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1. Classification.

In this paper we shall analyze the behavior of all non-singular solutions
to the Ricci flow on a compact three-manifold. We consider only essential
singularities, those which cannot be removed by rescaling alone. Recall
that the normalized Ricci flow ([H1]) is given by a metric g(z,y) evolving
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696 Richard Hamilton

3 I t
by its Ricci curvature Re(z,y) with a “cosmological constant” r = r(t)
y 1 -
representing the mean scalar curvature:

9 Jx,v)=2 H rg(X,Y) - Re(X, Y)] .

7‘=/R//1'

i ling in
This differs from the unnormalized flow (without T) .only byt;zica ing
space and time so that the total volume V = [ 1 remains cons .

where

. . . the
Definition 1.1. A non-singular solution of the Rlca0 ﬂowtls one wl;zx;: the
. i ists for all time 0 < t < o0,
ion of the normalized flow exis . . e
S(I)llrli't;ture remains bounded |Rm| < M < oo for all time with some cons
c

M independent of ¢.

For example, any solution to the Bicci flow on a Zompi(i:‘t, ;r}il;ii-giﬁfgﬁ
with positive Ricci curvature is non-singular, as are td i I<laq et T which
on torus bundles over the circle found by Isent.)erg and the au or -] whict

us solution, or the Koiso soliton on a .certam. our-I |
) homogtenet(:) the solutions on a four-manifold with pos1t‘1v.e 1sotro;}>31c
i . rIE-lISS] definitely become singular, and these singu}arltles must be
Cur"at:;ebl; s[urgery. Currently there are few conditions which gu;rant:lesna
zii?x(zi\:)n will remain non-singular; hbowevfeg é)rrg; rx;;:y hope to produce
i i o . .

e SOlutcfrislgflt;r pa(lfil)ntt; '?lllleniln;;ctivity radius at P, the largest radl}lsl
for zr(;lri;rll);l?e open ball in the tangent space injects' und;r‘ ih:hzxrﬁ(;?ﬁ;tli
map; and let § be the maximum of p(P) over all points P 1

Definition 1.2. We say a solution to the normalized Ricci flow collapses if
e 2.
p(t) » 0 ast — oo. .
In this case it follows from work of Cheeger z?nd Gror'noy [C-G] }tl ?0
th ;anifold has an F-structure. For three-manifolds this is enoug
e

to the
completely analyze the topology (for example, no co.untgr;ex(ai:)ngc)(l)(;lagse.
Poincaré conjecture can collapse). The torus bundles in [H-T]

Now we can state our result.

] icct on
' lution to the normalized Ricci flow
em 1.3. Any non-singular so . fiow
r;‘}cl:;;act three-manifold does one and only one of the following things

= e
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C) the solution collapses; or

P) the solution converges to the metric

of constant positive sectional cur-
vature; or

Z) the solution converges to a metric of zero sectional curvature; or

H) the solution converges to a metric of constant negative sectional cur-
vature; or

H') we can find a finite collection of complete non-compact hyperbolic
three-manifolds with finite volume Hi,...,Hyn, and for all ¢ beyond
some time T < oo we can find diffeomorphisms ¢;(t) : H; — M
of these manifolds into the manifold M with the solution so that the
pull-back of the solution metric 9(t) by oi(t) converges to the hyper-
bolic metric as t — 0o; and moreover if we call the exceptional part of
M those points where either the point is not in the image of any ¢;,
or where it is but the pull-back metric is not as close to the hyperbolic
metric as we like, we can make the volume of the exceptional part as
small as we like by taking t large enough; and each H; is topologically
essential in the sense that each y; ingects m1(H;) into m(M).

The important part of case H’ from the point of view of topology is that
71 injects; otherwise M might be something simple like the sphere S3 with
the hyperbolic metric forming in the complement of a knot while a tube
around the knot goes off to infinity. This is enough to answer topolo
questions (for example, no counterexample to the Poincaré conjectur
contain a hyperbolic piece where 71 injects). Nevertheless from the pe
tive of analysis there are still a number of questions we leave unans

such as the behavior of the collapse in case C, and whether the conve
in cases Z and H (not to mention H g
diffeomorphism.

gical
e can
rspec-
wered;

rgence
actually requires modification by a

2. The lower bound on scalar curvature.

The division of solutions into cases P,Z, and

H depends on the following
remark, which holds in all dimensions.

Theorem 2.1. Let R be the minimum of the scalar curvature. Under the

normalized Ricci flow, whenever R <

0 it is increasing; whereas if ever
R > 0 it remains so forever.
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Proof. The scalar curvature evolves in the normalized flow by the equation
OR 9 1

as derived in [H1]. If we decompose the Ricci tensor Rc into its trace-free

part ISc and its trace R, then
1 o
|Rc|? — —rR=| Re |2+1R(R—r) :
n n

Now apply the maximum principle. If R < 0, then since always R<r (as
the minimum must be below the average) we find R(R—r) > 0. Thus if
R < 0 it must increase. Now if R > 0 it cannot go negative again, for when
R = 0 then R(R—r) = 0 also. Note though that if R>0then R(R—71) <0
(unless R is constant), so R in this case may well decrease.

We can now divide the non-collapsing solutions into Case P where even-
tually R > 0, Case Z where lim R = 0, and Cases H and H’' where lim R < 0.

3. Limits.

Now suppose (again in any dimension) that we have a non-singular solution
which does not collapse. Then we can find a sequence of times t; — oo and
points P; and some & > 0 so that the injectivity radius of M at P; in the
metric at time t; is at least 4. Then taking the P; as origins and the %;
as initial times, by [H6] we can extract a convergent subsequence. However
we need some care here, as the limit result in that paper is for solutions to
the unnormalized flow. But we can pass back and forth by scaling space
and time. So first unnormalize the flow, then take the limit, then normalize
again and see what we get. The limit will still satisfy the Ricci flow with a
cosmological term 7(t), and r(t) for the limit will be the limit of the 7;(t)
for the sequence. Since we have the curvature bound |Rm;|; < M for each
term in the sequence! we also have the curvature bound |Rm| < M in the
limit. Since the injectivity radius at P; at time t; is at least § > 0 for all
4, the injectivity radius of the origin 0 at time O in the limit is also at least
§ > 0. However the volume V of the limit may be different from the constant
volume V of each solution if the diameter goes to infinity; but at least we
know ¥V < V. The relation of the cosmological term r(t) to the average
scalar curvature of the limit is not yet clear.

lwhere Rm;(t) = Rm(t +t;) and | |; is the norm with respect to the metric
9(t) = g(t +15).

