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0.0.1 Covering Spaces

Definition 0.0.1: Given p : Y → X continuous and onto, p is a covering map (and Y is
a covering space of X) if ∀ x0 ∈ X, ∃Ux0 ∈ τX with x0 ∈ Ux0 such that

p−1(Ux0) =
⋃
·

y∈p−1(x0)

Vy

such that Vy ∈ τY , and Vy ∩ Vy′ = ∅ for y 6= y′, and moreover, we have that p
∣∣
Vy

: Vy → Ux0

is a homeomorphism.

Terminology: the Vy sets are called ”sheets” and X the ”base space”.

1. Let Y = X × {1, 2, ..., n} for some n ∈ N. Then p : Y → X defined by (x, y) 7→ x is a
covering, in fact, an ”n-sheeted” one.

2. p : R → S1 by t 7→ (cos(2πt), sin(2πt)) is a covering. For example, pick x0 = (1, 0).
Then p−1(x0) = Z. We can pick U1 = Ux0 = S1∩{x > 0} ∈ τS1 around x0 = (1, 0), then
p−1(Ux0) =

⋃
n∈Z(n−1/4, n+1/4). This is a disjoint union of open sets. One can check

that p restricted to each of the open intervals (n− 1/4, n+ 1/4) is a homeomorphism
onto Ux0 .

The same set Ux0 works for all points of S1 with a positive x coordinate.

Using U2 = S1∩{x < 0}, U3 = S1∩{y > 0}, U4 = S1∩{y < 0} and similar calculations
as for U1 = Ux0 one can verify that indeed for every point (x, y) ∈ S1 one can find an
open set in S1 (namely, U1, U2, U3 or U4) such that the pre-image of the open set as is
required in the definition of a covering.

3. Let Y = R2 and X = R2/ ∼, where (x, y) ∼ (x′, y′) if x− x′, y − y′ ∈ Z.

If X has the quotient topology, then the quotient map q : Y → X is continuous and
onto. We claim that q is a covering map.

For example, let x0 = q((0, 0)) ∈ X. Then q−1(x0) = {(n,m)} = Z×Z ⊂ R2. Consider
Ux0 = q(B(0,0)(1/4)) in X. It contains x0 and is an open set in the quotient, since

q−1(Ux0) =
⋃

(n,m)∈Z×Z

B(n,m)(1/4)

which is the disjoint union of open sets, so open in R2. Then by the definition of
quotient topology Ux0 is open in X.

The restriction q|B(n,m)(1/4) is 1-1 and onto Ux0 , by construction. It is also continuous,
since it is the restriction of a continuous map.

Now, restrict further to a smaller closed ball B(0,0)(1/5), that is: consider Wx0 =
q(B(0,0)(1/5)). Then over this smaller set we have

q−1(Wx0) =
⋃

(n,m)∈Z×Z

B(n,m)(1/5)
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and the restrictions
q|B(n,m)(1/5)

: B(n,m)(1/5)→ Wx0

are still 1-1, onto and continuous, but now B(n,m)(1/5) is also compact. Wx0 is Haus-
dorff, since it is a subspace of a Hausdorff space (since X is Hausdorff (why?)). That
means q|B(n,m)(1/5)

is a homeomorphism onto Wx0 , for each (n,m) ∈ Z× Z.

Finally, taking U ′x0
= q(B(0,0)(1/6)) we get an open set around x0 = q((0, 0)) ∈ X such

that
q−1(U ′x0

) =
⋃

(n,m)∈Z×Z

B(n,m)(1/6)

is a disjoint union of open sets and the restrictions q|B(n,m)(1/6) are homeomorphisms
onto U ′x0

. So B(n,m)(1/6) are sheets above U ′x0
.

Similar calculations at other points show that q is a covering map.

Note that since X = R2/ ∼ is homeomorphic to the torus, we have that the plane
covers the torus. The covering map p = q can be described as p((x, y)) = [({x}, {y})]
where {x} and {y} are the fractional parts of x and y, and [({x}, {y})] denotes the
equivalence class of ({x}, {y}).

4. Let Y = S2 the unit sphere in R3 and set (x, y, z) ∼ (−x,−y,−z). We claim that
the quotient map q : S2 → S2/ ∼ is a covering map: pick x0 ∈ S2/ ∼. That is:
x0 = [(x, y, z)] = {(x, y, z), (−x,−y,−z), it is the equivalence class of some point
(x, y, z) ∈ S2.

