A PIECEWISE TORONTO SPACE

L. SOUKUP

ABSTRACT. We show that it is consistent that there is a hereditarily separa-
ble, 0O-dimensional T space X of cardinality wi such that for each uncountable
subspace Y of X there is a continuous bijection ¢ : Y — X and there is a
partition (Y;);<n of Y into finitely many pieces such that ¢ |'Y; is homeomor-
phism for each i < n.

1. INTRODUCTION

Two topological spaces X and Y are called piecewise homeomorphic iff for some
natural number n there are partitions (X;);<, of X and (Y;)i<n, of ¥ such that
X; and Y; are homeomorphic. An uncountable topological space is called piecewise
Toronto if its every two uncountable subspaces are piecewise homeomorphic.

There are spaces which are piecewise Toronto in a trivial way: they are piecewise
homeomorphic to D, where D,; denotes the discrete topological space of size k.
It is easy to see that such spaces are just the scattered spaces of finite height.
To exclude these trivial examples let us observe that an uncountable hereditarily
separable space can not be a scattered space with finite height and so it is not
piecewise homeomorphic to D, for any £ > w. In section 2 we show that the
existence of a hereditarily separable piecewise Toronto space is consistent with ZFC.
In fact, the space Z we construct in corollary 2.2 will have a stronger property: for
each uncountable subspace T of Z there is a continuous bijection ¢ : T — Z
and there is a partition (7});<, of T into finitely many pieces such that ¢ | 7T; is
homeomorphism for each i < n.

Our notation is standard, see e.g. [2]. We will also use the following pieces of
notion and notation.

For ¢ € Fn(wy, 2;w) write [¢] = {f € 2“1 : f D c}.

Let F : w; X w; — 2 be a function. F is nice iff for each {a, 3} € [wl]Q the set

Ap(a, 5) = {v <wi:F(a,v) # F(B,v)} is uncountable. For A, B C w; we write
FIAxB=0(F|AxB=1)iff F(a, ) =0 (F(e, 8) = 1) for each o € A and
B eB.

We say that F' is a HFD,,-function iff

Vf:w1§w1Vm<ng:w1Xm5w1VH:m—>2

da < ﬁ < w1 v] <m F(f(a)vg(ﬁaj)) :H(J)
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Let Z(F) = {F(a,") : a < w1} C 2%, where F(«,-) denotes the function defined
by the formula F(a,-)(§) = F(a,§).

Two functions Fy : Ag X By — 2 and F; : Ay x By — 2 are isomorphic,
denoted by Fjy & F}, iff there are bijections g : A — A; and h : By — B such
that F (g(oz)7 h(ﬁ)) =Fy (a,ﬁ) for each o € Ag and 3 € By.

2. GENERIC CONSTRUCTION

Theorem 2.1. If 2 = wsy, then there is a c.c.c poset P of size wo and in the
generic extension VT there is a nice HFD,,-function function F : w; X w; — 2
such that

(1) VX €[] IV € [wi]™ FF | (X x (w1 \Y)).
Before proving this theorem we give a corollary.

Corollary 2.2. If ZF is consistent then so is ZFC + there is a 0-dimensional,
hereditarily separable space Z such that

(1) for each uncountable subspace T C Z there are a continuous bijection
¢ : T — Z and a partition (T});<, of T into finitely many pieces such that
o [ T; is homeomorphism for each i < n. .

Proof of corollary 2.2. Assume that 2“1 = ws in the ground model, consider the
model V' obtained by applying theorem 2.1 and fix the nice HFD,,-function func-
tion F' : wy xwy — 2 satisfying (f). Let Z = Z(F). Since F is a an HFD,,-function,
it follows that Z(F) is hereditarily separable.

To check (f) let T = {F(«,) : @ € X} be an arbitrary uncountable subspace of
X. By (1) there is Y € [w1]<w such that F | (X x (wy \'Y)) = F witnessed by
bijections g : X — wy and h: w1 \ Y — wy.

Define the bijection ¢ : T — Z by the formula ¢(F(a,-)) = F(g(a), ).

By the choice of g and h for each o € wy and ¢ € Fn(wy, 2;w) we have

F(a,") D¢ <= F(g ' (a),") Dcoh,

and so
¢ =[coh]NT,
which implies that ¢ is continuous.

Fix an enumeration {¢; : i <n} of Y2, let T; = {fo, € T : &; C f,} and consider
the partition 7' = | J,,, T;.

