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Contemporary Mathematics
Volume 71, 1988

THE RICCI FLOW ON SURFACES

Richard S. Hamilton

In this paper we will discuss the evolution of a Riemannian metric 8;j ona com-

pact surface M by its curvature R under the equation
2
* 3 8 =(r=R)gy;

where r is the average value of R. We shall prove the following results.
1.1 Theorem. For any initial data, the solution exists for all time. (See also Cao [1] ).
1.2 Theorem. If r <0, the metric converges to one of constant curvature.

1.3. Theorem. If R >0, the metric converges to one of constant curvature.

Of course we conjecture that any metric on a compact surface converges to one of
constant curvature, but the case of a metric in S2 with curvature of varying sign is still

open.

As consequences we obtain new proofs of many classical results, such as the uni-
formization theorem for Riemann surfaces, the topological classification of surfaces, and

the topological type of the diffeomorphism group of surfaces. The proofs depend on
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some new a priori estimates on higher derivatives which are interesting in their own
right. We hope these results will generalize to higher dimensional Kihler manifolds, and

maybe throw light on the problem of S 2 necks pinching off on three manifolds with

positive scalar curvature under the Ricci flow.

2. We have previously studied the flow of a metric by its Ricci curvature

d r

58T 2[ - &ii "Rij]
on three-manifolds [3] and on four-manifolds [4]. In some repects the higher dimen-
sional cases are easier, due to the information contained in the second Bianchi identity.

For surfaces with positive curvature, the gradient estimate on the scalar curvature fails

for this reason. Therefore a new approach is needed.

On a surface, the Ricci flow equation simplifies, because all of the information
about curvature is contained in the scalar function R. In our notation, R =2K where K

is the Gauss curvature, with K =1 on the sphere of radius 1. Thus the Ricci curvature is

given by -

and the Ricci flow equation simplifies the following to the equation for the metric:

@ 2 gy =0-Rog.

Notice that the change in the metric is pointwise a multiple of the metric, so the confor-
mal structure is preserved. The term 7 in the equation is added to keep the area of the

surface constant; if L= \det 8ij is the area element then

0
2 u=(-R
5 = Ru

and as aresult, if A is the total area

4

d = - =
4 =Ejldu_j(r R)dp=0
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since r is the mean scalar curvature

r=[Rdp/[1dp.

The integral of R over the surface M gives the Euler class X(M) by the Gauss-Bonnet

formula
[Rdp=anXM)

and as a consequence, on a surface we see that r is constant; indeed
r =4nX(M)/A.

We could choose to normalize with A =4xn and r =2 on the sphere, but we prefer not.

The equation 2.1 makes perfectly good sense in higher dimensions, but differs from
the Ricci flow. It is in fact the gradient flow for the Yamabe problem, where we fix the
conformal structure and the volume and try to minimize the mean scalar curvature 7.
Thus in higher dimensions r will decrease. We can prove that the solution exists for all
time. When R <0, the solution converges exponentially to a metric with constant
scalar curvature. When R >0, we can show the solution exists for all time, and the cur-
vature approaches a constant; however there is some problem with the convergence of

the metric. Presumably this problem could be overcome using the positive mass esti-

mate.

3. When the metric 8ij evolves, so will its scalar curvature R. The equation for the

evolution of the curvature on a surface is particularly simple and elegant. 3.1 The equa-

tion for the curvature:

§&=AR +RZ-R.
ot

It can be found by a straightforward calculation. It has the following interpretation. Let
B be any region on the surface with a smooth boundary curve 9B, and let N be the
unit normal to the boundary and A the arc length measure along the boundary. Then

di”Rdu=jVR-Ndx.
a; 3
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This says that the curvature R flows across any boundary curve with a speed equal to
the negative of its gradient. This produceé the usual Laplacian term for diffusion in the
equation 3.1, while the quadratic self-interaction term R (R-r) is due entirely to the fact
that the curvature density R increases or decreases with the change in the area element

i, which changes by the factor r —R.
Applying the maximum principle to equation 3.1 gives the following result.

