(learly, this problem is only intenstring
if X bas at least 2 points.
So we can pick a, be X s.t.
$$a \neq b$$
.
Let $r = d(a, b)$, the distance between
a and b. Then $r > 0$.
Now, consider the sets
 $A_s = \{q \in X \mid d(a,q) = s\} - \text{the set}$
of points in X that is distance s
of points in X that is distance s
ince there are uncountable many
Since there are uncountable many
Since there are uncountable many
 $A_s = \phi$ (in fact, uncountable many
 $A_s = \phi (in fact, uncountable many
 $A_s = \phi (in fact, uncountable many
 $M = \xi q \in X \mid d(a,q) < s_0 f = B_a(s_0)$
 $U = \xi q \in X \mid d(a,q) > s_0 f$
 $V = \xi q \in X \mid d(a,q) > s_0 f$$$

It is an open ball, so as we proved UEIJ. Also VEIJ by a previous homework. Clearly, $U \cap V = \phi$ and $X = U \cup V$. So X is disconnected.