To show that the map ¢ | T; is a homeomorphism between T; and Z; = ¢"'T;
we need to show that ¢”([d] NT;) is open in Z; for each d € Fn(wy,2;w). We can
assume that dUe; € Fn(wy,2;w) otherwise [d]NT; = 0. Let d =d [ w1 \ 'Y and
¢ =d oh™!. Since d’ = ¢ o h we have

" ([dNT) = "([d]NTi) = "([' o h]) N " Ty =[] N Z;.
The corollary is proved. O

Proof of theorem 2.1. We construct P = C * P’ in two steps: in the first step,
forcing with C = Fn(w; X wy, 2;w), we introduce our desired function F, which will
be a nice HFD,,-function but () will fail. Then, in the second step, we add many
bijections between certain subsets of w; to VC to guarantee (1) in such a way that
F remains a nice HFD,,-function during the iteration.

In V€ let F = UG, where G is the C-generic filter over V.
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If ¢ € C let supp ¢ = (dom dom ¢) U (ran dom ¢).
To obtain P’ = P,,, we carry out a finite support iteration of c.c.c posets

(Py:a<wy,Qp: < ws)

in the following way: in the o® step, we pick an uncountable set X, of w; in the
intermediate model VC¢*F» and then we try to find a finite set Y, and c.c.c poset
Q. such that forcing with @, preserves () and

VO FexQo i “p o B I (X, x (w1 \ Ya)) witnessed by
bijections fo 1 w1 — X4 and go w1 — w1 \ Yy.”

Now assume that P, is constructed and let us see the induction step.
First, using a bookkeeping function, we pick the set X, € [wﬂwl N V&P in
such a way that

(%) {Xo:a<ws} = [wl]wl N VE*Pus

To construct the poset (), we need the following induction hypotheses. To
formulate it we introduce two notions. A function F' : w; xw; — 2 is strongly non-
trivial provided that each uncountable family of pairwise disjoint, finite subsets of
w1 contains four distinct elements, a, b, ¢, d such that ' [axb=0and F [ bxa =0
and FFlexd=1land F [dxc=1.

Given a set I C wy we say that A C wy is up-dense (down-dense) for F in I iff
for each b € Fn(I,2;w) there is a € A such that F(a, 3) = b(8) (F(8,a) = b(3))
for each 8 € dom(b).

Induction Hypothesis .
(I) VC*Fa |= “F is strongly non-trivial”,
(II) VFe | “VX € [w]™ 3Y € [w1]<w V6 < wy 3A € [X\6]" Aisup-dense
for F inwy \'Y”,

The preservation of the induction hypotheses (I) and (II) during the iteration
will be verified later in lemmas 2.7 and 2.11. Let us observe that we will not have
to check (1) in our final model because the following lemma clearly holds:

Lemma 2.3. If (II) holds, then F is an HEFD,,-function.

We continue the construction of the poset Q.. Using (II) fix Y,, € [w1]<w and
pairwise disjoint countable subsets {D¢ : & < wy} of X, which are up-dense for F'
in wy \ Yy.

Let us recall that for each 3 < a in the 5" step we already constructed bijections
fa:wi — Xg and gg: w1 — wy \ Yp witnessing F = F | (X3 x (w; \ Y3)). For
each 3 < a the set Cg = {v <wi : (fjrUggr) C v} is clearly club and Cp belongs
to VC*Ps*Qs  VC*Pa Since P, satisfies c.c.c and |a| < 2% = wy it follows that
there is a club set C' C wy even in V such that |C \ Cg| < w for each § < «a.

The club set C' = {7, : ¥ < w;} gives a natural partition A, = {4A% : v < wy}
of w; into countable pieces: let A% = [y,,7,41) for v < w;. We can thin out C
to contain only limit ordinals and in this case every A¢ is infinite. Define the map
rky @ wp — wy by the formula £ € Af‘ka €

If 3 < a then |C\ Cg| < w and so all but countably many A%’s are fg-closed.
By shrinking C' we can assume every A} contains some Dg and so

(i) A N X, is up-dense for F'in w; \ Ya.
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Since Ajf € V and infinite, it follows
(ii) Aj is down-dense for F' in w;.

For n < wy let O = [wn,wn +w) and By = (J{A) : v € O,}. Put B, =
<B3‘ < w1>.

Given two sets Z and W denote by Bij,(Z, W) the family of bijections between
finite subsets Z and W.

If p € Bij,(w1,w1) a sequence ¥ = (z¢,21,...,7,) of countable ordinals is a
p-loop iff n > 1, xg = x,, and there is a sequence (kq, ..., kn—1) € "{—1,+1} such
that

(iii) 1kq(mi11) = rko(p¥i(z;)) for each i < n,

(iv) there is no i < n such that {k;, kiy1} = {—1,+1}, ;11 = p¥i(z;) and

Tiya = pre(ziga).
We say that p is loop-free if there is no p-loop.
If A,B,C,D C wq let

Iso, (A, B,C, D) = { (p,q) : p € Bij, (A4, B), q € Bij,(C,D)A
Ya € dom(p) Vv € dom(q) F(a,v) = F(p(a), q(y))}.