Consider W = B(x, y, z)(ε) ∩ S2, which is open in S2 and let U0 be its image under q.
Then

q−1(U0) = W ∪ −W

where −W = {(−x,−y,−z) | (x, y, z) ∈ W . Since both W and −W are open in S2, U0

is open in the quotient. Also, if ε is sufficiently small, then W and −W are disjoint.

By a similar argument as in the previous example, we can find subsets V0 ⊂ W and
V1 = −V0 ⊂ −W open in S2 such that the restrictions of p = q to V0 and V1 are
homeomorphisms.

Note that since S2/ ∼= RP 2, we have that the sphere covers to real projective
plane. It is, in fact, a two-sheeted covering.

5. Consider the figure eight S1 ∨ S1 =: X. See the handout of some coverings of this
space.

Definition 0.0.2: Given a covering p : Y → X fix a basepoint x0 ∈ X. Suppose α : [0, 1]→
X is a path such that α(0) = x0. Then a path α̃ : [0, 1]→ Y is a lift of α starting at y0 if
p ◦ α̃ = α. Clearly, y0 ∈ p−1(x0).

Lemma 0.0.3 (Path-lifting lemma): Given a path α : [0, 1] → X with α(0) = x0, fix
y0 ∈ p−1(x0). Then α has a unique lift starting at y0.

We also have the following
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Lemma 0.0.4 (Homotopy lifting lemma): Given a homotopy H : [0, 1] × [0, 1] → X with

H(0, 0) = x0, fix y0 ∈ p−1(x0). Then there exists a unique homotopy H̃ : [0, 1]× [0, 1]→ Y

such that H = p ◦ H̃.

The H̃ is called ”the lift of H starting at y0”.

Corollary 0.0.5: If α, β : [0, 1]→ X are paths such that α(0) = β(0) = x0 and α(1) = β(1)

and α ∼= β, then there exist unique lifts α̃, β̃ : [0, 1]→ Y starting at a fixed y0 ∈ p−1(x0) by

the path lifting lemma, moreover α̃ ∼= β̃ by the homotopy lifting lemma. In particular, we
must have α̃(1) = β̃(1).

Corollary 0.0.6 (Very Important): Given paths α, β : [0, 1]→ X such that α(0) = β(0) =

x0 and α(1) = β(1). If there exists a covering such that α̃(1) 6= β̃(1) for some lifts starting
at the same y0 ∈ p−1(x0), then α and β are NOT homotopic.

Example 0.0.7: The fundamental group of the figure eight is not abelian.

The ”Very Important Corollary” can be used to define a set map a sort of ”counting
function” which helps determine several fundamental groups.

Definition 0.0.8: Given a covering p : (Y, y0) → (X, x0) (i.e. we assume p(y0) = x0), let
φ : π1(X, x0)→ p−1(x0) be the set map defined by 〈α〉 7→ α̃(1), where α̃(0) = y0.

Properties of φ:

(i.) First of all, check that it is well-defined.

(ii.) If Y is path-connected, then φ is surjective. (Why?)

(iii.) If Y has a trivial fundamental group, then φ is injective.

Proof. Assume α, β : [0, 1] → X loops are such that φ(〈α〉) = φ(〈β〉). Then α̃(1) =

β̃(1). Then α̃ ∗ β̃−1 ∈ π1(Y, y0). So α̃ ∗ β̃−1 ' y0 and, therefore, α̃ ' β̃. That is to

say, there exists a function H : [0, 1] × [0, 1] → Y deforming α̃ to β̃, then p ◦ H is a
homotopy, showing that α ' β.

�

Therefore, if Y is path-connected and π1(Y, y0) = 0, then φ is a bijection.

Definition 0.0.9: If (W, τ) is such that W is path-connected and π1(W ) = 0, then we say
that W is simply-connected. If a covering p : Y → X is such that Y is simply-connected,
then Y is called a universal covering.

There are very many reasons why a simply connected covering space is called a univer-
sal covering. For example, a universal covering contains ”all the information” about the
fundamental group of the base space via φ.

In particular, using universal covers and φ one can show that
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(1.) π1(RP2) = Z2.

(2.) π1(S
1) = Z.

(3.) For the torus T , π1(T ) = Z× Z

(4.) The fundamental group of the figure eight is the free group on two generators.

However, not all topological spaces have universal covers.


