a nd invariant properties enable us to di stinguish certain fopo-
logical spaces. We can go furrher and associate with a topological space a set having
an algebraic structure. The fundamental group is the most basic of such possibilities.
It not only provides a useful invariant for topological spaces, but the algebraic op-

eration of multiplication defined for this group reflects the global structure of the

space.
pace.

6.1 Deformations with Singularities

A circle, an annulus, a Mobius band, and a solid torus all have the basic shape of a ring
going around a hole. Even though these four spaces are topologically distinct, we would
like to characterize this ring-like property. We would like to distinguish these spaces from
the 2-sphere, for example. The 2-sphere has a hole all right, but the hole of a sphere seems

quite a bit different from the hole of a lifesaver. While the 2-dimensional torus has a ring-
Tike chane. it has a hole where the doush of a doughnut would be as well as a hole where
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you grab to dunk the doughnut into your coffee. We will use loops in the space to get a
handle on these kinds of topological properties. Amazing as it may seem, we will be able
to detect the ring-like property intrinsically from the space itself, with no need to see how
the space is embedded in some ambient Euclidean space.

Recall from Definition 1.40 that a path is a continuous function defined on the closed
unit interval [0, 1]. The following definition imposes the condition that the function maps

the two pnﬂnnlntu to the same point

v SGLLI PR,

Definition 6.1 A loop in a space X is a path « : [0, 1] = X such that a(0) = a(1).
The element a(0) = (1) of X is the base point of the loop c.

169
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You may recall from Exercise 1 of Section 1.5 the idea of combining two paths into a
single path. You simply travel along the first path at twice the normal speed. Then, as long
as the final point of the first path coincides with the initial point of the second path, you
can continue along the second path at twice the normal speed. For loops at a common base

point, we can always perform this kind of splicing.

Definition 6.2 Suppose the loops « and B in a space X have a common base poini
xo. The concatenation of o with B is the path denoted o - B and defined by

Ja(Zs) for0<s <

| s —1) jork<s<

~
™
R
A~

2

2

1
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1

Since paths @ and B with base poin ontinuous, we see from the formulas that
1 t

t xp
1
[0, 7] ar
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SQ
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@(2-3) =al) =x0=BO) = B2- 5 - 1),

the two formulas for « - 8 agree at s = % By Theorem 1.27, @ - B is continuous. Of course,
(o - BY(0) = «(2-0) = a(0) = xp and (& - B)(1) = B(2- 1 — 1) = B(1) = xp. Hence, the
concatenation of two loops based at x is likewise a loop based at xp.

Figure 6.3 illustrates three typical loops in an annulus. The arrow indicates which way
the image is traced as the domain parameter increases from O to 1. The loop o does not do
any significant traveling around the annulus. In particular, if we lay a string along the image
of e, we could wind in the string without letting go of the ends. Even though the ioop B
ventures forth more boldly, it eventually doubles back. Thus, § can also be deformed back

nt loop at the base point. Notice that the loop 8 is not a one-to-one function.

GL WL Uaot pPRURLIL SRVUILS MG ac 109 not a one

Thus, the stages of the deformation will necessarily involve loops that cross themselves.
The loop y goes around the annulus in an essential way. It is clear, at least intuitively,
that there is no way to deform y staying within the annulus, keeping the ends fixed, and
finishing with a constant loop.

5 |
N

Typical loope in an annulus.
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These deformations of the loops in the annulus illustrate a concept that yields an equiv-
alence relation among loops with a common base point. The following definition makes
precise the idea of a continuously parameterized family of loops representing the various
stages of a deformation of one loop to another loop. Although continuity is required, the
functions involved do not have to be one-to-one. Thus, the loops may cross themselves and
they may cross the loops at other stages of the deformation. The loops at all stages of the

deformation must map inio the space X. Also, the loops at all stages of the deformation
must map the end points of the interval to the common base point.

Definition 6.4 Suppose the loops o and B in a space X have a common base point
x0. A homotopy from « to B is a continuous function H : [0, 1] x [0, 1] — X such
thar the loops H, : [0, 1] — X defined by H:(s) = H(s,t) all have the base point
xg and such that Hy = « and Hy = . We say the loop « is homotopic to the loop B
if and only if there is such a homotopy from « to B. This relation is denoted o ~ .

