
Paths and Homotopy

The fundamental group will be defined in terms of loops and deformations of

loops. Sometimes it will be useful to consider more generally paths and their defor-

mations, so we begin with this slight extra generality.

By a path in a space X we mean a continuous map f : I→X where I is the unit

interval [0,1] . The idea of continuously deforming a path, keeping its endpoints

fixed, is made precise by the following definition. A homotopy of paths in X is a

family ft : I→X , 0 ≤ t ≤ 1, such that

(1) The endpoints ft(0) = x0 and ft(1) = x1

are independent of t .
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(2) The associated map F : I×I→X defined by

F(s, t) = ft(s) is continuous.

When two paths f0 and f1 are connected in this way by a homotopy ft , they are said

to be homotopic. The notation for this is f0 ' f1 .

Example 1.1: Linear Homotopies. Any two paths f0 and f1 in Rn having the same

endpoints x0 and x1 are homotopic via the homotopy ft(s) = (1− t)f0(s)+ tf1(s) .
During this homotopy each point f0(s) travels along the line segment to f1(s) at con-

stant speed. This is because the line through f0(s) and f1(s) is linearly parametrized

as f0(s) + t[f1(s) − f0(s)] = (1 − t)f0(s) + tf1(s) , with the segment from f0(s) to

f1(s) covered by t values in the interval from 0 to 1. If f1(s) happens to equal f0(s)
then this segment degenerates to a point and ft(s) = f0(s) for all t . This occurs in

particular for s = 0 and s = 1, so each ft is a path from x0 to x1 . Continuity of

the homotopy ft as a map I×I→Rn follows from continuity of f0 and f1 since the

algebraic operations of vector addition and scalar multiplication in the formula for ft
are continuous.

This construction shows more generally that for a convex subspace X ⊂ Rn , all

paths in X with given endpoints x0 and x1 are homotopic, since if f0 and f1 lie in

X then so does the homotopy ft .



Before proceeding further we need to verify a technical property:

Proposition 1.2. The relation of homotopy on paths with fixed endpoints in any space

is an equivalence relation.

The equivalence class of a path f under the equivalence relation of homotopy

will be denoted [f ] and called the homotopy class of f .

Proof: Reflexivity is evident since f ' f by the constant homotopy ft = f . Symmetry

is also easy since if f0 ' f1 via ft , then f1 ' f0 via the inverse homotopy f1−t . For

transitivity, if f0 ' f1 via ft and if f1 = g0 with g0 ' g1

via gt , then f0 ' g1 via the homotopy ht that equals f2t for

0 ≤ t ≤ 1/2 and g2t−1 for 1/2 ≤ t ≤ 1. These two definitions
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agree for t = 1/2 since we assume f1 = g0 . Continuity of the

associated map H(s, t) = ht(s) comes from the elementary

fact, which will be used frequently without explicit mention, that a function defined

on the union of two closed sets is continuous if it is continuous when restricted to

each of the closed sets separately. In the case at hand we have H(s, t) = F(s,2t) for

0 ≤ t ≤ 1/2 and H(s, t) = G(s,2t − 1) for 1/2 ≤ t ≤ 1 where F and G are the maps

I×I→X associated to the homotopies ft and gt . Since H is continuous on I×[0, 1/2]
and on I×[1/2,1], it is continuous on I×I . tu

Given two paths f , g : I→X such that f(1) = g(0) , there is a composition or

product path f g that traverses first f and then g , defined by the formula

f g(s) =
{
f(2s), 0 ≤ s ≤ 1/2
g(2s − 1), 1/2 ≤ s ≤ 1

Thus f and g are traversed twice as fast in order for f g to be traversed in unit

time. This product operation respects homotopy classes

since if f0 ' f1 and g0 ' g1 via homotopies ft and gt ,
and if f0(1) = g0(0) so that f0 g0 is defined, then ft gt
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is defined and provides a homotopy f0 g0 ' f1 g1 .

In particular, suppose we restrict attention to paths f : I→X with the same start-

ing and ending point f(0) = f(1) = x0 ∈ X . Such paths are called loops, and the

common starting and ending point x0 is referred to as the basepoint. The set of all

homotopy classes [f ] of loops f : I→X at the basepoint x0 is denoted π1(X,x0) .