We claim I > 0. Forif Y < 0
X ~Y > 0. On the other h;nd,,

Non-si .
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4. Long Time Pinching.

Theorem 4.1. Suppose we have a com

Ricci flow on q three-manifold which, isplete it oo he ot o
fort > 0. Assume at t = 0 the ei
operator at each point are bounded
R=X+pu+vis their sum, and I

times t > 0 we have the pinching e

—1. The scalar curvature

RzX[lnX+ln(1+t)—3] ,
whenever X > 0.

Proof. This follows as usual

o by estimating the solutions to the system of
dA 9
E =)+ Ny
du 2
x5 + v
dv 2
Priak ey Al
from which, i
which, if we put R = Atp+vand X = —pand Y = —
m ) K, we get that
= - X+ )Y
drR _ ., 2
7 =N TY X2 XY —ax -y
Compute
dR
xR _ dX
= (X+R)d7 =X3+1,
where

— 2
I=XYy +/\2(X—Y)+/\Y(Y—X).

then A > 0. Now I > 0 s
. > 0. 2 Osince X > 0
if Y >0, then we rewrite [ as e

— v3
I=Y X -Y) (A -2y +¥2) >0
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Hence
x4 (x+ B2 > X0
Substituting
W= —)R% —InX
gives
Wy

Now we construct a convex set Z preserved by the ﬁ(t)vx.r of t?ZCSSD(}i%
i the space of 3 x 3 symmetric ma
Z is a subset of the product of : prices (of
curvature operators with eigenvalues A > p > v) and the time axis ¢.
set Z is given by the joint inequalities

R> 3
P

for all points, and

R>X[InX +In(1+1) -3
at those points where
X> L
T 14t

For any ¢ we get a convex set Z(t) in the R-X plane.

Non-singular solutions of the Ricci flow on three-manifolds 701

The curve and the line meet at an uppermost point. (The set Z in space-
time need not all be convex, only each time slice.)

It is easy to check that our initial data lies in the given set at ¢ = 0 since
“1<v<u<a

to start, which makes R > —3 and X < 1. The lower bound

R>-_3_
T 14t
is easily preserved since
dR _ 2 1
Srs fp2s o2
t — 3R - 3R

from the ODE. The other bound becomes
W>In(l+¢) -3

which follows easily from

and the observation that

>
T 1+t

on the top boundary curve; since the other side boundary curve is preserved,
we could only exit Z out the top. This proves the theorem.

5. Positive Curvature Limits.

Consider the first case where B > 0 for large t. In this case the maximal

time interval [0, T) of the corresponding solution of the unnormalized flow
is finite, since

£R>ZR2
dt —n

from the maximum principle. Now for the unnormalized Ricci flow in di-
mension 3 we have the pinching estimate

R>X[InX — 3]
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dropping the time dependence. This assures us that when the curvatures are
big, the negative ones are not nearly as large as the positive ones. Now when
we rescale to the normalized flow, the scaling factor must go to infinity since
lim,_,7 maxq |[Rm(t)| = oo for the unnormalized flow by Theorem 14.1 of
[H1]. In the non-singular case the rescaled positive curvatures stay finite, so
the rescaled negative curvatures (if any) go to zero. Thus the limit of the
normalized solutions has non-negative sectional curvatures.

Now a complete manifold of non-negative sectional curvature and finite
volume must be compact. Then it is proven (see [H2]) that either it is flat,
or it splits as a product (or a quotient of a product) of a positively curved
surface S2 with a circle 1, or it has strictly positive curvature. Since a flat
three-manifold is a quotient of the three-torus, it cannot have a metric of
positive scalar curvature; but our metrics in the sequence do, and since the
limit is compact it is the same manifold. The case of a product S2% x S?
clearly cannot be non-singular in our sense. Since the limit is compact
convergence takes place everywhere, and this makes the cosmological term
the same as the average scalar curvature in the limit; thus the limit is also
a non-singular solution of the normalized flow in this case, which rules out
S2 x S!. The remaining case of strictly positive sectional curvature is the
only one that can occur in the limit. Thus the limit of the solutions around
(P;,t;) is one which itself goes to constant positive curvature as the new
time ¢ — oo. But then the original solution did also by [H1]. This finishes

the case P of positive curvature.
6. Zero Curvature Limits.

Next consider the case R — 0 as t — oo; this is the case Z of zero curvature.
Again we can take a limit around points P; as origins and times ¢; as initial
times whenever the injectivity radius at all P; at times t; is at least some
fixed § > 0. Since R — 0 for each solution in the sequence, the limit has
R > 0; likewise since 7 > R for each solution in the sequence, the limit has
r > 0 also. We want to claim this limit has non-negative sectional curvature.
If this is true we will be done in the same way as the positive curvature case.
When we want to use our pinching estimates, we can rescale the initial data
to have all sectional curvatures bounded in absolute value by one.

To see the limit has non-negative sectional curvature, consider the un-
normalized flow of the original solution. Its volume V' now changes. We
consider three cases. First suppose there is a sequence of times t; — 00

Non-singular solutions of the Ricci flow on three-manifolds 703

where V(t;) — co. In this case, because

dy

@ =V

we find

V(¢ t
In V(O)) =—/0 r(t)dt

and we icti
' e would get a contradiction unless there were another sequence of

times ¢ t
o hm;;t—c;fcic;l when r(t.k) < 0. Choose points P, at these times tx to take
e normalized flow. Normalizing by a factor does not change

r(tx) < 0. On the other hand r(#,) > R({ »
normalized flow: so to summarizg k) 2 R(t) and B — 0 as ¢ — oo for the

r(tx) = 0 and R(t) -0 as k— oo

for the normalized flow. Now

/R—R:/r—R=[r—R]V

and V is constant for the normalized flow. This gives
/ R-R—-0 as k— oo

at the sequence of times 7, — oo. Note that R — R > 0. As we take th
> 0. e

ut this does not matter; we still get

[r=0

for the limit of the normalized solutio

Now consider.the unnormalized limit
R=0att=

nsatt=0. But R>0,soR =0.

flow; we still have R > 0 fo
. ; > r all ¢
0. By the strong maximum principle applied to e

OR )

this can only happen if the metric is flat, since the 1

T can only imit flow exists for
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The second case is where for the unnormalized flow we can find a se-
quence of times t; — oo when V(t;) — 0. In this case before we rescale all
the eigenvalues of the curvature operator lie in the region where

R> X[lnX -3

(neglecting the improvement with time). Pick a sequence of points P; where
the injectivity radius is at least some § > 0 at time ; for all § — oco. Since
V(t;) — 0, when we rescale we expand, which reduces curvature. We claim
the limit has non-negative sectional curvature. For if the maximum value
of X does not go to infinity in the unnormalized flow, it must get rescaled
to zero to control the volume; while if the maximum value of X does go
to infinity, in the unnormalized flow the maximum value of R will go to
infinity even faster from the pinching estimate, and when we rescale we
keep R bounded so X will go to zero in this case also. Thus in either case
the limit has non-negative sectional curvature.

