
Homework 8.

1. In this problem you will prove - for a very special case - that the Euler characteristic of
a compact connected surface is independent of cell decomposition. What you get is also
a ”baby version” of an intriguing theorem, the Gauss-Bonnet theorem which shows (among
other things) that the topology and geometry of compact connected surfaces are ”intertwined”,
determine each other (see Part III, which is extra credit).

So this problem not entirely topological, but uses geometry - measurements such as angle,
area.

Consider the sphere S2 = {(x, y, z) |x2 + y2 + y2 = 1} ⊂ R3 as before.

We will also need the following definitions:

• A great circle of S2 is the intersection of a plane through the origin and the sphere. (So
for example, the Equator is a great circle of the Earth, but the Arctic circle is not.)

• A geometric spherical triangle of S2 is a closed subset homeomorphic to a usual triangle
of the plane and in addition each of its 3 edges are subsets of great circles.

• A geometric spherical polygon P , an n-gon, of the sphere is a closed subset homeomorphic
to a usual polygon, an n-gon of the plane whose edges are all subsets of great circles.

PART I. Start by working out a formula for the area of a geometric spherical triangle.

a.) A ”double lune of angle α” of the sphere is shown in the figure below. It is part of the
sphere that is enclosed by two great circles whose planes intersect at angle α.

Use proportions to find a formula for the area of a double lune in S2, in terms of its angle α.
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b.) A geometric spherical triangle is shown in the figure below - it lies at the intersection of
three lunes. Use this, as well as the fact that the corresponding double lunes cover S2 to prove
that the area of a geometric spherical triangle with angles α, β, γ on the unit sphere is

A(triangle) = α+ β + γ − π

(Muse over the differences between the spherical and Euclidean ”world”, implied by your
formula.)

c.) Find a formula for the area A(P ) a geometric spherical polygon P with n vertices (and
sides) in S2. (Hint: use the figure below.)

PART II. Now, work out a formula relating the surface area of S2 and the Euler characteristic:

Assume that the sphere S2 has a cell-decomposition consisting of geometric spherical polygons
{P1, ...Pk}. Then the surface area of S2 is

A(S2) =

k∑
i=1

A(Pi)
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Using that each polygon Pi has ni vertices and ei edges, so in fact ni = ei, ∀i = 1, ..., k, find a
formula for the surface area A(S2) of S2 in terms of its Euler characteristic χ(S2).

Observe that, since the surface area of the unit sphere is constant, the Euler characteristic must
be constant as well, independent of what (in this case, somewhat restricted) cell decomposition
you start with!

In particular, since we know from calculus that S2 has surface area 4π, the usual value for
χ(S2) follows - this is a good way to check if your formula is correct!

PART III. [Extra credit.]

How should the last formula be modified if instead of the unit sphere, you start with a sphere
of radius r > 0 ie

S2
r = {(x, y, z) |x2 + y2 + y2 = r2}.

Just write the formulae for i.) the area of a geometric triangle of S2
r

ii.) the area of a geometric polygon of S2
r in terms of the inner angles of the polygon and r

iii.) a formula for A(S2
r ) in terms of χ(S2

r ) and r

Observe that since A(S2
r ) = 4πr2, χ(S2

r ) is still constant, independent of r, as expected.

The Gauss-Bonnet theorem provides a relationship between the curvature κ of a compact
connected surface M and its Euler characteristic χ(M) and states that∫

M

κ dA = 2πχ(M).

The curvature is an important characteristic of a surface, which in general, changes pointwise.
Think of a ”blob”, for example, that is homeomorphic to a sphere. We have, from multivariate
calculus, that a sphere of radius r, has constant curvature 1

r , on the other hand, the curvature
of a random blob changes pointwise, so we have a curvature function κ : M → R.
Note that the Gauss-Bonnet theorem says the ”geometric” left side of the formula is determined
by the ”topological” right side. Eg. you cannot create a blob with just any curvature, the
”overall curvature” has to be constant.

Now, check that for spheres, the Gauss-Bonnet formula gives your formula iii. above.

Also, provide heuristics to show the Gauss-Bonnet theorem is true, by working out a ”partial
sum” ∫

M

κ dA ≈
∑

κiA(Pi).

where you can use

• a finite cell-decomposition of M into polygons Pi, for i = 1, ..., n, each having area A(Pi)
and (approximately) constant curvature κi

• assuming your formula from ii.) above holds after rewriting it in terms of κi instead of
ri.

2. Let S2 = {(x, y, z) |x2 + y2 + z2 = 1} as before and fix the basepoint x0 = (1, 0, 0). Show
explicitly that the loop α : [0, 1] → S2 taking s ∈ [0, 1] to (cos 2πs, sin 2πs, 0) ∈ S2 is homotopic
to the constant loop x0 : [0, 1] → S2 taking s ∈ [0, 1] to (1, 0, 0) ∈ S2.

(ie find such a homotopy)
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3. Consider the paths α, α′ : [0, 1] → X from point a to b and paths β, β′ : [0, 1] → X from b to c.

In order to show that α ≃ α′ and β ≃ β′ imply α ∗ β ≃ α′ ∗ β′, we used the homotopy

H(s, t) =

{
F (2s, t) if s ∈ [0, 1

2 ]
G(2s− 1, t) if s ∈ [ 12 , 1]

where F is the homotopy for α ≃ α′ and G is the homotopy for β ≃ β′.

a.) So what is F? Recite the definition. Similarly, write down everything you know about G.

b.) What are H(0, t), H(1, t), H(s, 0), H(s, 1), H(1/2, t), H(s, 1/2)?

c.) H is continuous because of the Pasting Lemma, which we will prove in class. It says

Suppose X = A∪B where A and B are both closed subsets of X. Suppose f : A → C
and g : B → C are continuous mappings such that f(x) = g(x) for all x ∈ A ∩ B.
Then the ”piecewise defined function” h : X → C given by h(x) = f(x) if x ∈ A and
h(x) = g(x) if x ∈ B is well-defined and continuous.

How does the lemma apply in case of the homotopy H above?

(ie. h = H and what are X,A,B, f, g? Is f = g on A ∩B ?)

EXTRA CREDIT Consider notes for the proof of the classification of compact, connected surfaces as was discussed
in class, posted separately, as well as our discussion itself. Make a flowchart of how the diagram
of a 2m-gon whose edges are identified in pairs can be changed, by ”tricky” cut-and-paste steps,
to one of the ”standard diagrams” (or normal forms) of the surfaces given in the classification
theorem of compact connected surfaces.

(An example of a very simple flowchart is posted separately.)
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