- IO
- v

17
1] —
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a square disk into X. For the ordered pair (s,¢) € [0, 1] x [O 1], the ¢-coordinate is the
parameter determining which path H; : {0, 1] — X to use and the s-coordinate is the
distance parameter along this path. Thus, the bottom of the square maps to X via «, the top
of the square maps via 8, and the two vertical sides map to the base point xg.

Figure 6.5 shows how these pieces fit together. The labels in both the domain and range
show which pieces correspond to the functions @ = Hp, B = Hj, and a typical intermediate

(I e

FIGURE 6.5

A homotopy H from a

5
o
3
—
o
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Example 6.6 Show that any loop in the disk D? = {(x, y) | x> + y? < 1} is homotopic

ta the cong
W ulio CULLS

Solution. Let « : [0,1] — D? denote a loop with base point xo. For any s € [0, 1]
there is a line segment in D? from a(s) to xg. In fact for t € [0, 17, a(s) + ¢ (xg — a(s))
parameterizes this segment as a path. The formula H (s, t) = a(s) + t{(xp — a(s)) defines
a continuous function H : [0, 1] x [0, 1] — D?. We easily check that A is a homotopy
from ¢ to the constant loop at xg. Indeed,

Ho(s) = H(s,0) = a(s) + 0(xo — a(s)) = als),

Hi(s) = H(s, 1) = a(s) + 1(xqo — a(s)) = xo,
and forall ¢t € [0, 1],

H:(0) = H(0,1) = a(0) + 1 (xp — a(0)) = x0 + 1 (x0 — X0) = X0,

+ 1 (xg — (1)) = xo + t(xg — xg) = xg. S

Theorem 6.7 The relation of homotopy among loops with base point xy in a space
X is an equivalence relation on the set of all such loops.

Proof. We simply cook up homotopies to verify the reflexive, symmetric, and transitive
properties as required by Definition 1.2. Exercise 7 at the end of this section asks you to
check that the given formulas do indeed define the required homotopies. e

We are more interested in the net amount of winding a loop does in a space than in the
details of how fast it travels or any backtracking it does. Thus, we will be more interested in
the equivalence class of a loop than in the loop itself. Recall from Exercise 2 of Section 1.1
that the set of all loops in a space at a given base point is the disjoint union of these
equivalence classes.

Definition 6.8 For a loop o with base point xqg in a space X, the set of all loops
homotopic to « is the homotopy class of a. This set is denoted ().

In the next section, we will see how concatenation of loops leads to a kind of multipli-
cation on the homotopy classes of loops. The resulting set with its algebraic operation will
be a topological invariant of the underlying space.
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6.2 Algebraic Properties

In the previous section we saw how to concatenate two loops to produce a new loop. The
goal of this section is to use concatenation to define an algebraic structure that will give
us some information about the shape of a topological space. We run into several immedi-
ate difficulties if we try to work with the loops themselves. For example, we would like a
constant path ¢ to act as the algebraic identity element. However, for any reasonably inter-
esting path « : [0, 1] — X, the concatenation « - ¢ will not equal ¢. Similarly, we would
like to be able to cancel a loop by concatenating it with a loop that traces the path of the
original loop in the reverse direction. But again, for a nonconstant loop, there is no way to
concatenate it with any loop to produce a constant loop.

The solution to this pluuwm is to consider uumua.uyy’ classes of IGOPS I
loops themselves. This also allows us to concentrate on the essential shape f the space
without being distracted by the meandering of a loop through the space. Here then is the

definition of the product of two homotopy classes of loops.