3.2 Theorem. If R 20 at the start, it remains so for all time. Likewise if R <0 at the
start, it remains so for all time. Thus both positive and negative curvature are preserved
for surfaces. The same is true in the higher dimensional Yamabe flow, but not in the

higher dimensional Ricci flow, where only positive curvature is preserved.

For negative curvature, the preceeding result can be improved considerably. As an

immediate consequence of the maximum principle we get the following result.

3.3 Theorem. If —C <R <—g<0 at the start, then it remains so, and
re™® <r-R <Ce"

so R approaches r exponentially.

Proof. The maximum of R satisfies the differential inequality

d R_._<R <—g(R

—d-_t max = max(Rmax-r) < —g( max_r)
while the minimum of R satisfies

d
= Rinin 2 ReninR in =) 27 R = 1):

3.4 Corollary. On a compact surface, if R <0 then the solution exists for all time and

converges exponentially to a metric of constant negative curvature.

For positive curvature, the situation is much worse, because R =r is now a repul-
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sive fixed point for the ordinary differential equation

dR

AR _p2_
ot R“—-rR

and hence the reaction term in equation 3.1 is fighting the diffusion term. The best we

can do is the following,

3.5 Theorem. If r >0 and R/r 2¢ >0 at the start, then ¢ <1 andfor all time

R, 1

r

1+ (L oper
c

This gives a positive lower bound which deteriorates to zero as ¢ — . Notice that

the corresponding upper bound goes to infinity in a finite time.

3.6 Theorem. If r >0 and R/r <C at the start, then C >1 and

R 1
r
1-Q —%-)e"
at least for time
1 c
t<—1
r 08 c-1

4. To get results when R >0 somewhere, we need better methods. The first step is to
introduce the potential function f.

4.1 Definition. The potential S is the solution of the equation

Af =R -r

with mean value zero.

Note we can always solve the equation since R —r has mean value zero, and the
’

solution is unique up to a constant, so we can make f have mean value zero. The

potential function f satisfies a particularly simple equation.

241



242

RICHARD S. HAMILTON
4.2 The equation for the potential:
of
= =Af +rf -b
where
b=j|uﬂ2du41du

is a constant over space and a function only of time.

Proof, Since Af =R —r, differentiating in time we compute
a2 - naf +1f)
ot
which shows that
of
L =Af +1rf -b
et f

for some number b which is a constant over space and a function only of time. It is

easy to compute b from the relation

[fdpn=0.

To continue the argument, we introduce a new function h and a tensor M;;.

4.3 Definition. We let

h =Af + |Df 12
and
1
Ml] =D,Djf __2_Af gl_]

Note that M;; is the trace-free part of the second covariant derivative of f.

4.4 The equation for h:

oh 2

4.5 Corollary. If h <C atthe start, then h <C e™ for all time.

THE RICCI FLOW ON SURFACES

The significance of this estimate is that
R=h-IDf1%+r

so R <C e” +r. This gives a bound on R from above for all ¢, which unfortunately
deteriorates as # —> oo if r >0. We also have a lower bound from the maximum princi-
ple on equation 3.1. Not using the best possible result, we have the following. If r >0
and the minimum of R is negative, it increases. If r <0 and the minimum of R is less

than r, itincreases. This proves the following estimate.

4.6 Theorem. For any initial metric on a compact surface, there is a constant C with
—C<R<Ce™ +r

4.7 Corollary. For any initial metric on a compact surface, the Ricci flow equation has

a solution for all time.

4.8 Corollary. Ifin addition r <0, then the scalar curvature R remains bounded both

above and below.

When r <0, this bound actually shows that R <0 for large time. We can then

apply Corollary 3.4. This proves the following.

