0.0.1 Covering Spaces

Definition 0.0.1: Given p: Y — X continuous and onto, p is a covering map (and Y is
a covering space of X) if V., € X, 3U,, € 7x with zy € U,, such that

P (Us,) = U Vy

yep~1(zo)

such that V,, € 7y, and V,, NV, = 0 for y # ¢/, and moreover, we have that p v i Vy = Uy
Y
is a homeomorphism.

Terminology: the Vj, sets are called "sheets” and X the "base space”.

1. Let Y = X x {1,2,...,n} for some n € N. Then p:Y — X defined by (z,y) — x is a
covering, in fact, an "n-sheeted” one.

2. p: R — S by t — (cos(27t),sin(27t)) is a covering. For example, pick zo = (1,0).
Then p~!(zg) = Z. We can pick U; = U,, = S'N{z > 0} € 751 around x¢ = (1,0), then
P (Usy) = Upez(n—1/4,n+1/4). This is a disjoint union of open sets. One can check
that p restricted to each of the open intervals (n — 1/4,n 4 1/4) is a homeomorphism
onto Uy,.

The same set U,, works for all points of S! with a positive z coordinate.

Using Uy = S'N{z < 0}, U3 = S'N{y > 0}, U, = S'"N{y < 0} and similar calculations
as for U; = U,, one can verify that indeed for every point (x,y) € S one can find an
open set in S' (namely, Uy, Us, Us or U,) such that the pre-image of the open set as is
required in the definition of a covering.

3. Let Y = R? and X = R?/ ~, where (z,y) ~ (2/,¢) ifx — 2’y —y/ € Z.
If X has the quotient topology, then the quotient map ¢ : ¥ — X is continuous and
onto. We claim that ¢ is a covering map.

For example, let o = ¢((0,0)) € X. Then ¢ *(zo) = {(n,m)} = ZxZ C R% Consider
Uszy = q(Bo,)(1/4)) in X. It contains x, and is an open set in the quotient, since

' U) = |J Bum(1/4)

(n,m)€EZXZ

which is the disjoint union of open sets, so open in R2. Then by the definition of
quotient topology U,, is open in X.

The restriction g| B (1/4) is 1-1 and onto U,,, by construction. It is also continuous,
since it is the restriction of a continuous map.

Now, restrict further to a smaller closed ball B(0,0)(1/5), that is: consider W,, =
q(B0,0)(1/5)). Then over this smaller set we have

' We)= | Bam(l/5)

(n,m)€EZLXZ



and the restrictions

dl5, /5 F Boum) (1/5) = W,

are still 1-1, onto and continuous, but now B, ,)(1/5) is also compact. W,, is Haus-
dorff, since it is a subspace of a Hausdorff space (since X is Hausdorff (why?)). That

means q|§(n7m)(1/5) is a homeomorphism onto W,,, for each (n,m) € Z x Z.

Finally, taking U, = q(B0,0)(1/6)) we get an open set around xq = ¢((0,0)) € X such

that
' U)= | Bum(1/6)

(n,m)ELXZ

is a disjoint union of open sets and the restrictions g| B(n.m(1/6) ar¢ homeomorphisms
onto Uy, . S0 B(nm)(1/6) are sheets above Uy, .

Similar calculations at other points show that ¢ is a covering map.

Note that since X = R?*/ ~ is homeomorphic to the torus, we have that the plane
covers the torus. The covering map p = ¢ can be described as p((z,v)) = [({z}, {y})]
where {z} and {y} are the fractional parts of x and y, and [({z},{y})] denotes the
equivalence class of ({z}, {y}).

4. Let Y = S? the unit sphere in R? and set (x,y,2) ~ (—x,—y, —z). We claim that
the quotient map ¢q : S? — 5%/ ~ is a covering map: pick xg € S?/ ~. That is:

xo = [(z,y,2)] = {(z,y,2),(—x,—y,—2), it is the equivalence class of some point
(z,y,2) € S%

Consider W = Bz, y, z)(e) N S?, which is open in S? and let Uy be its image under g.
Then

¢ (Up) =WU-W
where —W = {(—z, -y, —2) | (x,y,2) € W. Since both W and —W are open in S?, U,

is open in the quotient. Also, if € is sufficiently small, then W and —W are disjoint.