The third and final case is where the volume V for the unnormalized flow

is bounded above and below as t — oo by
0<e<V<<C<x

for some constants ¢ and C. In this case normalizing the flow only changes
quantities in a bounded way. Now we can use the time-improved pinching
estimate

R> X[InX +In(1 +1) -3].
There are two cases. If

X<_A_
— 1+t

for any constant A then X — 0 as t — oo and the limit has non-negative
curvature. On the other hand if we can pick a sequence of times ¢; — oo
and points P; where X; = max X at time ¢, satisfies

Xi(1+t;) = o0
then when R; = R(P;) we have
R;/X; — o0
from the time-improved pinching estimate

R

= ZhX(1+0]-3.

Non-singular solutions of the Ricci flow on three-manifolds
But R; < C since we don
Thus the limit has non-neg
others.

?
t need to normalize, and this shows X, — ¢
] :

7. Negative Curvature Limits.

Finall i i
el ty;&:;:}r}n; tot;he Interesting case where R increases monotonically to
SS than zero. By scaling we ca, ?
: i ; n assume R — —3,
lelzts;ag;enge of points P; and times t; where the injectivit; i i
e 0 > 0, and take the limit; we call this a non-collapsing limit
Lemma 7.1. In the negative case R —

hyperbolic with constant curvature \ = ~3 all non-collapsing limits are

=v=-1.
Proof. Recall the evolution equation for R
SN
57 =AR+2|Re |2+§R(R—r) .

fr . .
om which we get the ordinary differential inequality on R that

d « 2. .
Since R < —3 we have

d . V

ERZ2(7'—R).

This makes

/OOO(T~R)dt<oo

which forces r to be near —3 most

. of the ti
find a time T so that for ¢ > T © time. In fact for any & > 0 we can

t+1 3
og/t (r~R)dt<e.
We can also make R lie in the interval

—-3-e<R<-3

ative sectional curvature in this case as in all the

radii are all at
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for t > T, and then
t+1
_55/ (r+3)dt<e.
t

When we pass to the limit, the cosmological factor r(t) on the limit satisfies

t+1
/ (r+3)dt=0
t

on every time interval, and thus r = —3 on the hr.mt.. -
Now going back to the flow before we take a limit, we

/ R= / r
since r is the average of R. Also
|[R-r|= |(R—R) — (’I‘—R)l < (R—R) + (T—R) .
Integrating over the manifold
/|R—r|dv§/(R—R)dv+/(r—R)dv
which gives
/|R—r|dv§2(r—R)V.

Integrating in time as well gives

/ |R—r|dvdt < oo .
When we pass to the limit of a sequence ¢; — o0 of translates we find

/ |R—r|dvdt =0

= aximum
for the limit flow, which makes R = r = —3. Now the strong m

2 | = the
principle applied to the evolution of R shows | Rc | = 0 as well. Thus

=v=- imed.
limit metric has constant curvature A = p =v = 1 as clai

78
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8. Rigidity of Hyperbolic metrics.

We can define the topology of C*° convergence on compact sets for tensors
on a Riemannian manifold by the seminorms C* (K) for compact sets K and
integers k, where for a tensor 7 with covariant derivatives DT we have

k
”T”Ck(ic) = Z s}ép DT .

i=1

We can also define the topology of C* convergence on compact sets for maps
F : M — N of one Riemannian manifold to another. For any compact set
K in M and any two maps F and G put

dc(F, G) = sup d(F(X), G(X))
XeK

where d(Y, Z) is the geodesic distance from Y to Z on N, Recall that the
space J*M of k-jets of paths on M is the collection of all

(P, J1,J2,...,J’“)

where P is a point on M and Ji is a tangent vector for 1 < ¢ < k; if P(t) is
a path in M parametrized by ¢ then the -th covariant derivative

d'P -

- = Jz

dt?
is its i-jet, so that J! is the velocity and J2 is the acceleration, and so on.
Amap F: M - N clearly induces a map JXF : J*M — JEA called its

k-jet extension. Consider the unit ball BJFK of all k-jets (P, J1,.. | J*)
with P € K and

PP <
Define the k-jet distance between F and G on the set K to be
de(IC) (F, G) == dBJkK:(JkF, JkG) .

Then convergence in the metrics C* (K) for all k and K defines the topology
of C*° convergence on compact sets for the space of maps.

Now we can state the basic rigidity results we will use. These results g0
back to work of Mostow.
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8.1 Rigidity of Hyperbolic Manifolds. If a map of a large enough part
of one complete hyperbolic manifold with finite volume into another with no
fewer cusps is close enough to being an isometry, then there exists an actual
isometry between the manifolds. Specifically, for any complete hyperbolic
manifold H with finite volume with metric h, we can find a compact subset
K of H, an integer k and a § > 0 with the following property; if F is a
map of K into another complete hyperbolic manifold H with no fewer cusps,
finite volume and metric h such that

then there is an isometry I of H to H.

F*h—h

C*(K)

8.2 Rigidity of Isometries. For any complete hyperbolic manifold with fi-
nite volume H and metric h, we can find a compact subset K of H with the
following property; if F' is an isometry of K into H, so that F*h =h on K,
then there ezists a global isometry I of H to itself with F =1 on K.

We can combine these results in the following corollary.

8.3 General Rigidity. For any complete hyperbolic manifold H with finite
volume with metric h we can find a compact set K so that, for every integer
¢ and every € > 0 we can find an integer k and a 8 > 0 with the following
property; if F' is a map of K into another complete hyperbolic manifold H
with no fewer cusps (than 'H,) finite volume with metric b such that

then there exists an isometry I of H to H such that

F*h—h

C*(K)

dce()c)(F,I) <€.