4.9 Theorem. On a compact surface with r <0, for any initial metric the solution

exists for all time and converges to a metric with constant negative curvature.

5. The case r =0 merits separate attention. We already know the solution exists for all
time, and the curvature remains bounded above and below. It remains to see why the

solution converges to a flat metric.

Let us write g;; =e“g;; for a conformal change of metric. Then it is easy to com-

pute

R=e¢“®R -Au)
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where R is the curvature of g;; and A is the Laplacian in the metric g;;. Given g;;,
if we solve Au =R (which is possible since R has mean value zero) then R =0.

Hence we can produce a flat metric.

Let us assume now that g;; is the flat metric, and study the evolution of g;; by

studying its conformal factor u. We easily derive the following equation.

5.1 The equation for the conformal factor

U _
—a't——e Au.

Applying the maximum principle, we have the following.

5.2 Corollary. There exists a constant C with —C Su <C. As a result, the metrics
8ij(t) are uniformly equivalent for all t. This gives us control of the diameter, the

injectivity radius, and the constant in the Sobolev inequality.

To produce some exponential convergence, we calculate
L[ 1Du12dp+2 e @udi=0
dt
and use
J@u)ydyzc [ 1Dut’dp
and the bounds above and below on u# to conclude that for some constant ¢ >0

%j IDui?dp+c [ 1Du1dp <0

so the integral goes to zero exponentially. Thus
[1Dui?dp<Ce™

for some ¢ >0.

Now if we integrate the previous equation over time, we get

2°fje'“(Zu)2dﬁd: <[ 1Dul?d\(T)
T
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which shows that
[[R%pdr <C eT.
T

Hence at some point in each interval T <t <T +1 we will have
[R¥Mp<ce™,
Moreover
in2du+2j IDR1%dp=[R3
dt H-
Since R is bounded, we have
4 JR%.ausc [R%au
dr )
Now since the integral is frequently small, and its growth is controlled, it follows that
[R*dus<c e
forall ¢. Since R is bounded, any L, normof R will go to zero exponentially. Then
integrating the previous equation gives
T
[ 1DRZdpdr <C =T
0
for some ¢ >0. This shows
JIDRIZdp<C e

at least once in each interval T <t <T + 1. But we can also bound the growth of this

integral.
%j |DR|2du+2j(AR)2dus—2jR2AR dp
and 4
-2 [R?AR dusj(AR)2du+jR4du
SO

%j IDR12dy + [ (AR)2dp < [ R4dp.
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Since the last term is itself exponentially small, we get
[IDR12dp<Ce™

for some ¢ >0 andall z. Then, again integrating over time

T
[f(aRYdpdr <C e~
0

SO
[@RYdusce™

at least once in each interval T <t <T + 1. Now we use the uniform Sobolev inequality
to bound the maximum of R by the L' norm of R,DR, and D?R; the bound on
DR follows from that on AR and DR by integrating by parts

20127 — 25,1 2
[1D R1%dp=[(ARYdp ZJ'RIDRIdu

and using the fact that R is bounded. Thus the maximum of R goes to zero exponen-
tially. It now follows by a general result in [3] that the metric converges exponentially to

the flat metric.

6. Now we turn our attention to the case where R > 0. First we prove a Hamack ine-
quality on R by deriving a maximum principle estimate on the space and time deriva-
tives of log R. This was inspired by a similar proof of the Harnack inequality for the
ordinary linear heat equation shown to us by S. T. Yau (see [5]). A similar Harnack esti-
mate can be shown for the curvature of a plane curve moving by its mean curvature vec-
tor. We believe that similar Hamnack inequalities will play an important role in many

geometric problems.
The classical Harnack inequality says the following.