By a similar argument as in the previous example, we can find subsets V, C W and
Vi = =V, € —W open in S? such that the restrictions of p = ¢ to V and V; are
homeomorphisms.

Note that since S?/ ~= RP?, we have that the sphere covers to real projective
plane. It is, in fact, a two-sheeted covering.

5. Consider the figure eight S' vV S* =: X. See the handout of some coverings of this
space.

Definition 0.0.2: Given a covering p : Y — X fix a basepoint xy € X. Suppose « : [0, 1] —
X is a path such that «(0) = zg. Then a path a: [0,1] — Y is a lift of « starting at y, if
poa = a. Clearly, yo € p~'(x0).

Lemma 0.0.3 (Path-lifting lemma): Given a path « : [0,1] — X with «(0) = =z, fix
Yo € p1(xg). Then « has a unique lift starting at .

We also have the following



Lemma 0.0.4 (Homotopy lifting lemma): Given a homotopy H : [0, 1] x [0,1] — X with
H(0,0) = o, fix yo € p~'(20). Then there exists a unique homotopy H : [0,1] x [0,1] = Y
such that H =po H.

The H is called ”the lift of H starting at yo”.

Corollary 0.0.5: If o, 5 : [0, 1] — X are paths such that «(0) = 5(0) = x¢ and (1) = £(1)
and o = 3, then there exist unique lifts &, 8 : [0,1] — Y starting at a fixed yo € p~*(z¢) by

the path lifting lemma, moreover a = 3 by the homotopy lifting lemma. In particular, we
must have a(1) = 5(1).

Corollary 0.0.6 (Very Important): Given paths a, § : [0, 1] — X such that «(0) = 5(0) =
xo and (1) = B(1). If there exists a covering such that a(1) # B(1) for some lifts starting
at the same yy € p~1(z¢), then o and 8 are NOT homotopic.

Example 0.0.7: The fundamental group of the figure eight is not abelian.

The ”Very Important Corollary” can be used to define a set map a sort of ”counting
function” which helps determine several fundamental groups.

Definition 0.0.8: Given a covering p : (Y, yo) — (X, 20) (i.e. we assume p(yo) = zo), let
¢ : (X, 20) = p~!(xp) be the set map defined by () — &(1), where &(0) = yo.

Properties of ¢:

(i.) First of all, check that it is well-defined.
(ii.) If Y is path-connected, then ¢ is surjective. (Why?)

(iii.) If Y has a trivial fundamental group, then ¢ is injective.

Proof. Assume «, 5 : [0,1] — X loops are such that ¢({)) = ¢#((8)). Then a(1) =
5(1) Then « * 5_1 € m(Y,y0). So a * 5_1 ~ yo and, therefore, a ~ B That is to
say, there exists a function H : [0,1] x [0,1] — Y deforming & to E, then po H is a
homotopy, showing that a ~ (.

Therefore, if Y is path-connected and (Y, y9) = 0, then ¢ is a bijection.

Definition 0.0.9: If (W, 7) is such that W is path-connected and 7 (W) = 0, then we say
that W is simply-connected. If a covering p : Y — X is such that Y is simply-connected,
then Y is called a universal covering.

There are very many reasons why a simply connected covering space is called a univer-
sal covering. For example, a universal covering contains ”all the information” about the
fundamental group of the base space via ¢.

In particular, using universal covers and ¢ one can show that



(1.) m (RP?) = Zj.

(2.) m (S =Z.

(3.) For the torus T, m(T) =7Z x Z
(4.)

The fundamental group of the figure eight is the free group on two generators.

However, not all topological spaces have universal covers.



