0.1. CLASSIFICATION OF SURFACES 1

0.1 Classification of Surfaces

Our "longterm” aim for this semester is to discuss the classification of compact, connected
surfaces. Recall that S is a surface if S C RM for some M > 0 integer such that, for all p € S,
there exists U € 7g, p € U which is homeomorphic to R? or, equivalently, to the open disk D?.

We are already familiar with some compact, connected surfaces: the sphere, the torus, Klein
bottle, real projective plane.
Here is a method to make new surfaces.

Definition 0.1.1: Given surfaces M and N, their connected sum M#N is the surface
which is obtained by the following procedure:

Step 1: Cup out open disks from M and N. Each of the resulting spaces have boundaries
homeomorphic to S*.

Step 2: Glue M \ D? and N \ D? along their S* boundaries.

Notation: M#N = (M \ D?)Ug: (N \ D?).
Nlustration 1. shows T#T viewed in R?

Note that this operation is independent of the actual size of disks cut out (up to homeomor-
phism).

Convince yourself that all points of the connected sum of M#N — so those too that
”come from” identifying pairs of points on the bounding circles of M \ D? and N \ D? —
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have open sets around them that are homeomorphic to D?, the open unit disk centered at
the origin, in R2.

[lustration 2. shows the same operation on identification diagrams.
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Thus T#7T can be given as the quotient space of an octagon whose edges are identified
according to the word aba='b~tedc1d 1.
Similarly, by induction, we can build an infinite family of surfaces gluing n tori together to
obtain #nT = TH#T#...#T. These surfaces can be obtained as quotients of a 4n-gon with

edges identified according to a;bia; by "...a,bpa; bt
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Another family is obtained by gluing real projective planes together.

b

Illustration 3 shows how to get a diagram for RP?#R P>
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By induction, #mRP? can be given as the identification space of a 2m-gon with edges
identified according to aja;...ama,.

Since the surfaces #n7T and #mRP? are each obtained as quotients of compact, connected
polygons, they themselves are compact, connected.

The classification of compact, connected surfaces is:
Theorem 0.1.2: Any compact, connected surface is homeomorphic to exactly one of
(a) S2
(b) #nT ¥Vn € N
(c) #mRP? Ym € N.

Recall that, by definition, a surface is non-orientable if it contains a Mobius strip. Thus
the surfaces in (c) are non-orientable and the surfaces in (b) and S? are orientable.
We have:

Exercise 0.1.3: Orientability is a topological invariant of surfaces. That is: if X and Y are
homeomorphic surfaces then X is non-orientable if and only if Y is non-orientable.

Thus no surface in the (c¢) family is homeomorphic to a surface in (b) or S2.

In order to distinguish the surfaces given in family (b) or (¢) we will use a combinatorial
invariant, called the Euler characteristic or Euler number.
In order to define the Euler characteristic we need the following:

Definition 0.1.4: Given a surface M, a finite triangulation of M is the set {11, T, ..., T,,}
such that

e T, C M is closed Vi

e Vi T; is homeomorphic to a regular triangle in R?

e if 7 # j then T; N7} is either empty or a single vertex or an entire edge
o M =0T

Definition 0.1.5: Given a finite triangulation of M, the Euler characteristic of M is
defined as x(M) =V — E + F, where V' is the number of vertices (up to identification) in
the triangulation, F is the number of edges (up to identification), and F is the number of
faces (i.e. the number of triangles).

We have the following facts:
1. The Euler characteristic of a surface M is independent of the triangulation of M.
2. The Euler characteristic is a topological invariant.

Furthermore, x together with orientation distinguish the surfaces in the classification
theorem: as a consequence of a crucial theorem of T. Radé from 1925, every compact
connected surface is finitely triangulable and thus they each have an Euler characteristic.



Lemma 0.1.6: Let S; and S5 be two different compact connected surfaces in the list given
in the classification theorem. Then they are non-homeomorphic because either their Euler
characteristic or their orientability is different.

Proof: We already discussed that orientability distinguishes the surfaces that are con-
nected sums of projective planes from surfaces that are connected sums of tori or S2.

Now, suppose S; and S, are finitely triangulated. In step 1 of forming the connected
sum of S; and Sy, remove open faces of a triangle in each, instead of open disks. Then
glue the edges of the triangles pairwise, instead of the circle boundaries of disks. Up to
homeomorphism, you still get S1#S5,. and the following very useful formula which relates
the Euler characteristic of the connected sum of surfaces:

X(S1#52) = x(S1) + x(S2) — 2

As a consequence, using induction, the following is a table of the Euler characteristics of
compact surfaces.

Surface  Fuler Characteristic

Sphere 2
Torus 0
RP? 1

#n-tori 2—2nVn €N
#m-RP? 2—mVmeN

Definition 0.1.7: When referring to #nT or #mRP?, we call n or m the genus of the
surface.

0.1.1 Working with cell-decompositions

Note that instead of using finite triangulations of compact, connected surfaces, one can cal-
culate the Euler number using ” cell-decompositions” of surfaces, which simplify calculations
in many examples. A cell-decomposition may be defined recursively:

Definition 0.1.8: Given a compact, connected surface M, its finite cell-decomposition con-
sists of

e O-cells C° = {CY,...,CY} which are merely points C? € M, i =1, .., k;

o l-cells C' ={C],...,CL} where each C}! C M,i=1,..,m is closed, and
CH\ {C}_, U{C}} ;] is homeomorphic to (0,1);

e 2-cells C* = {C%,...,C?} where each C? C M, i =1,..,1 is closed, and
C2\{C}M_, U{C} 1L, U{C7} 4] is homeomorphic to D? (the open unit disk in R?);

e and M = UC UuUCt UUC?

Note that the above conditions imply that two different cells of the same dimension
should be disjoint or intersect in lower dimensional cells only.
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(Clearly, every compact, connected surface has a finite cell-decomposition, since any of
their finite triangulations provide a cell-decomposition.

Lemma 0.1.9: For every compact connected surface M, we have x(M) =V — E+ F where
V =number of 0-cells; £ =number of 1-cells; F' =number of 2-cells.

Proof (outline): Show that each of the following moves (and their inverses) on a given
cell decomposition leaves the alternating sum V' — E + F' invariant:

1. Subdividing an edge by adding a vertex.

2. Subdividing a face by connecting two vertices with a new edge.

3. Introducing a new vertex in the interior of a face and a new edge connecting that
vertex to an existing vertex adjacent to that face.

Since any cell decomposition can be turned into a triangulation by moves 1-3 and/or
their inverses, we must have y(M) =V — E + F.

Remark 0.1.10: Moves 1-3 can also be used to show that y is independent of triangulation.

Example 0.1.11: Let M = S? the unit sphere in R3.

Consider the cell decomposition of S? which consists of one 0-cell C° = p = (1,0,0), one
1-cell that is the great circle S? N xy—plane and two 2-cells that are the upper and lower
hemispheres of S%. Then y(M)=1-1+2=2.

Consider the cell decomposition of S% which consists of one 0-cell C° = p = (1,0,0), and
one 2-cell that is S2. Then y(M)=1-0+1=2.

Example 0.1.12: Consider the torus. Note that its diagram aba='b~! determines a cell-
decomposition that consists of one 0O-cell which is the equivalence class of a vertex of the
square; two 1-cells which are the edges a and b and finally, one 2-cell, which is the torus
itself. Then x(T)=1—-2+1=0.