6.1 Theorem. Let M be a compact manifold of dimension n with a fixed metric of

non-negative Ricci curvature. Let f be a solution of the ordinary heat equation

af_Af

THE RICCI FLOW ON SURFACES

Jor 0<t <T with f >0 everywhere. Then for any two points (€,1) and X,T) in

space-time with 0 <t <T we have
T2 ED <M TV F(X,T)

where A=d(EX)? /(T %) and d (€.X) is the distance along the shortest geodesic.

Proof. Let L =log f. Then

SL _ AL+ 1DLI2.
ot
Next let Q =—— IDLI2=AL and compute

a—Q>AQ +2DL -DQ +—Q2

using

1
ID2L12> ;(AL)Z and Rc(DL,DL)>0.

It follows from the maximum principle that

Q 2-2/nt

regardless of how negative Q might be to start.

Choose a geodesic path from £ to X parametrized by time ¢ proportionally to

the arc length. Along the path

dL _ aL oL ds
dr s dr -

Integrating along the path and using

oL 2 oL ds
Lsipriz-2 2, 0L ds, 11ds
= — and DL+ S Ly y
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by Cauchy-Schwartz we get

T
L(X,T)—L(§,1)=J%d’

T
f \DLI%— E)L ds dt
! ‘nt as dt
T

2 1 ds 2
> - = | (=)“arL
2-=log (T/) - {(dt)

Now

A=dX BT -1)= j( Sy ar

and the result follows by exponentiation.
We imitate the theorem and its proof for the Ricci flow on a surface. Since the

metric is changing, we get a more complicated version of A.

6.2 Definition. On a manifold with a Riemannian metric g;;(x,r) which changes over

time ¢, we define
AGET,X, T)_mfj( )2

taking the infimum over all paths from (§,7) to (X,T) parametrized by time ¢ for

1<t <T, where ds/dt isthe velocity in space at time r.

This agrees with A€, 1,X.T)=d(E.X Y2 /(T —1) when the metric is fixed. For a
varying metric it gives a reasonable notion of distance between points at different times.
If we have two fixed metrics Yij (x) and G,-j (x) independent of ¢, with distances

S(,X) and D (E,X) along geodesics, then clearly
8(E,X)2 /(T -1) <AE,T.X,T)<D (X /(T -7)

whenever 7;;(x) <g;(x 1) S G;;(x).

We can now state our new Harnack inequality.

THE RICCI FLOW ON SURFACES

6.3 Theorem. Suppose we have a solution of the Ricci flow equation on a compact sur-

face with R >0 for 0<t <T. Then Jor any two points (E,1) and (X ,T) in space-time

with 0<t<T we have

" -DRED<eM T -1HRX,T)

where A= A&, 1,X,T) is defined as before.

Proof. Let L =log R and let

Q= oL _ IDLI2=AL +R —~r.
ot
Then using
1
21D,D;L -5 R-r)g; 12>0?
we compute

aa—?ZAQ +2VL -VQ +Q%+rQ.

It follows from the maximum principle that
Q2-re™/(e"-1)

no matter how negative Q is to start, by comparing to the solution of the ordinary dif-
ferential equation we would get if Q were constant in space. Now take any path ¥

from (£,1) to (X.,T) parameterized by time ¢ for t<r <T, and compute as before

é + 9L oL ds
dr at os dr

T
L(X,T)—L(§,1)=_[%dt
T

rt
\pLi2— re’ oL dL ds
{ e’ os dr a

2 -log (e’T—l)/(e”—l) J' ds 24

a'—."*!

The infimum of the last integral over all such paths is the definition of A. The result fol-

lows by exponentiation.
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7. The next step is rather unusual. We let
z=jQde/dep

and compute using the equation for Q that

£222+r2.
dt

Now if Z were ever to become positive, then it would blow up to infinity in a finite
time. But we already know that the solution exists for all time. The only possible con-

clusion is that Z <0! Using

AR _ IDRI?
R

_ PP +((R-r)

Q:

this gives us the following result.