Proof. First we can require that K, k and & be chosen well enough from the
theorem of Rigidity of Hyperbolic Manifolds to guarantee that ‘H and H are
isometric by an isometry I, and with K large enough so that we also have
the result on rigidity of isometries. Then we can assume ‘H = H. For this
K, suppose there is some £ and € > 0 so that no matter how large we take
k or how small we take § > 0 we can still ind F mapping K into H with

|F*h — hllorey <6

Non-singular solutions of the Ricci flow on three-manifolds 709

and

doerey(F, 1) > &

fo . . .
ca; aéln ﬁome}tlrles I of H to itself. Taking a sequence ki - ocoand 6; — 0

i | ; we

uch a sequence of maps F; and extract a subsequence C(])nverg,ent

to a map F, with FXh = h on K
= . T ; .
H to itself with Fl, : I on K. For th}ils‘,3 I;' there exists a global 1sometry I of

deegey(Fj, 1) < e

when j is large enough contradicti i
N g radicting our assumption. This proves the corol-

9. Harmonic Parametrizations.

In ord o
il nezrdt? show that I?YPerbohc pleces persist in the solution as t — co. w
© use a special parametrization given by harmonic maps , we

Theorem 9.1. j
o Stmctl; ;e f:t /\;12 'be‘a compact Riemannian manifold with boundary
Tt evny é]~zve A/:ccz curvature and strictly concave boundary. Then
e ot ng on l close enqugh to the original metric g we can find a
umgue (o (Ag/t c;ps close to t}‘ze identity) diffeomorphism F of M to itself
b i an.d M ;5:2 -—>h(M,§) is harmonic and F takes the boundary OM
el es the frec,f boundary condition that the normal derivati

NI of F at the boundary is normal to the boundary e

Proof. We apply the inverse function theorem. Let &

?cfl(rin?ilr)lsd Zf (;\/t It3o itself whic.h take OM to itself. Then(g/(t}\?lf\g/)\/? )eizhae ;I;Z(;e
o tin tz ! gaen tar;ach manifold in an appropriate norm such as C2te op Ll)—
o (angent _%jc:ato @t(M,BM) at the identity is the space of vef:—
Fe oM om) s O&%,h : nﬁjn{ At; the boundary. Consider the map sending
Loglacton oo ept' | , (DN F) “} consisting of the harmonic map
bron of 1 oo the ta dg n I%V component (in the target) of the normal deriva.
e o ison'lorphis n?ra};. o e F)nly ‘need to check that the derivative of this
b s an Iso e ldentlty.. The resulting operator is an elliptic

y value problem whose kernel is the space of solutions of

AV +Re(V)=0 onM
Vi=0 atom
(DNV) =I(V) =0 at oM
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where V| is the normal component of V, (D NV) || is the tangentlai con;folrllizrrxrtl
of the normal derivative of V, Rc is the Ricci tensor (as an audom (]_:;S an
of TM) and II is the second fundamenta.l form of the boun ar); oa o
automorphism of TOM). Notice that Killing vector fields tangent to

boundary automatically satisfy these equat.ions. '
Now using these equations and integrating by parts gives

//M |DV|2=/6MRc(V,V)+/6MH(V,V).

If Re < 0 and II < 0 we conclude that the kernel is trivial. Since this
elliptic boundary value problem is self-adjoint (because of the free boundary
condition) the cokernel is trivial also. This proves the theorem.

Definition 9.2. Let K be a compact manifold with boundary 0K and r.net-
ric h, and let M be a compact manifold without boundary and metric g.
We s,ay a diffeomorphism F from K into M satisfies the constant mean

curvature boundary conditions if
(1) F(9K) is a constant mean curvature hypersurface in M, and

(2) the area of each component of F(9K) equals the area of the corre-
sponding component of 9K, and

(3) the normal derivative of F' at 6K is normal to the boundary image
F(0K).

Theorem 9.3. Let K be a compact manifold with a metric f’Ll of stZzlz
negative Ricci curvature and a strictly concave boundary. Thc'ar;b i;here (lalmo ol
number k and a constant § > 0 depending only on K and h wit / e ]}omet”ci
property. If M is a compact manifold with a one-paramfzter. family o etric
gt fora <t < 3, and if at t = o we can find a harmonic dzﬁeomoryl)) ndara
of K into M with metric g, satisfying the constant mean curvature bou Yy

conditions and with
“FZQa - h”ck(n) <90

then we can extend F, to a one-parameter family F; of harmonic dzﬁeon;oré—3
phisms of K into M with metric g; satisfying the constant mean curvatun
boundary conditions and varying smoothly in t with

”Ft*gt - h”ck()c) <46
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on a mazrimal interval o < t < w; and either w = B or else

Proof. Suppose at some time t = 7 we have a harmonic diffeomorphism F, of
K into M with metric g satisfying the constant mean curvature boundary
conditions. By the inverse function theorem we can first find a constant
mean curvature hypersurface near Fr(0K) in M with the metric g for ¢t
close to 7 and with the same area for each component; note that since 9
is strictly concave and F, is close to being an isometry we know F.(0K)
is also strictly concave, and the foliation of a neighborhood of Fr(0K) by
constant mean curvature hypersurfaces has the area, as a function with non-
zero gradient, which allows us to adjust the area as we choose. Then by the
inverse function theorem again in Theorem 9.1, we can find the harmonic
diffeomorphism F; near F which takes 8K into the constant mean curvature
hypersurface we just found and also satisfies the free boundary condition.
Thus the set of ¢ where we can extend the map as desired (except for the
norm inequality) is open. Next we show it is closed also.

Suppose then we have a diffeomorphism F; such as we desire for
a<t<w. We claim we can take the limit of F; as t — w to get the
map we want at w. Note that the F, satisfy

17 9 — h”ck(lc) <6

and the metrics g; for a < ¢ < B are uniformly equivalent; this implies that
the F} are equicontinuous, and we can find a subsequence t; — w for which
the F; converge uniformly to a map F,,. We can then in fact choose a further
subsequence so that the F, converge to F,, in Ck*l(lC), because the bounds
in C* imply equicontinuity in C*~!. The the limit map has

”Ft:gw - h”C"‘l(IC) <4é.

We need to check that F, is still a diffeomorphism. We at least know F,is
a local diffeomorphism, and E, is the limit of diffeomorphisms Fi,, so the
only possibility of overlap is at the boundary. Here we use the fact that we
know F,,(8K) is still strictly concave if k is large and § is small, and this
prevents the boundary from touching itself. Thus F, is a diffeomorphism.
A limit of harmonic maps is harmonic, so F,, is a harmonic diffeomor-
phism from X into M with the metric 9w- A limit of constant mean curvature
hypersurfaces with the same area is again a constant mean curvature hy-
persurface with the same area, so F,(0K) has constant mean curvature and
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the same area as OK. Likewise F,, continues to satisfy the free boundary
condition that the normal derivative of F,, at K is normal to F,(0K).