Definition 6.9 Let« : [0, 1] — X and B : [0, 1] = X be two loops with base point
xo in a space X. The product of the homotopy classes (o) and (B) of these two loops
is denoted (a}{B) and is defined to be the homotopy class {(« - B) of the concatenation

Ay anAd
o] & ana p

The above definition uses two loops « and 8 to represent their homotopy classes. This
raises the question as to whether the product of the classes depends on the choice of the
representatives. That is, if ' ~ @ and 8/ ~ B, then (@) = (¢') and (B) = (B'). We need
to verify in this situation that {«)(8) = (¢’){(8’). This is a typical example of showing that
an operation is well-defined.

uppose a ~ o and B ~ B as loops based at xq in a space X. Then

Proof. Since {a){B8) = (a-B) and (@'){B") = (&’ B’), we need to show thata - 8 ~ o’ - §'.
We use a homotopy F from « to «’ and a homotopy G from 8 to 8’ to paste together a
homotopy H from « - B to ' - B’. Figure 6.11 provides a guide for pasting together these
homotopies. The domain [0, 1] x [0, 1] is labeled with the functions used on the various
pieces.

Define H by

Hs. 0 {F(ZS,I) forOfsS%_—,
—\G(2s—l,t) for%fssl.
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t
a/ ﬁ/
F G
A
o B

FIGURE 6.11

A guide 1o defining a homotopy from« - g lou’ - g

Notice that domains of the two portions of the definition overlap along the line where
5 = % For these points we have F(2s,t) = F(1,1) = xo0 = G(0,1) = G(2s — 1, 7).
Therefore H is well-defined, and by Theorem 1.27 it is continuous. Now at any stage
t € {0, 1], we have that H, = F; - G;. Therefore, H; is a loop with base point xg. It follows

L,

that H is a homotopy from Hy = Fy- Go =« - Bto Hi = F1 - G1 =o' - f. #

Having verified that concatenation of loops gives a well-defined product of homotopy
classes of loops, we are now ready to consider the algebraic properties of this multiplica-

10N
Livsik.

Theorem 6.12 Let xq be a common base point for all loops in a space X. The prod-
uct of homotopy classes of loops in X satisfies the following three properties:

Associativity: For any loops a, B, and y in X, we have ({a) (B)){y) = () ({B)(¥)).

Existence of an identity element: The constant path & defined by e(s) = xo for all
s € [0, 1] determines a homotopy class () that satisfies {a)(e) = () = (e){a)
for any loop «.

Existence of inverses: For any loop «, the reverse loop o~ defined by a™!(s) =
a(1 — s) determines a homotopy class (o« ') that satisfies () {a™!) = (¢) and

(@ YY) = (e).

Proof. The proofs of these three properties involve deforming the parameterization of the
loops involved to form the required homotopies. The ideas are quite simple, although the
details of writing down the formulas is more of a technical exercise in analytic geometry.
Associativity: From the definition of multiplication in terms of concatenation,
(a}(By) = (e - B)y) = ((@ - B) - v} and () (B (¥)) = (@) (B -¥) = (a-(B-¥)).
Thus, we need a homotopy from the loop (& - 8) - ¥ to the loop « - (B - y). Figure 6.13

imsnmrre A o vrztden Fm At ~ adten PN et e ]
rovides a guide to defining the required homoto
=3 | Py
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4 1+1¢
oz( S) forOSsSL,
A+, 4
141 24+t
F(s,t) =y Bds —1—1) for + SSS—-}*,
ds —2 —¢ 2+t
y | ———) for <s<l
2—t 4

Exercise 2 at the end of this section asks you to verify that F does the job required of a
homotopy from (- ) - y o« - (8- ).

ciniIpDeE L. 4
ruauvacL v.l

A guide to defining a homotopy from (& - 8) - v toa - (B - ).

9
J

Existence of an identity element: Since (¢}{x) = (¢ - @), we need to find a homotopy
from the loop ¢ - « to the loop «. Exercise 3 at the end of this section asks you to draw the

guide to construction of such a homotopy G and to verify the formulas in the following
definition:
1 1
xp for0<s < - — -1,
2 2
G(s,t) = ” . . . .
2s—1+1 1 1
Q| ———— for - — -t <s < 1.
141+ 2 2

Exercise 4 at the end of this section asks you to construct a similar homotopy from o - ¢ to
o to show that {x) (e} = {«).