7.1 Lemma. For any solution with R >0 we have

IDR %
2
[®R-r?dns|—2—adn.
Since
2
d _ 2, _(IDR1%
< [Rlog Rdp=[R-rYdu-[-——dpu

we get the following suprising result.

7.2 Theorem. For the Ricci flow on a compact surface with R >0 the integral

R logR dp

is decreasing.

Note that x log x =—1/e is bounded below. Therefore R cannot be large except
on a set where j'R dp is small, which is a set whose Gauss image is small. Therefore
this estimate by itself precludes the formation of a cone-like singularity. We thigk of this
estimate as a statement about entropy. Since the integral of R is constant, it representé
a probability measure. Then the integral of R log R is the negative of the entropy. The

estimate says that entropy is increasing.

THE RICCI FLOW ON SURFACES

8. We now combine the Harnack inequality and the entropy estimate to conclude that
R is bounded. Pick a point £ at time T where the curvature R is largest. Then wait

foratime T ~t=1/2R .. (7). During that time

and so R, (T)<2R .. (7). On the other hand
0
3y Sii =(r-R)g;

so distances will grow at most by a constant factor (since Rpmax 27 the time interval is

bounded). Hence if d(£,X) is the geodesic distance at time T we will have
AG X, T)SCdEX)? /(T -n).

Then (again using the bound on the time period, and assuming T2 1) the Harnack ine-

quality gives .

RET<SCRX,T)

forall X in aball around & of radius
P =TNR . (T)2 .

On the other hand, if our surface is oriented then Theorem 5.9 in Cheeger and Ebin [2]
tells us that the injectivity radius of M is at least p attime T. (If M is not oriented,
pass to the double cover.) In the ball of radius p around € we have R comparable to
RE,T) =R nax (T), which is at least half of R .x (T) by the choice of T. Therefore if

we integrate over the ball B of radius p around at time T

JRlog R dpu>clog R, (T)
B

attime T for some ¢ >0. Then the entropy estimate shows R, (T) is bounded, and

hence R_,, (1) is bounded. This is true forall T2 1, so R is bounded.

Once R is bounded, we get as before a lower bound on the injectivity radius, and
since the volume is bounded this gives an upper bound on the diameter. Using the diam-

eter bound, plus the fact that the growth of distances is bounded, we easily get for
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T —1<1 the estimate
AE, ., X, T)SC/I(T ~-1)
and hence the Harnack inequality tells us that for r 2 1 and any two pointsx and y we
have
R(xt)SCR(y,t+1).

Therefore we also get a lower bound on R.

8.1 Theorem. If we have a solution to the Ricci flow equation with R >0 on a compact

surface, then there exist constants ¢ >0 and C <o with(<c SR < C for all time.
8.2 Corollary. All of the derivatives of the curvature remain bounded for all time also.

Proof. Having control of the diameter, the volume, and the injectivity radius, we can

control the Sobolev constant. From [3], Theorem 13.4, we have
ij ID"R\2dp+2 [ ID"R12du<C, [ ID"RI?dp
dt
and using
[ID"R?dp<e| ID"*R12dp +C,(e) [R%dp
we deduce
L[ \p"R12dp+ [ ID"RI*dp<C,
dt
which shows that
[iD"RI*dp<C,

for all n and all time. Then the Sobolev inequality gives supremum bounds for all

derivatives.

9. We apply the lower bound on R to the evolution equation for M;;. Recall from sec-

tion 4 that we chose the potential function f tosolve Af =R —r, and let

1
M'l =D‘D]f _'EAf " 8ij -

THE RICCI FLOW ON SURFACES

9.1 The equation for 1M;; |2

d 2_ 2 2 2
o My 1° =AM 12-21D, My 12~ 2R 1M, 12,

This follows from a straightforward calculation.

9.2 Corollary. If R 2¢ >0 then
|M1j i<C e_“

for some constant C. Hence Mi; — 0 exponentially. This follows Sfrom the maximum

principle.