We can now use our previous argument, where k — 1 suffices in place of &
if we take k one bigger to start, to see that F,, extends to harmonic diffeo-
morphisms F; for ¢ near w satisfying the constant mean curvature boundary
conditions. Then the uniqueness part of the inverse function theorem in
Theorem 9.1 guarantees that the previous family F; for a < ¢ < w agrees
with this new family around w where they overlap. This makes Fi, the limit
of the F; in C*®(K), not just in C*~1(K). Now we get

1590 = | gry < 6
as desired. This allows us to continue the family F; until w = g or
1290 = | gy = 6

which finishes the proof.

Recall that a sequence of manifolds M, with metrics g; and origins P;
and orthonormal frames F; at P; converges to a complete manifold M with
metric g and origin P and frame F if we can find a sequence of compact sets
K; in M exhausting M and a sequence of diffeomorphisms F} of neighbor-
hoods of K; into M, so that F; takes the origin P to the origin P; and the
tangent map TF takes the frame F to the frame F;, and so that

17595 "gllck(ic) —0

as j — oo for all compact K in M and all integers k.

We can extend the metric g on M to a metric on the orthonormal frame
bundle using the connection to define horizontal and vertical subspaces, and
using the usual metric on the orthogonal group which appears as the fibres.
This allows us to define the distance between frames. Now we state a result
which lets us replace the approximating maps in the limit of a sequence of
manifolds with ones chosen systematically, at least in our case.

Theorem 9.4. Let M; be a sequence of manifolds with metrics g; and ori-
gins Pj and frames F; which converge to a complete manifold M with metric
g and origin P and frame F. Suppose the limit M contains a compact subset
IC where the Ricci curvature is strictly negative, and K has a smooth bound-
ary OK which is strictly concave, and K contains the origin P. Then we can
find a sequence of maps Fj from K into M; for j which are harmonic dif-
feomorphisms and satisfy the constant mean curvature boundary conditions,
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and which have d(F;(P). P;
also have (F5(P), i) = 0 and d(TFJ'(f)y}—j) — 0 as j — oo, and

as j — oo for all integers k.

V};;(ﬁ)féoilsliiz tBIC is strictly concave, we can foliate a neighborhood of 9K
mean curvature hypersurfaces where the
. ' area A has a non-
Zero g}rla;ile?nt. When the approximating maps F; : K C M — M, are clgge
enough to 1sometries on this collar of 9K ics g; ;
: the metrics ¢; on M wi
eno , g; on will also ad-
Oflalxéeatr)l;yt}clzn.stant m:an curvature hypersurfaces foliating a leeighborhood
, Inverse function theorem. Since the area A i
non-zero gradient, one of these will hav. 20 O Moremar s
e the same area as K. Mor
. eover we
IC;I;, c}l’:.m(;g’z tl'le mgp F; by an amount which goes to zero as 5 — oo so that
metricj }n ) ) 1s'l;;hl;s constant mean curvature hypersurface. The pull-back
;95 Will be as close as we lik i :
; e like to g, so we can again ch
an amount which goes to zero as : e
‘ J — 00 80 as to make F; a h ic di
feomorphism and satisf 2 duty conditions.
y the constant mean curvature bo iti
; : undary condit
gy the l1ln\(;er}s7e(il)l)nct1on theorem result in Theorem 9.1 Beforeywe modli(f)irtl;i
5 we had F; = P; and TFj(F) = F, .
' i = Jj, and we only ch i
amount going to zero; so after the change i;le have Y chanee £ by an

d(F;(P),P;) -0 and d(TF;(F),F;) - 0

as desired. Also since : i ;
o we change F; by as little as we wish on K, we still

17505~ allongey — 0
for all k.

10. Hyperbolic Pieces.

g . .
; rl:}};ﬁose H is a complete hyperbolic manifold with finite volume. For all
Curvatle;noigh A f> 0 we can truncate each cusp along a constant mean
Te torus of area A which is uniquely determi i
¢ ¥ determined; the remainder we
dz}r;zrtle:i l()));l '};24. I.;Xs A —6 0 the H4 exhaust H. The ch’oice of A does not
. €0 > 0 is the Margulis constant. th i
. 0> 0is : , then once we are in
cusp at a point with injectivity radius less than €0, We stay in that cusp az
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long the injectivity radius is less than 9. Hence we can truncate cusps at
constant curvature tori of area A < Ap = cs% where c is a universal constant.

Now we prove the persistence of hyperbolic pieces. Consider all the
possible hyperbolic limits of a given solution to the Ricci flow, and among
them choose one H with the least possible number of cusps. Suppose the
times t; have the manifold M with the metrics g(t;) and origins P; and
frames F; converge to H with hyperbolic metric h and origin P and frame
F. Pick a number A > 0 to truncate cusps, an integer £ and an ¢ sufficient
to guarantee from Theorem 9.1 the uniqueness of the identity map I among
maps close to I as a harmonic map F from H4 with the given hyperbolic
metric h to itself where F satisfies the boundary conditions of taking 0H 4
to OH 4 and with the normal derivative of F at the boundary of the domain
normal to the boundary of the target. Then choose k and ¢ > 0 from
Theorem 8.3 on rigidity.

By Theorem 9.4 we can guarantee for all large enough j the existence
of harmonic diffeomorphisms F; of H4 to a manifold M4(t;) obtained by
truncating M with metric g(t;) at constant mean curvature tori of area A,
with F; taking 8H 4 to M 4(t;) and normal to the boundary at the bound-
ary as above. Since the metric g(t) varies smoothly with ¢;, by Theorem 9.3
we can smoothly continue the map Fj to a family Fj;(t) with Fj(t;) = F; and
with Fj(t) having all the above properties. If for some j we can continue
all the way as t — oo, the hyperbolic piece persists. Otherwise we get a
contradiction as follows.

For each j large enough, we can continue the family Fj(t) fort; <t < t;#

where tf is the first time when

IF5(8)*9(t) — Pllcrae,y = 0

by Theorem 9.3. Consider the new sequence of the manifolds M with metrics
g(tf) and origins Fj (tf)P and frames T'F} (tf)]—' . Since the Fj (t;#) are close
to isometries, the injectivity radii of the metrics g(tjé) at Fj(tf)P do not
go to zero, and we can extract a subsequence which again converges to a
hyperbolic limit H with metric A and origin P and frame F. The new limit
H has at least as many cusps as the old limit H, since we chose H with as
few as possible.

To simplify the notation, write gf = g(t}#), F]# = Fj(tf), PJ# = Fj(tf)P
and ff =TF; (tf)]—' . Then the maps FJ# are harmonic diffeomorphisms

of H 4 with metric h into M with metrics gf satisfying the constant mean

curvature boundary conditions with FJ#P = Pj# and TF J#f = ]-'J#, while
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the sequence of manifolds M with metrics gJ# and origins P¥ and frames
J

# : v
F] converges as j — oo to the manifold H with metric & and origin P and
frame F. We also know that

|ty o -

orK)
for each j.

