The proof of the classification theorem of compact, connected surfaces relies on Rado’s
Theorem from 1925 that ensures:

Step 0: Any compact, connected surface can be triangulated by finite many triangles.

Using the triangulation one can show the following fact:

Step 1: Any compact, connected surface can be represented as the quotient space of
a polygon (some 2k-gon) whose edges are identified in pairs.

From this, one then uses a series of clever cut-and-paste ”tricks” to get such a polygon
to normal form, i.e. a polygon whose edge labels either correspond to the word aa™!
(sphere case) or a;bya; byt ...anbya; 'b; ' (connected sum of n tori case) or ayay...apam
(connected sum of n projective planes case):
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Second step. Elimination of adjacent edges of the first kind. We have
now obtained a polygon D whose edges have to be identified in pairs to
obtain the given surface S. These identifications may be indicated by
the appropriate symbol; e.g., in Figure 1.16, the identifications are
described by

aaYbb Y le~gee g dd te.

If the letter designating a certain pair of edges occurs with both exponents,
<1 and -1, in the symbol, then we will call that pair of edges a pair of
the first kind; otherwise, the pair is of the gecond kind. For example, in
Figure 1.16, all seven pairs are of the first kind.

We wish to show that an adjacent pair of edges of the first kind can
be eliminated, provided there are at least four edges in all. This is easily
seen from the sequence of diagrams in Figure 1.17. We can continue this
process until all such pairs are eliminated, or until we obtain a polygon
with only two sides. In the latter case, this polygon, whose symbol will
be aa or aa~!, must be a projective plane or a sphere, and we have com-
pleted the proof. Otherwise, we proceed as follows.

Third step. Transformation to a polygon such that all vertices must be
identified to a single vertex. Although the edges of our polygon must be

{e) (d)

FIGURE 1.17 Elimination of an adjacent pair of edges of the first kind.
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FIGURE 1.16 BSimplified version of polygon shown in Figure 1.15.
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identified in pairs, the vertices may be identified in sets of one, two, three,
four, .... Let us call two vertices of the polygon eguivalent if and only
if they are to be identified. For example, the reader can easily verify that
in Figure 1.16 there are eight different equivalence classes of vertices.
Some equivalence classes contain only one vertex, whereas other classes
contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to
prove we can transform our polygon into another polygon with all its
vertices belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices.
Then, the polygon must have an adjacent pair of vertices which are
nonequivalent. Label these vertices P and Q. Figure 1.18 shows how to
proceed. As P and @ are nonequivalent, and we have carried out step
two, it follows that sides a and b are nof to be identified. Make a cut
along the line labeled ¢, from the vertex labeled @ to the other vertex
of the edge a (i.e., to the vertex of edge a, which is distinct from P).
Then, glue the two edges labeled a together. A new polygon with one
less vertex in the equivalence class of P and one more vertex in the equiva-
lence class of @ results. If possible, perform step two again, Then carry
out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing
step three and step two until the equivalence class of P is eliminated
entirely. If more than one equivalence class of vertices remains, we can
repeat this procedure to reduce the number by one. If we continue in
this manner, we ultimately obtain a polygon such that all the vertices
are to be identified to a single vertex.

FIGURE 1.18 Third step in the proof of Theorem 5.1.
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(a) {b)

FIGURE 1.19 Fourth step in the proof of Theorem 5.1.

Fourth step. How to make any pair of edges of the second kind adjacent.
We wish to show that our surface can be transformed so that any pair
of edges of the second kind are adjacent to each other. Suppose we have
8 pair of edges of the second kind which are nonadjacent, as in Figure
1.19(a). Cut along the dotted line labeled ¢ and paste together along b.
As shown in Figure 1.19(b), the two edges are now adjacent.

Continue this process until all pairs of edges of the second kind are
adjacent. If there are no pairs of the first kind, we are finished, because
the symbeol of the polygon must then be of the form a,a,0:8; ... Gaaa,
and hence 8 is the connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of
edges of the first kind, each of which is labeled with the letter ¢c. Then we
assert that there is at least one other pair of edges of the first kind such
that these two pairs separate one another; i.e., edges from the two pairs
occur alternately as we proceed around the boundary of the polygon
(hence, the symbol must be of theforme ... d ... ¢} ... d"! ..., where
the dots denote the possible occurrence of other letters).

To prove this assertion, assume that the edges labeled ¢ are not sepa~
rated by any other pair of the first kind. Then our polygon has the
appearance indicated in Figure 1.20. Here 4 and B each designate a
whole sequence of edges. The important point is that any edge in 4
must be identified with another edge in A4, and similarly for B. No
edge in A is to be identified with an edge in B. But this contradicts the
fact that the initial and final vertices of either edge labeled “¢” are to be
identified, in view of step number three.

Fifth step. Pairs of the first kind. Suppose, then, that we have two
pairs of the first kind which separate each other as described (see Figure
1.21). We shall show that we can transform the polygon so that the four
sides in question are consecutive around the perimeter of the polygon.
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B

FIGURE 1.20 A pair of edges of the first kind.

First, cut along ¢ and paste together along b to obtain Figure 1.21(b).
Then, cut along d and paste together along a to obtain (c), as desired.
Continue this process until all pairs of the first kind are in adjacent
groups of four, as cde™'d™* in Figure 1.21(c). If there are no pairs of the

{c)

FIGURE 1.21 Fifth step in the proof of Theorem 5.1.
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second kind, this leads to the desired result because, in that case, the
symbol must be of the form

a1bia7 b asbea7 07 L L. aabaal b7
and the surface is the connected sum of n tori.
It remains to treat the case in which there are pairs of both the first

and second kind at this stage. The key to the situation is the following
rather surprising lemma:

Lemma 7.1 The connected sum of a torus and a projective plane is
homeomorphic to the connected sum of three projective planes.