Next we consider a modification of the Ricci flow. Consider the equation
0 =2M; = R 2D,D
o 8ij = ij = (r- )gij — 2L jf-

This equation differs from the Ricci flow only by transport along a one parameter family
of diffeomorphisms generated by the gradient vector field of the potential f. Since M;;
converges to zero exponentially, the modified metrics will converge as t — oo, We shall

show that their derivatives also converge, and the limiting metric is smooth.

First note that the bound O<c¢ <R <C on R still holds for the modified flow,
since it differs only by a diffeomorphism. Next note that the meirics 8;(x,t) are all
equivalent, since they converge. Then to prove convergence of the g; j(X,t) as 1 — oo,

it suffices to show that all the covariant derivatives of M;; go to zero exponentially.

To obtain the higher derivatives bounds on M;; it is convenient to switch to com-
plex notation. This happens by viewing the surface as a Kihler manifold of complex

dimension one. On a Kihler manifold each real tensor, say T;;, has complex com-

ponents T g, Tag, T&B’ TaB chosen so that if T = T;; dx* dx/ in real coordinates then
T =Topdz®deP+ T gz a7 + Tapdz®dzP + T g d7® a7

in complex coordinates. Since we have only one dimension, all unbarred indices may be

interchanged, as may all bared ones. Moreover any pair of a bared and unbarred index
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may be contracted. This allows us to represent any tensor as equivalent to several fully
symmetric tensors with all indices unbarred or barred. These correspond to the irreduci-
ble representations of the Lie group § 1 We say that a tensor with k unbarred indices
has weight k, whereas one with k barred indices has weight -k. We can then drop the
indices, and regard the tensor of weight k as a complex function on the principal
tangent bundle. The exterior derivatives of a tensor T are given by DT and DT,

where if T has weight k then DT has weight k +1 and DT has weight k£ — 1. For

example, if T =T g then DT =D, Ty and DT = gD Ty,
It is now easy to derive the following formulas foratensor T of weight k.

9.3 Formulas on a surface
— = 1
DDT—DDT=—EkRT
AT=DDT+DDT

DAT:ADT—-—;-kDR 'T—[k+%]RDT

d 0 1

atDT D atT+2
2T 74T 2T 4k ®-r)ITI12
ot IT1"=T ot * ot (

Using these, we compute

.a_f_=Af +rf =b
ot

0 1
- =ADf ——=RD rl)f
ath f 5 )f +

g_sz = AD%f —2R D%f +r Df
t

.g_p3f =AD3f -2DR -D*f —%R D*f +rD’f
t

9 p4f =AD* -2DR -D%f ‘}%DR D3 -8R Df +r D’f
ot

THE RICCI FLOW ON SURFACES

and consequently

58{ ID2f12< A ID%f12-2R ID%f|?
% ID3f12<AID3f12—(6R +r) ID3f12+ 4 IDRI ID2f| ID3f ]
% ID*f12< A ID*f 12— (12R +2r) ID*f 12

+41D2R1 ID*f 1 ID*f1 + 13 IDRI ID3f1 D41

and so on.

The importance here for us is just that D2f is the complex form of
M =D;D 1 Af -
ij =DiD;f — > Af -g;;

the trace-free part of the second co-variam derivative. We already know that since
R >C >0 we have [D?f| going to zero exponentially. It now follows easily since
IDR1 is bounded that |D3f| goes to zero exponentially; and since 1D?R| is bounded
we also have |D*f| going to zero exponentially. In fact all |D¥f| g0 to zero

exponentially.

However, if we integrate by parts we can bound the L2 norms of |D* D’ D?f! in
terms of the L? norms of ID"'+2f I. Hence all the derivatives of sz g0 to zero in
L% Since we have uniform control of the Sobolev constant independent of time, we
therefore have all the derivatives of M;; =D?%f going to zero exponentially in the
supremum norm as ¢ — eo. This proves that the solution of the modified equation con-

verges exponentially to a limit metric with M;; =0.