Existence of inverses: Since (e){e™ ") = (@ - @~ 1) we need to find a homotopy from
the loop & - @ ! to the constant loop &. The easiest way to construct the desired homotopy
is to have H,(s) travel along o as far as o(1 — ¢) and stay there until there is just enough
time left to return to the base point along ¢!, The following definition gives the desired

hamotonvy:
OOLHIIOPY.
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1—1¢
o (2s5) forO<s < 5
1—1t 1+¢
H(s, 1) = ; 1—t¢ f < _—
(s, 1) o ) or — s —
1+t
a2 —2s) for ; <s=<l1

Since the reverse of &~ ! is , we can interchange the roles of o and o~ ! in the definition

of this homotopy to obtain a homotopy from a 1.« to &. This shows that (@™ 1) (@) = (¢).
e

Associativity, the existence of an identity, and the existence of inverses are the three
properties that define the algebraic structure known as a group. Thus, the previous theo-

rar fan
Iwvdil vAall

a group under the multiplication. Theorem 6.12 justifies the terminology given in the fol-
lowing definition.

be summarized as stating that the collection of homotopy classes of loops forms

[o 2PV EATRETZE D

Definition 6.14 Ler X be a topological space with base point xg. The set of homo-
topy classes of loops in X based at xy along with the operation of forming products of

T 131 AT I~
homotopy classes is the fundame

is denoted m1(X, xg).
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We have defined the fundamental group in terms of homotopy classes of functions de-
fined on an interval. Topologists have considered the analogous situation with functions
defined on the n-fold Cartesian product of intervals. This leads to the higher homotopy

groups 7, (X, xp) of which the fundamental group is the first. Many of our results about

the fundamental group extend to the higher homotopy groups.
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6.3 Invariance of the Fundamental Group

With any topological space and designated base point in the space, we have associated an
algebraic structure known as the fundamental group. We want to obtain some geometric

o

information about the space from the fundamental group. In particular, we want to use the
fundamental group as a topological invariant of the space. In this section we will examine
the mathematical concepts that make the fundamental group a valuable tool in studying a
topological space.

The first question is the algebraic version of the problem of identity: what does it mean
for two groups to be the same? As with geometric figures, we will give different answers
to the question depending on the information we are after. We typically do not want to
insist thai the elements are literally identical. No two distinct objects would be identifie
under this relation. However, we usually want more than just a bijection between the set of
elements that comprise the group. This would tell us nothing about the algebraic structure
of the underlying sets. The most fruitful concept of two groups being essentially the same

is captured in the following definition.

Cl.

41D J—
Ut:luut 011 V.1O Let G und H bc BFroups. D

3
3
")
3
3
=
=
od
o)
o3
s
B
Pl
<
Y
Iyl
~

e Fihap Optitieeti o st Dy
juxtaposition of the elements. A homomorphism from G to H is a Junction h G —
H such that h(ab) = h(a)h(b) for any two elements a, b € G. An isomorphism is a
homomorphism that is a bijection. A group G is isomorphic to a group H if and only
if there is an isomorphism from G to H. We write G = H to denote this relation.

heoretical structure of the groups as well as
the algebraic structure. When we try to determine the fundamental group of a space, we
will be satisfied to know it is isomorphic to some group that we can describe in terms of
familiar mathematical objects (the integers, reflections and rotations of polygons, strings
- of characters with certain cancellation rules, and so forth).

Recall that a path component of a space is the set of ali points that can be joined to 4
given point by a path. Because loops are paths, the loops in a space all lie in the path com-
ponent containing the base point. Thus, it is reasonable to consider the fundamental group
only for spaces that are path-connected. Once we adopt this convention, the following the-
orem says that we get the same group (up to isomorphism) no matter what base point we

designate in a space.

Theorem 6.16 Suppose X is a path-connected space. For any two points xo and xi
in X, the group w1 (X, xg) is isomorphic to the group w1 (X, X1).

