*§22 The Quotient Topology[†]

Unlike the topologies we have already considered in this chapter, the quotient topology is not a natural generalization of something you have already studied in analysis. Nevertheless, it is easy enough to motivate. One motivation comes from geometry, where one often has occasion to use "cut-and-paste" techniques to construct such geometric objects as surfaces. The *torus* (surface of a doughnut), for example, can be constructed by taking a rectangle and "pasting" its edges together appropriately, as in Figure 22.1. And the *sphere* (surface of a ball) can be constructed by taking a disc and collapsing its entire boundary to a single point; see Figure 22.2. Formalizing these constructions involves the concept of quotient topology.

Figure 22.1

[†]This section will be used throughout Part II of the book. It also is referred to in a number of exercises of Part I.

Definition. If X is a space and A is a set and if $p: X \to A$ is a surjective map, then there exists exactly one topology \mathcal{T} on A relative to which p is a quotient map; it is called the *quotient topology* induced by p.

The topology \mathcal{T} is of course defined by letting it consist of those subsets U of A such that $p^{-1}(U)$ is open in X. It is easy to check that \mathcal{T} is a topology. The sets \emptyset and A are open because $p^{-1}(\emptyset) = \emptyset$ and $p^{-1}(A) = X$. The other two conditions follow from the equations

$$p^{-1}(\bigcup_{\alpha \in J} U_{\alpha}) = \bigcup_{\alpha \in J} p^{-1}(U_{\alpha}),$$
$$p^{-1}(\bigcap_{i=1}^{n} U_{i}) = \bigcap_{i=1}^{n} p^{-1}(U_{i}).$$

EXAMPLE 3. Let p be the map of the real line \mathbb{R} onto the three-point set $A = \{a, b, c\}$ defined by

$$p(x) = \begin{cases} a & \text{if } x > 0, \\ b & \text{if } x < 0, \\ c & \text{if } x = 0. \end{cases}$$

You can check that the quotient topology on A induced by p is the one indicated in Figure 22.3.

Figure 22.3

There is a special situation in which the quotient topology occurs particularly frequently. It is the following: **Definition.** Let X be a topological space, and let X^* be a partition of X into disjoint subsets whose union is X. Let $p : X \to X^*$ be the surjective map that carries each point of X to the element of X^* containing it. In the quotient topology induced by p, the space X^* is called a *quotient space* of X.

Given X^* , there is an equivalence relation on X of which the elements of X^* are the equivalence classes. One can think of X^* as having been obtained by "identifying" each pair of equivalent points. For this reason, the quotient space X^* is often called an *identification space*, or a *decomposition space*, of the space X.

We can describe the topology of X^* in another way. A subset U of X^* is a collection of equivalence classes, and the set $p^{-1}(U)$ is just the union of the equivalence classes belonging to U. Thus the typical open set of X^* is a collection of equivalence classes whose *union* is an open set of X.

EXAMPLE 4. Let X be the closed unit ball

$$\{x \times y \mid x^2 + y^2 \le 1\}$$

in \mathbb{R}^2 , and let X^* be the partition of X consisting of all the one-point sets $\{x \times y\}$ for which $x^2 + y^2 < 1$, along with the set $S^1 = \{x \times y\} \mid x^2 + y^2 = 1\}$. Typical saturated open sets in X are pictured by the shaded regions in Figure 22.4. One can show that X^* is homeomorphic with the subspace of \mathbb{R}^3 called the *unit 2-sphere*, defined by

$$S^{2} = \{(x, y, z) \mid x^{2} + y^{2} + z^{2} = 1\}.$$

Figure 22.4

EXAMPLE 5. Let X be the rectangle $[0, 1] \times [0, 1]$. Define a partition X* of X as follows: It consists of all the one-point sets $\{x \times y\}$ where 0 < x < 1 and 0 < y < 1, the following types of two-point sets:

$$\{x \times 0, x \times 1\}$$
 where $0 < x < 1$,
 $\{0 \times y, 1 \times y\}$ where $0 < y < 1$,

and the four-point set

$$\{0 \times 0, 0 \times 1, 1 \times 0, 1 \times 1\}.$$

Typical saturated open sets in X are pictured by the shaded regions in Figure 22.5; each is an open set of X that equals a union of elements of X^* .

140 Topological Spaces and Continuous Functions

The image of each of these sets under p is an open set of X^* , as indicated in Figure 22.6. This description of X^* is just the mathematical way of saying what we expressed in pictures when we pasted the edges of a rectangle together to form a torus.

Figure 22.5

Figure 22.6