10. A metric g;; with M;; =0 is a soliton solution for the Ricci flow. It moves only by
a diffeomorphism, so its shape remains unchanged. We shall show that on a compact
surface there are no soliton solutions with R >0, other than constant curvature where

there is no motion. On a non-compact surface solitons with R >0 do exist. For exam-
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ple, on the plane the metric

dsz_M
1+xz+y2

is a soliton with R >0 which flows by conformal dilation. It is asymptotic to a flat

cylinder at infinity, with maximum curvature at the origin.

10.1 Theorem. On a compact surface there are no soliton solutions other than constant

curvature.

Proof. A soliton solution for the Ricci flow consists of a metric g;; and a vector field

v; suchthat g;; flowsalong v; under the Ricci deformation. This happens when

,
2[Rii“73ij =D +Djv,

and on a surface this simplifies to
(R —r)gij =Div]' +Djv,-.

A soliton of the Ricci flow has

ﬂe—=AR +RR-1)
ot

and for a soliton the minimum value of R is constant. Then at that point dR /9t =0.
This shows that R >0, and by the strong maximum principle we even have R >0.
From the evolution of the tensor |M;; 12 in 9.1 we see from the maximum principle that
if a soliton has R >0 then it must have M;; =0. For at the point where 1M; 12 is larg-
est the equation says it should decrease, while if it flows by a diffeomorphism the max-
imum is unchanged. Therefore the vector field v; along which the soliton flows must be

D;f, the gradient of the potential function f.

The vector field v; must be conformal, since flowing along v; changes the metric
g;; conformally. Now very few conformal vector fields can be gradients of a function.
ij

In complex coordinates the conformal vector field is holomorphic, and hence is locally
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given by v(z)d/dz for a holomorphic function v(z). Ata zero of v there will be a

power series expansion

v(i)=az? + ... (a#0)
and if p > 1 the vector field will have closed orbits in any neighborhood of zero. Now a
gradient flow cannot have a closed orbit. Hence v has only simple zeros, and f isa

Morse function on the surface with only maxima and minima, and no saddles. Then

there is one maximum and one minimum, and the surface is a union of two discs, thus a

sphere.

Consider a soliton solution on the sphere S2. The gradient of f must be a holo-
morphic vector field. Then it has exactly two zeros, which we can take to be at 0 and

. If we take z =u +iv as complex coordinate, the holomorphic vector field must be

¢ z d/dz for some complex number c.

10.2 Lemma. If ¢ z 9/9z is a gradient vector field then ¢ is real.

Proof. Write the metric as

ds2=g(u,v)(du2+dv2).
Then Vf =c z d/0z means thatif ¢ =a +bi then

o =(au —bv)g of =(bv +au)g.
du dv

Taking the mixed partials 9f /dudv and equating them at the origin u =v =0 gives

b =0, so ¢ isreal.

Consequently our soliton is defined on the cylinder and moves by translation down
the cylinder. Let x and y be coordinates on the cylinder, with translation in the x
direction being the flow and identifying y —y +2n. Since the gradient of S is just

a d/9x for areal constant a, if the metric is given by

ds?=g(x,y)(@x?+dy?
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we get the equations

of _ 9 .
ax_ag dy

The second shows that f =f (x) is a function of x only, and then the first shows that
g =g (x) isalso a function of x only, if @ # 0. (If a =0 then f isconstantand R is

constant.)

Consider a metric on the cylinder regarded as a quotient of the xy plane by

y =y +2x, and independent of y. Then we can write the metric as
ds? =g (x) (dx2+dy?).
The condition that the metric extend as x — —eo to a metric on the plane given by
u=e*cosy
v =e¥siny
is that g (x) be a smooth function of e2*, with no constant term. For
ds?= g (x)e'zx (du2+dv2)

and so e & g{(x) must be a smooth function of u2+vt=e?%. Likewise the condition

2x

that the metric extend as x — + oo is that g (x) be a smooth function of ¢™* with no

constant term.

