pr. ov)(t') =0,
which means (') = (0, by) for some by € [—1,1].

Thus we know y(t) € Y Vt > ¢'.

Assume first that ¢’ = 0, so by = 0, since v(0) = (0,0). We then have v(t) € Y Vt € (0, 1].

We will find a sequence (t,) C (0,1] such that ¢, — 0, but ~(¢,) is an alternating
subsequence of (z,,, (—1)"™), x,, = 0, m € N so that v(t,,) 4 v(0) = (0,0) which contradicts
~ being continuous.

We will use the fact that sin(§ +mn) = (—1)™ for m € N to construct this sequence.

We will also make use of the Intermediate Value theorem according to which if g : [a, b] —
R is continuous then if (wlog) g(a) < g(b) we have for all ¢ € (g(a), g(b)) there is a z € (a,b)



for which ¢g(z) = ¢. (This is a consequence of the fact that [a,b] is connected, and g is
continuous.)

Denote as before, by pr, the projection pr, : R* — R for which pr,(z,y) = x and note
that by assumption pr, o~y : [0,1] — [0, x;] is continuous and onto.

Pick now a sequence s,, — 0 in [0, 1].

Since s, — 0 and pr, o v is continuous, we have (pr, o v)(s,) = z, — (prz o ~v)(0) = 0.
Note that the sequence (s,) may not work as the sequence (t,) we are looking for, because
the second coordinates sin i could be any number in [—1, 1], so we may have the second
coordinates converge to zero in which case there is no contradiction.

So, for each n € N consider the restriction pr, o N 0,s,] — [0,2,]. Pick k, € N such

that z, = ﬁ € (0,z,). This is possible, since ’“+k — 0 as k, — oo. Moreover, we can
pick k, so that it has the same parity as n.

By the intermediate value theorem applied to pr, oy on [0, s,], there is a ¢, € (0, s,)
such that (pry o v)(t,) = 2z, =

1
Stknm’
Then we have t,, — 0, since by construction 0 < t,, < s,, and s,, — 0. Also, we have

1 1 T 1
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(=D))

so that v(¢,) # ~v(0) = (0,0) and that is a contradiction.

If ¢ > 0, we have y(t') = (0, by) for some by € [—1,1] and ~(t) € Y Vt € (¥, 1].

We should then find a sequence (t,,) C (¢, 1] such that ¢,, — t/, but v(¢,) is an alternating
subsequence of (z,, (—1)™), z,, — t, m € N so that y(t,) /4 v(t’) = (0,bp) which can be
done similarly as in the previous case. B

Theorem 0.0.14: Path-connectedness is a topological invariant: if X and Y are homeo-
morphic, then X is path connected if and only if Y is path connected.

This is a consequence of the fact that if f : X — Y is continuous and onto, and X is
path-connected, then Y is path connected, too.



