8 The Euler characteristie of a surface

Although we have shown that any compact surface is homeomorphic to
a gphere, a sum of tori, or a sum of projective planes, we do not know
that all these are topologically different. It is conceivable that there
exist positive integers m and n, m # n, such that the sum of m tori is
homeomorphic to the sum of n tori. To show that this cannet happen,
we introduce a numerical invariant called the Euler characteristic.

First, we define the Euler characteristic of a triangulated surface.
Let M be a compact surface with triangulation {T;, ..., Ta}. Let

v = total number of vertices of M,
e = total number of edges of M,

t = total number of triangles (in this case, t = n}.
Then,
x(M) =p —e+ 1t

ig called the Fuler characteristic of M.

Examples

8.1 Figure 1.25 suggests uniform methods of triangulating the sphere, torus,
and projective plane so that we may make the number of triangles as large as we
please. Using such triangulations, the reader should verify that the Euler char-
acteristics of the sphere, torus, and projective plane are 2, 0, and 1, respectively.
He should also verify that the Euler characteristics are independent of the num-
ber of vertical and horizontal dividing lines in the diagrams for the sphere and
torus, and of the number of radial lines or concentric circles in the case of the
diagram for the projective plane.

Consideration of these and other examples suggests that x{(M) depends
only on M, not on the triangulation chosen. We wish to suggest a method
of proving this. To do this, we shall allow subdivisions of M into arbi-
trary polygons, not just triangles. These polygons may have any number
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FIGURE 1.25 Computing the Euler characteristic from a triangulation. (a)
Sphere. (b) Torus. {c) Projective plane.
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FIGURE 126 {a) A l-gon. (b} A 2.gon. (¢) A 3-gon.

FIGURE 1.2T An slilowable kind of edge.

n of sides and vertices, n = 1 (see Figure 1.26). We shall also allow for
the possibility of edges that do not subdivide a region, as in Figure 1.27.
In any case, the interior of each polygonal region is required to be homeo-
morphie to an open dise, and each edge is required to be homeomorphic
to an open interval of the real line, once the vertices are removed (the
closure of each edge shall be homeomorphic to a closed interval or a
circle). Finally, the number of vertices, edges, and polygonal regions
will be finite. As before, we define the Euler characteristic of such a
subdivision of a compact surface M to be

x(M) = (no. of vertices) — (no. of edges) -+ (no. of regions).
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It is now easily shown that the Euler characteristic is invariant under
the following processes:

(a) Subdividing an edge by adding a new vertex at an interior point
{or, inversely, if only two edges meet at a given vertex, we can
amalgamate the two edges into one and eliminate the vertex).

{b) Subdividing an n-gon, n = 1, by connecting two of the vertices
by a new edge (or, inversely, amalgamating two regions into one
by removing an edge).

(¢) Introducing a new edge and vertex running into a region, as
shown in Figure 1.27 (or, inversely, eliminating such an edge
and vertex).

The invariance of the Euler characteristic would now follow if it
could be shown that we could get from any one triangulation {(or sub-
division) to any other by a finite sequence of “moves’” of types (a), (b),
and (c). Suppose we have two triangulations

J = {Tl, Tg, Ly T,,,,}
§ = Ty Ty -y To)

of a given surface. If the intersection of any edge of the triangulation
3 with any edge of the triangulation 3’ consists of a finite number of
points and a finite number of closed intervals, then it is easily seen that
we can get from the triangulation 3 to the triangulation 3’ in a finite
number of such moves; the details are left to the reader. However, it
may happen that an edge of J intersects an edge of 3’ in an infinite number
of points, like the following two curves in the zy plane:

flo,y) :y=0 and —~15z5 + 1}
((z,9) iy = zsin > and 0 < |z] < 1} U {0, O)}.
x

If this is the case, it is clearly impossible to get from the triangulation J
to the triangulation 3’ by any finite number of moves. It appears plausi-
ble that we could always avoid such a situation by “moving” one of the
edges slightly. This is true, and can be proved rigorously. However, we
do not attempt such a proof here, for several reasons: (a) The details
are tedious and invelved. (b) The Euler characteristic can be defined for
more general spaces than surfaces and its invariance can be proven by
the use of homology theory. In these more general circumstances, the
type of proof we have suggested is not possible. (¢} We shall use the
Euler characteristic to distinguish between compact surfaces. We shall
achieve this purpose with complete rigor in a later chapter by the use
of the fundamental group.
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Proposition 8.1 Let S; and S; be compact surfaces. The Euler charac-
teristics of Sy and Sy and their connected sum, 8, # Sa, are related by the
formula

x{(81# 82 = x(8) + x(8) ~ 2.

proo¥: The proof is very simple; assume Sy and S; are triangulated.
Form their connected sum by removing from each the interior of a
triangle, and then identifying edges and vertices of the boundaries of the
removed triangles. The formula then follows by counting vertices, edges,
and trisngles before and after the formation of the connected sum.

Using this theorem, and an obvious induction, starting from the
knewn results for the sphere, torus, and projective plane, we obtain the
following values for the Euler characteristics of the various possible
compact surfaces:

Surface Euler characteristic
Sphere 2
Connected sum of n tori 2~ 2n
Connected sum of n projective planes 2—-n
Connected sum of projective plane and » tori 1 -~ 2n
Connected sum of Klein Bottle and n tori —2n

Note that the Fuler characteristic of an orientable surface is always
even, whereas for & nonorientable surface it may be either odd or even.

Assuming the topological invariance of the Euler characteristic and
Theorem 5.1, we have the following important result:

Theorem 8.2 Lel 8, and 82 be compact surfaces. Then, S; and 8, are
homeomorphic if and only if thetr Euler characterisiics are equal and both
are orientable or both are nonorientable.

This is a topological theorem par excellence; it reduces the classifica-
tion problem for compact surfaces to the determination of the orienta-
bility and Euler characteristic, both problems usually readily soluble.
Moreover, Theorem 5.1 makes clear what are all possible compact
surfaces.

Such a complete classification of any class of topological spaces is
very rare. No corresponding theorem is known for compact 3-manifolds,
and for 4-manifolds it has been proven (roughly speaking) that no such
result is possible.

We close this section by giving some standard terminology. A surface
that is the connected sum of n tori or n projective planes is said to be of
genus n, whereas a sphere is of genus 0. The following relation holds
between the genus ¢ and the Euler characteristic x of a compact surface:

{ #H2 — x) in the orientable case,
g 3

2 —x in the nonerientable case.



Theorem 3.24 Suppose A and B are triangulated so that AN B is also triangulated.
Then x (AU B) = x(A) + x(B) — x(AN B).

nd faces, the number in A | s the number in

Proof. For vertices, edges,

number in B minus the number in A N B. Hence the lternatmg sum
yields the formula for the Euler characteristic. *
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