& ?);1 the c}eﬁnijion of convergence, we can find a sequence of compact sets
! 4 dx afu’%tmg H and contflnlng P, and diffeomorphisms f’; of neighbor
oods of K; int i P = p# F.F ,
j B.O A:t with F;P = P ,~and TFHF = .7-']# such that for each

compact set X in H and each integer k

~*#E

2

39 ~

Ck(K) —0
:j j— go Fox.' large enough j the sets E(E]) will contain all the points out
any fixed distance we need from Pj#; and hence

F5(K;) 2 F¥ (Ha)

since H4 is at bounded distance fro # #
sonably close to preservi e Then ud .7 o Fj# ition
preserving the metrics. Then we can form the composition
R A H
Hi=F'oFf Hys—H.

Since the Fj are as close to preservin
we have

for large enough j. Then a subse
. ‘Subsequence of H; converge at least in Ck—!
to a map Hy, of H,4 into H. ’ ® e )

X V\;e can improve this convergence to C'® by using the theory of elliptic
oundary value problems. The convergence of the H; to H,, lets us pick a

ﬁilt: number of coordinate charts on H so that their pull back to charts on

[ by the F; are such that for any fixed point X in H4 the F¥ take a fi
neighborhood of X for all | i pacts, L e
© : arge j into one of these pull-back charts. In this
chart the estimates on lower order derivative :

. on 1 s of the F* give estimates on
the higher order der1vat~1ves. On the other hand for largje J we can estimate

as m . . ) =1 .
any derivatives of F} or F;" as we like. Combining these gives uniform

g the metric as we like, for any § > 6

-~

C*(H,4) <9

Hh—h
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ivati F-lo ¥ tt
estimates on all derivatives of H; = F; " o F; : It E(leows that for a better
subsequence we can make H; converge to He in C #(’H). .
The limit map will itself be harmonic since the F)" are harmonic and the

F; are as close as we like to preserving the metric. Moreover we still have
J

| E2R 1

Cr(Ha)

in the limit. Equality here rather than inequality prevent§ H, from being an
isometry. The map Ho, will still be a diffeomorphism. It is clear there can be
no overlap in the interior, and the boundary S%annot have any overlap either
because it is strictly concave. Now each Fj satisfies the constant mean

curvature boundary conditions, while ﬁj is as close to preserving the metric
as we like, so the limit Ho, will also satisfy the constant mean curvature
?
iti to Ha.

boundary conditions. Therefore H, takes Ha

The rigidity result in Theorem 8.3 guarantees that for A small enough
and any ¢ and ¢ > 0 we can find k¥ and § > 0 so that the above Heo
guarantees the existence of an isometry I of H to H with

dCl(’HA)(HooaI) <eg.

In applying rigidity we use the fact that the limi't H has as fe\:hc;ljps as
possible, hence no more than H. We can use I to identify H4 wi d{;f.f

The contradiction comes from observing that we now havg two di 1eo—
morphisms, namely Ho, and the identity I, qf H 4 to itself which are close
but different, and both are harmonic and satisfy thF constanjc mearn c.tfxrva—
ture boundary conditions. The only way around'thls .contridlctﬁgn 1; i ox:z
family Fj(t) extended to t — oo without a stopping time ¢7. This shows

rbolic piece persists. ‘

leas;c?\/f;n:a}rllyf;ntinue I'c)o foril other persistent hyperbolic pieces in the same
way as long as there are any points P; outside of the chosen plecesow};z}:e
the injectivity radius at times t; — oo are all at lea§t some fixed p ih .l S(te
only modification in the proof is to take tl'le new l.1m1t ’H 'to have the lea
possible number of cusps out of all remaining possible limits.

11. Variation of Area.

Now we wish to show that the boundary tori of any persistent hyperboic
piece are incompressible, in the sense that the fundam.ental group of the
torus injects into that of the whole manifold. To see this, we shall assume
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that some curve in the torus bounds a disk in the manifold, and obtain a
contradiction.

Let Hp be a hyperbolic piece of the manifold M truncated by boundary
tori of area B with constant mean curvature. We denote by H% = M — HE
the part of M exterior to Hp, ie. the complement of the interior. By
Van Kampen’s Theorem, if ; (OHB) injects into m (H%) then it injects into
m1(M) also. Let 7 be a torus in OHg. If m1(7T) does not inject into m, (H%),
then by Dehn’s Lemma the kernel is a cyclic subgroup of 71 (7') generated by
a primitive element. We shall show this leads to & contradiction. The work
of Meeks and Yau [M-Y] shows that among all disks in H% whose boundary
curve lies in 7 and generates the kernel, there is a smooth embedded disk
normal to the boundary which has the least possible area. Let A = A(t) be
the area of this disk. This is defined for all ¢ sufficiently large. What we
shall show is that A(t) decreases at a rate bounded away from zero.

Theorem 11.1. For every § > 0 there ezists a time T such that fort > T

dA
—_— < —
S (27 - 48)

in the sense of the lim sup of forward difference quotients.

Now it is clearly intolerable that such a situation should go on forever as
¢t — o0, since A > 0. This contradiction will show that 71(7T) in fact injects
in m1(Hp) as we desire. Now we turn to the proof of Theorem 11.1.

Let us compute the rate at which A changes under the Ricci flow. We
only need show A decreases at least at a certain rate, and since A is the
minimum area to bound any disk in the given homotopy class, it will suffice
to find some such disk whose area decreases at least that fast. We choose this
disk as follows. Pick the minimal disk at time to, and extend it smoothly
a little past the boundary torus. For times # a little bigger than tg, the
boundary torus may need to move a little to stay constant mean curvature
with area B as the metric changes, but we leave the surface alone and take
the bounding disk to be the one cut off from it by the new torus. There will
be two contributions to the change in the area A, one from the change in
the metric and the other from the change in the boundary.

The change in the metric comes from the normalized Ricci flow

Bgtg(x’ V)= grg(X, Y) - 2Rc(X,Y) .
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Choose an orthonormal frame Fi, Fs, F3 at a pc'>int P on the surffdce so that
F} and F; are tangent to the surface while F3 is normal, and write

RC-,: = RC(F‘h -FZ)

for the components of the Ricci tensor. Then the rate of change of the area
element da on the surface is

2
%da = I:é-r — Rcy — RCZ] da,

and the total change of the area of the surface due to the change of t.he metru;
g comes from integrating this over the surface. Alsp the change 1n1 ar.ia e;/
the boundary from the motion of the boundary with a norme}x;l ve oc1fyt M
along a piece of length ds is given by Vfis, and -the tot.taul c ipge o the
area from the motion if the boundary is given by integrating this over
boundary curve. This gives the formula

ﬁ://(gr—Rq—RC?.)da'*‘/Vds'
dt 3 8

Now write the sectional curvatures as
Rmy = Rm(Fy, F3, F», F3)
Rmgy = Rm(F3, Fy, F3, F)
Rm3z = Rm(Fy, Fp, F1, Fy).