Now we are in the position to define the poset Q.. We put a pair of finite
functions (p, ¢) € Isop (w1, Xa,w1,w1 \ Ya) into Q, iff

(v) p"B,Uq"B, C B, for each n < w1,

(vi) p and ¢ are loop-free.
As promised, @, is ordered by the reverse inclusion: (p’,¢’) < (p,q) iff p" D p and
q Dq.

Let supp (p, ¢) = dom(p) U ran(p) U dom g Uranq for (p,q) € Q.

We need to show that (), satisfies c.c.c and a Q,-generic filter gives bijections
faiwr — Xo and gq : w1 — w1 \ Y, witnessing F =2 F | (Xa X (w1 \Ya)). First
we prove an auxiliary lemma.

Lemma 2.4. Ifp,q € Bij,(w1,w1), k" supp pnrk,” supp ¢ = 0 and ¥ = (zo, ..., x,)
is a (pU q)-loop, then T is either a p-loop or a g-loop.

Proof. Assume that o € suppp. Then g ¢ suppq, so tk, (1) = rke (p*° (z)) for
some kg € {—1,+1}. Since p*(xq) € suppp we have rk,(71) = tko(p*(20)) ¢
rk,” supp ¢ and so z; ¢ suppq. Repeating this argument we yield {zo,...,7,} C
suppp \ supp ¢ and so Z is a p-loop. O

Lemma 2.5. @, satisfies c.c.c.

Proof. We work in VE*Pa. Assume that {ge : € < w1} C Qa, ¢ = (Ge.0,e1) Ce =
supp q¢ and r¢ = rka"05. Applying standard A-system and counting arguments we
can find T € [wl]wl such that

(1) {ce: & € I} forms a A-system with kernel c,
(2) {7“5 E € I} forms a A-system with kernel r,
(3) 1k, c =,
(4) rka”(q\ c) =r¢ \r for each € € I,

(5) gei | ¢ =¢ for each £ € I and ¢ < 2.
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Since F is strongly non-trivial in VC*Fe there is {¢,(} € [1}2 such that F |
(ce\e)x(ec\e) =0and F | (cc\¢) X (ce\¢) = 0. We show that taking ¢; = g¢ ;Uqc ;
for i < 2 we have ¢ = (go,¢q1) € Qq. Clearly ¢ € Isop (w1, Xa,w1,w1 \ Ya) and g
satisfies (v). Since ¢; = ¢/ U (ge; \ ¢}) U (q¢i \ ¢}) and the sets rk," ¢}, tka" (ge.i \ ¢})
and rk," (¢¢,i \ ¢}) are pairwise disjoint we have that g satisfies (vi) as well by lemma
2.4. ([l

If G is the Q,-generic filter over VC*fa let f, = U{q : (¢,¢') € G} and
9o =U{q : (q,¢') € G9}.
Lemma 2.6, VO Fa*Qa |- « 2 [} (Xa X (w1 \Ya)) s witnessed by fo and go.”

Proof. We need to prove that dom(f,) = w1, ran(f,) = Xa, dom(gs) = w; and
ran g, = wy \ Yo which follows if for each v € w1, p € X4, p €wy and 0 € wy \ Yy,
the families

Dy = {{q0,q1) € Qo : v € dom(qo)},

RZP = {<QO,‘11> € QOC HYVAS ran(qo)},
Didewn — {(qo,q1) € Qu : p € dom(q1)},
Rown = Lo, q1) € Qo : 0 € tan(qy)}

are all dense in Q. Fix ¢ = (o, q1) € Qn. Write rk,(v) = wn + n. Pick wn < ({ <
wn +w such that supp(q) N AF = (). Since AZ N X, is up-dense for F'in wy \ Y,
we can find v € AZ N X, such that F'(v',¢1(§)) = F(v,§) for each { € domg;. Let
q¢ = {goU{{r,V")},q1). By the choice of (', tko(v') = ¢ ¢ rk,” (supp(q)), so this
extension of ¢ can not introduce a g U {{r,v’)}-loop, i.e. ¢’ € Q. Thus ¢’ € D¥P
and ¢’ < ¢ which was to be proved. The density of R can be verified by a similar
argument using that AZ is up-dense for /' in w;.

To check the density of Dgow" and R4°“Muse that A\ 'Y, is down-dense for F
in w;y \ Ys. O

The induction step is complete so the theorem is proved provided we can verify
the induction hypotheses (I) and (II) in every VC*P~. First we deal with (I) because
it is fairly easy. Checking (II) is the crux of our proof.