The curvature of the metric is given by

as can be easily computed, where prime denotes differentiation in x. If g isaso

with velocity ¢ moving by translation in x, then g =g(x +ct) satisfies

which becomes

(10.3) cg'=rg +[%] .
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To solve this, we substitute g =v’, where v is determined up to a constant. By includ-
ing the constant in v, this integrates to
(10.4) V' —CvZ+rvv'=0

which can be integrated again to

(10.5) v'=iv+L[1-keC“]
c (;2

with an arbitrary constant k. Now if we substitute y=cv+1 and u =rx/c we get the

equation
dy -1
Loy ke
du Y
whose solutions are given by
(10.6) w=f—D__
y —ke’ ™.

Now suppose we have a solution g (x) where as x — —o we have an expansion
gx)=>H eM e 4
in powers of ¢** with no constant term. Then v (x) will have an expansion
vix)=a +AbeM +2ceM v .

and hence be bounded as x — —oo, Likewise if g(x) has an expansion

g)=be ™ yce 4
as x — +eo then v(x) will be

vix)=a -bpe ™™ —~2cpe > —

and hence will also be bounded as x — + 0. If v is bounded so is y, while u — * oo

when x does. Therefore the denominator in the previous integral must have two zeros.

This happens precisely when 0 <k < 1.

Suppose then that 0 <k <1 and that the equation

y=ke¥!

~has two solutions y =k —p <1 and y =1+¢ > 1.
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10.8 Lemma. We always have p <q, and plg —» 1 as k — 1, whileplqg -0 as

k — 0.

Proof. As k 50, p — 1 and ¢ — e, so p/qg — 0. In general
epta = 114
1-p
and since

x —
e———%——iaé as x =0
x

letting x =p +q, using the previous expression, and using p —0 and ¢ -0 as
k — 1, we get

P -1-(pq) P stas ko1
(p+q)* (I-p)p+q) 2

which shows p/g — 1. Finally since

4

eZF=1+2 +2xz+—3-x3+%-x4+

1+x
—-x

=1+ + 22+ 3+ 2%+ .

we can see that
1+x
e

< for x >0.
1-x

This means that p #q for 0 <k <1. Since p/g — 0 as k — 0, we must aJways have

plq <1 by continuity.

To return to our discussion, for each value of R between 0 and 1 we get a soli-
ton solution on the cylinder with bounded diameter. We now examine the asymptotics as

x = too. Near y=1-p write y =1—p +2z Then we have a power series expansion
y-1 1 2
y —ke =pz—5(1—p)z + ...

which integrates to an expansion of

u =I dy - dz
-1
y ok - Syt
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starting out as
1
u=—logz+ .. .
p

which gives in turn an expansion of z in powers of eP. This in turn gives an
expansion of g(x) in powers of e with A=rplc as x — — oo, Likewise we get an

expansion of g(x) in powers of e where p=rqg/c as x — +oo. Then AMu=plq.

By an appropriate choice of ¥ we can make the ratio A/ =p/q any number with
0<AMu<1. Then by an appropriate choice of the velocity ¢ we can make A and 1)
any numbers we want with 0 <A <p. Notice that we do not attain A = except in the
limiting case where ¢ =0. Thus to get a solution on S we need A= 1 =2, which
makes the velocity ¢ =0, so we just have the constant curvature solutions. The other

solutions we have found exist on ?rbifolds.
10.9 Corollary. On a compact surface with R >0 the heat flow
%gij =(r—R)g;
converges exponentially to a constant curvature metric.
Proof. For the modified flow we have seen that the curvature R converges to its limit-

ing value exponentially. But since there are no soliton solutions on $2%, we must have

R converging to the constant r exponentially. This then implies that the unmodified

flow will also converge exponentially.
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