Then
Rey = Rmo + Rmg
Reyg = Rmy + Rmg
and
Rcy + Reg = Rmy + Rmo + 2Rmg.
Since

1
Rmy + Rmy + Rm3 = 5 R

where R is the scalar curvature

1
Rc1+R62=§R+Rm3'

Non-singular solutions of the Ricci flow on three-manifolds 719

This gives

dA 2 1
d—t—//<§r—§R)da—-//Rm3da+/8Vds.
The Gauss curvature of the bounding disk is

K = Rms + detII

where det II is the determinant of the second fundamenta) form I1. Since the
bounding disk is a minima) surface

detIl <0 .

The Gauss-Bonnet Theorem tells us that for a disk

//Kda+/kds=27r
o

where k is the geodesic curvature of the boundary. This gives

dA 2 1
- < —_r - = — .
dt_//<3r 2R>da+/akds+/6l/ds 27

Consider that for a negative curvature limit under the Ricci flow
r——6 and R— -6

and R > R. Thus for every € > 0 we can find a time 7 such that for T>t

2 1
“r—R< —(1—
37 2R_ (1-¢)

//(gr—%R>da§—(1—s)A.

The geodesic curvature k of the boundary of the minimal disk is the accel-
eration of a curve moving with unit speed along the intersection of the disk
with the torus; since the disk and the torus are normal, this is the same as
the second fundamental form of the torus in the direction of the curve of
intersection. Now if the metric were actually hyperbolic, the second funda-
mental form of the torus would be exactly 1 in all directions. Hence we can
find a time T’ again such that k < 1+4¢ for T > t. This makes

/kdsg (1+6)L
a

and
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where L is the length of the boundary curve. Also since the. metric is as
close to hyperbolic as we like, its change under the Ricci flow is as small as
we like; so the motion of the constant mean curvature torus. of fixed area B
will have a normal velocity V as small as we like. Thus again we can find a
time T such that for ¢t > T we have |V| < e. This makes

/VdsSsL.
g

Combining these estimates, we find the following.

Theorem 11.2. For every € > 0 there is a time T so that fort > T

a4 <(1+4+2)L-(1-¢)A-2n
dt
forallt >T.

In the next section we shall find an estimate saying L is not much bigger
than A, and this will finish the proof of Theorem 11.1.

12. Bounding Length by Area.

It remains to bound the length L of the curve of intersection of the .mini‘mal
disk with the torus in terms of the area A of the disk. Con.sider th'e situation.
For large t the metric is as close as we like to hyperbol'lc; notc just on ’H'B
but as far beyond as we like. Thus for a long distance into H§ the metric
will look nearly like a hyperbolic cusplike collar. . o
We construct a special coordinate system on the cusplike tube projecting
beyond the torus 7 in OHp as follows. The universal cover of T can be;
mapped conformally to the z-y plane so that the deck tr.ansformatlons 0
T become translations in = and y, and so that the Euclldeax} area of the
quotient is 1; then these coordinates are unique up to a translation. Then we
extend to a third coordinate z, starting with z = ¢ on the torus 7 where'C is
chosen so the torus in the hyperbolic cusp with the same z and y translations
at height ¢ has the same area B, and so that the lines wbere both z and y
are constant are geodesics perpendicular to 7 and the dlstanc.e ds = dz/ z
along these geodesics, the same as in hyperbolic space z > 0 with metric

9 dz? + dy? + d2?
= Z2 .

ds

By taking t large we can make the metric in as large a neighborhood of T
as close to hyperbolic as we wish, in the sense that the sectional curvatures

R
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are as close to —1 and as many covariant derivatives of the curvature as
close to zero as we wish; this allows us to make these good coordinates for

¢ < z < ¢* for as large a ¢* as we wish. The translations from 7 act as
isometries on the set

all =
all y
(<z< (¢

and the resulting quotient maps into M as above. The metric has the special
form

- 2
z

where g, and gyy are close to 1 and gzy 1s close to zero. Moreover since
we have bounds on the curvatures and their derivatives, we can make any
derivatives of g, 9zy, O gyy as close to zero as we like in these coordinates
by taking ¢ large.

Now consider our minimal disk, and let L(z) be the length of the curve of
intersection of the disk with the torus at height z in our special coordinates.
We prove a monotonicity formula.

12.1 Monotonicity Theorem. For every € > 0 and every (* we can find
a time T so that for all z in { < z < ¢* and all t > T the function

Z1te /z L(w)dw
zZ — C C w

is monotone increasing in z.

Proof. We construct a comparison disk as follows. For almost every z the
intersection of the disk with the torus at height z is a smooth embedded
curve or a finite union of them. If there are more curves than one, at least
one of them is not homotopic to a point in 7, and then it must represent
the primitive generator in the kernel of m1(7) that dies in 71(H%), and in
addition part of the original disk beyond height z continues to be a disk
that bounds it. We extend this disk back to the initial height ¢ by dropping
the curve straight down. Let f(z) be the length of the curve we picked at
height z; of course E(z) < L(z) with equality if it is the only piece. Let
L(w) denote the length of the same curve in the z-y plane dropped down
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to height w for ( < w < 2. We need to be fairly delicate here in estimating
the length L(w). In the hyperbolic space we would have

Lw) = = L(2)

z
w
exactly. In our case there is a small error proportional to f/(z), and we must
also take it proportional to the distance z—w by which it drops. This comes
from estimating the z-derivatives of gz, gzy, gyy in our special coordinates.
Then for every § > 0 and every ¢* we can pick T so that for t > T' we have

|E(w) — %Z(@\ < 6(z — w)L(2)
for all z and win ¢ < w < z < ¢*. Now given ¢ and ¢* pick § = 2¢/¢*.
Then

2e2(z — w)L(z)
5 .

|Zw) - 2 1) <

w

This makes

L 2e(z- w)] .

Now we are ready to do the comparison.