Proof. The proof of this theorem consists of defining an isomorphism from 71 (X, xg) to
m1(X, x1) and verifying that the function satisfies the various properues reqmred to confirm
that it is indeed an isomorphism. The significant steps in thi
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details are left to you to supply as the solution to Exercise 6 at the end of this section. This
is an excellent opportunity for you to demonstrate your ability to construct homotopies.
Let y be a path from xg to x1. A loop based at xg can have its base point switched to x;
by traveling along y in the reverse direction (from x; to xo), then traversing the loop, and
returning to x; by traveling along y in the forward direction. More formally, we define a

function I : (X, x0) = 71 (X, x1) by '({e)) = {y~ 1. y) for any loop « based at xg.

-

There are several details for you to check about this definition o
in parts (a) through (e) of Exercise 6.

For any loops a, B based at xg, part (g) of Exercise 6 gives an easy way to prove that
C'({a)(B)) = T'{a)T((B)). Thatis, T is a homomorphism.

The way we used the path y to construct I" can be applied using the reverse path y~lto
construct a function I' : m1(X, x1) — m (X, xg). As you can check in part (h) of Exercise

6, this function is the inverse of I'. Hence I" is a bijection. ®

The next theorem is the key to proving that the fundamental group is a topological
invariant. For a continuous function between topological spaces, we can compose this
function with any loop in the domain to get a loop in the range. When we view this as

a transformation of homotopy classes of loops, this correspondence is a homomorphism

LEALISIVIANQLIVIL Ui LU Lidsscs LI 2UOY Rl L ILa LR C 193

between the fundamental groups of the spaces.

Theorem 6.17 Suppose f : X — Y is a continuous function and xq is desig-
nated as the base point in X. Then f induces a homomorphism f, . w1 (X, xg) —

1 (Y, f(x0)) defined by fi((a)) = {f o a) for all (a) € m1(X, xo).

Proof. You will find the proof of this theorem is more interesting to work out on your own
than it would be to read. There are three main steps: check that f o « is indeed a loop in
Y based at f(xg), show that f, is well-defined, and confirm that £, is a homomorphism.

s v

Exercise 7 at the end of this section asks you to fill in the details. S

Now all the pieces are in place to show that the fundamental group is a topological
invariant. This is most easily done as a consequence of the properties stated in the following
theorem.

_ Theore 6. 18 Suppose X, Y, and Z are topological spaces. Let xo be designated

1. The identity function idxy : X — X induces the identity homomorphism
idy, (X,xp) : (X, x0) = m1(X, x0).
2. If f: X — Yand g : Y — Z are continuous functions, then (fog)x = fxog+.

—




6.3 INVARIANCE OF THE FUNDAMENTAL GROUP 181

Proof. For any element (&) € 71(X, xp), we have
(1dx)«({e)) = (idx o )
= (e)
= idn, (x,x0) ({@))-

Hence, (idx)s = id; (x,xg)-
We also have

(fog)lla) =((fogloa)
={(fo(goa))
= fi({goa))

= fulga(@)
(fi 0 g ((@)).

JFE T OF

Il

Hence, (f o @)+ = fir 0 8 *

In the language of category theory, the previous theorem says that the assignment of

a fiimda tal ore 1
the fundamental group to a topological space and the assignment of the induced homomor-

phism to a continuous function is a covariant functor. Watch how easily the topological
invariance follows from the two conditions in Theorem 6.18.

Lot £ L o fundamental croun ic a tonolocical iy
Theorem 6.19 The fundamental group is a topological invariant for path-connected
topological spaces.

Proof. Suppose b : X — Y is ahomeomorphism between path-connected spaces X and Y.
Let xg be designated as the base point of X. Because / is a homeomorphism, h~! exists,
and both h and k! are continuous. Therefore, (A~ 1)y 0 by = (A7 0 By = (idy)s =
idr (X.xp)» 20d By 0 (B Ds = (R o bl = (dy)s = idg (v, fixy- It follows that the
homomorphism 4, : 71 (X, x9) — m1(Y, h(x0)) induced by the homeomorphism & : X —
Y has an inverse (2 1),. Thus, A, is an isomorphism from 71 (X, x¢) to 71 (Y, A(xq)).

By Theorem 6.16, any choice of base points for X and ¥ will give groups isomorphic to
m1(X, xo) and 71 (Y, h(xg)). Therefore, the fundamental group depends only on the topo-

e

logical type of the space and not on the choice of base point. %