When we drop the curve vertically for our comparison surface we get an
area A(z) between ¢ and z given by the integral of the length L(w) times
the vertical distance ds = dw/w, so

Az) = /C L(w)dw

w

On the other hand if we do not drop vertically we pick up even more area,
so the area A(z) of the original disk between ¢ and z has

A(Z)Z/:ﬂw)ﬂ,

w

Now the original disk minimized among all disks bounding a curve in the
primitive generator of the kernel, and the comparison disk beyond the height
z is part of the original disk, so A(z) < A(z). This gives

/C w _/c w
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Now from our comparison of Z(w) to Z(z) < L(2)

/L(w)d"’<zf:<>/ 5w

and we evaluate the latter integral as

1

(1 255)(———)+5z<i—i
z ¢ 22

z —_— —_—
¢ [1 +eZ ¢
Cz ¢ '
This gives the estimate

CZL(u;)dws zzc [1+E(ZZC)JL(Z).

To finish the proof, let

which simplifies to

I(z) = /: L(wu)} dw

denote the integral. Then

Using the inequality

we find that

or equivalently

we have
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Thus
dI( )=L(z) > [ 1 B 1+5] I(2)
dz z ~|lz—¢ z

and hence

which shows that
Z1+EI(2)

z—(

i i * as desired.
is monotone increasing for { < z < ¢* as

Corollary 12.2. We also have

Zlte /" Lw)dw o er )
z2—=C Je wo

for{ <z <

the
Proof. The quantity on the left is monotone and approaches that on
T00f.

right as z — (.

Llte

— CA(z) > ¢°L(C) -

Proof. Recall

w

Z L(w)dw

(:() 0llal y 2. . or ever y (; “ we can ,i”(i (l'”,d 1 S0 tn,(lt ’()7 t > T

L(¢) S (14 8) A(Cy)
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Proof. The previous result gives

0= (3) Zpae

for all 2 > ¢. Take » = Cx with C# large so that z2/(z~
take € > 0 so small that (2/€)¢ is close to 1.

Now recall that we had

¢) is close to 1, then

%5(1+25)L—(1—6)A—27r

where § > 0 is as small as

we like, and we only need to show
Thus for any £ > 0 we are

this is negative,
in good shape unless

A< (1+¢)L

and hence we can assume

AC) <A +e9)L(¢)

since A(¢*) < A and L(¢) =

L. Assuming this now, we proceed. First we
show that for some large z th

e length of L(z) is not too great.

Lemma 12.5. For eve

Ty d > 0 we can find T and a ratio r so that if (/1 >
and (4 /¢ > r and ¢/

Cu > 7 then for some » between G4 and ¢*

uasa+®ng-

Proof. Let
X:inf{Liz) :c#gzgg*} .
Then
< L(w)dw
— > (¢* - X.
G w2 (€" ~¢x)

On the other hand

Az [ M
#
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and we can assume
A(C") < (1+¢)L(C) -
Combining these estimates gives that at the infimum z

L(z) < _1———1-_(+__17;)_ Ci L(¢)

and we can take € and r to depend on 4.

Now we pick another disk for a final comparison. We choose the height
z above, where L(2) is not too large, and move the curve there through a
small area to agree with the curve in the same homotopy class which is a
geodesic circle in the flat metric coming from our special z-y-z coordinates,
and then drop this geodesic circle vertically in the special coordinates to
complete the disk. Note two technical points. First the curve at the height
z where L(z)/z is minimal may not be smooth; this does not matter because
the estimate in Lemma 12.5 on L(z) will hold at least on a set of positive
measure. Second, if the curve at height z has several pieces, as before one
of them will lie in our homotopy class, and we can ignore the others.

Now we given an estimate on the area necessary to deform the curve in

the torus.

Theorem 12.6. Given an embedded curve of length L circling the cylinder
S x R of circumference W once, it is possible to deform the curve through
an area A < LW into a meridian circle.

Proof. Since the curve has length L, it is contained in a finite cylinder
of height L. The region between the curve and either end of this finite
cylinder is topologically another finite cylinder, and this gives the desired
deformation.

Corollary 12.7. Given an embedded curve of length L in a flat torus which
generates a non-trivial homotopy class whose geodesic circle generators have
length W, it is possible to deform the curve through an area A < LW into
one of these geodesic circles.

Proof. The torus is covered by a cylinder of circumference W where the
image of the fundamental group of the cylinder in the fundamental group of
the torus is the class of the curve. The embedded curve in the torus lifts to

—— Y pp—
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an . .
theeéﬁi‘)sd(.ied }cl:urve in the cylinder. By the previous result we can deform
€ 1n the cylinder through an area A < LW into a meridian circle

?

and this descends to a defi i
ormation of the cu i
more area into a geodesic circle, rve in the torus through no

. t\}i::;h th;f estimate on jche flat torus we return to the argument. Let G
o itserllfg tzf .thte;I ge}c;desm circle in the cusp at height 1 for normal'ization
gth 1s the hyperbolic metric in the t i i '

: ' . . e torus at height 2 will be G /2.
aLtulrn :)n(:tilc a(;ld the hyperbohc metric will differ from each other by aefact/cfr
mQtrics/c ;—f where ¢ is small for ¢ large. The area in the torus in the flat
0 deform the curve of length L(z) in our metric, which is at most

(1+0)L(2) in the flat metric, ¢ i
tot . .
et 3 poumad o the geodesic circle of length G/z in the flat

(148G L(2)/~

and the area in our metric will
. not be greater by more than a f
. t 2
This gives a bound on the area of deformation which is retor (140"

(1+6)3GL(2)/z .

The area to drop the geodesic circle fro

bolic metric is exactly m height 2 to height ¢ in the hyper-

“(e-1)

and the area in our metric is not

Moreover we can drop 1 /% to estim
metric by

greater by more than a factor (1 + 5)2.
ate the area of the vertical column in our

(1+8)3%G/¢ .

Hence comparing the area of the mini

enc mal di i
dick fuat g th e disk to that of the comparison

Az) < (1+6)3%¢ [@ + ﬂ :

But from Lemma 12.5 we have

Liz) <@ +5)~Lﬂ

C*
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and from Corollary 12.4 we have
L(¢) < (1+6)A(S#)

and A(Cy) < A(z) since ¢4 < z. Thus

L) , 1

5 —

L(¢) < (1+46)°G [?—i- c

Now since G is fixed from the geometry of the limit hyperbolic manifold H
we can make

(14+6)°G/¢ <e

for any & > 0 by taking ¢ large. This enables us to take L({) as srr;xll aihwi
like by making ¢ large. Thus for any £ > 0 we can choose ¢ and T so tha
for t > T we have L(¢) < e. But in this case the formula

%‘;5(1+25)L—(1—5)A—27T

works since (1 4+ 26)L is very small and we still have the good term —2.

This finishes the proof. .
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