Lemma 2.7. The induction hypothesis (1) holds, i.e. F is strongly non-trivial in
every VE P,

Proof. First remark that F is clearly strongly non-trivial in V¢. By [1, lemma 4.10]
we can assume that o = v + 1 and F is strongly non-trivial in V¢*P». Working in
V&P assume that g I+ g : & <wi} are pairwise disjoint, finite subsets of wy.”
For each § < w; pick a condition g¢ < ¢ and a finite subset x¢ of w; such that g¢ I
“Ge = x¢”. Write g¢ = (qe,0,q¢,1). Since @, satisfies c.c.c, we can assume that the
sets x¢ are pairwise disjoint.

We can assume that z¢ C domge g because in lemma 2.6 we showed that the
sets DP are dense in Q5.

From now on we can argue as in lemma 2.5. Let ¢ = supp ¢ and r¢ = I‘k,y/,65.
We can find I € [w;]“" such that {c¢ : & € I} forms a A-system with kernel ¢ and
{re : € € I} forms a A-system with kernel r, moreover rk.,"c = r, rk, " (c¢\¢) = re\r,
qe,i | ¢ is independent from § and z¢ C c¢ \ ¢ for each § € I. Write ¢ ; = ¢ \ ¢,
qé’i =qe; | c’g’i, Téﬂ- =re;\rand g} =¢qe [ c
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Since F is strongly non-trivial in V¢*¥¢ there are pairwise different ordinals
anfl;Co,Q/ €IF e xcy=0and F [ ¢ xcg =0and F [ ¢, x ¢, =1 and
F[cclxcflzl..' o

For j < 2let ¢! = q¢; s Ugqe, for i < 2 and ¢/ = <gé,q{>. Then ¢ €
Isop (w1, Xa, w1, w1 \ Ya) and ¢/ clearly satisfies (v). Since qg =qlU qéjyi U qéj_j
and the sets rk,"q/, tk,"q¢ ; and rk,"q[ , are pairwise disjoint we have that ¢’
satisfies (vi) as well by lemma 2.4. Thus

QO IF“F [ dgy x ¢, =0AF [ dgy X gy =07

and
@ IF“F [dg, xdey, =1AF [d¢, x g, =17,

Now we start to work on (II).

Definition 2.8. Assume that H is a family of functions, dom(h) Uran(h) C w; for
each h € H. A sequence ¥ = (xg,Z1,...,T,) € "w; is called H-loop if n > 1, zg =
Zn, and there are sequences (hg,...,h,—1) € "H and (ko,...,kn—1) € "{—1,+1}
such that
(vii) A (z;) = @44, for each i < n,
(viii) there is no ¢ < n — 1 such that h; = h;1 and {k;, kit1} = {—1,+1}.
Let Z C wy. We say that H acts loop-free on Z if
(ix) Z is h-closed for each h € H,
(x) Z does not contain any H-loop.

Definition 2.9. A condition p = (¢, q) € C * P, is called determined iff
(1) ¢ is a function, dom(q) € [w1]<w,
(2) q(n) = (g(n,0),q(n,1)), and ¢g(n,4) is a function, for each i < 2 and n €
dom(q),

(3) Ufsuppq(n,i) : i < 2,n € dom(q)} C suppe,
(4) dom(c) = supp ¢ x supp c.

The determined conditions are dense in C * P,.

Lemma 2.10. In VP« for each J € [a] < there is @ < wy such that both
{fe: £ J} and {ge : € € J} act loop-free on wy \ .

Proof. We work in V[G], where G is the C % P,-generic filter over V. The lemma
will be proved by induction on max J. Let ( = maxJ and J' = J \ {¢}. Using the
inductive hypothesis fix 4 < w; such that

() 1= U(B € Be: By #10),

(b) if A€ Ac and A C wy \ pu then A is fe-closed and ge-closed for each & € J7,

(c) {fe: &€ J'} and {ge : £ € J'} act loop-free on wy \ p.
Assume on the contrary that (zo,...,zn) € "(wi \ i) is an (e.g.) {fe : £ € J}-
loop witnessed by the sequences (h; :i <n) € "{fe : £ € J} and (k;:i<n) €
"{-1,41}. Let M = {m < n : h,, = fc}. By the induction hypothesis M # (.
Write M = {m; : j < £}, mp < -+ < my_1. Let Yo = Zmg, Y1 = Timys -+,
Yo—1 = T, , and y¢ = Tym,. Pick a determined condition (c,q) € G such that

Yj, f?mj (yj) € dom(q(¢,0))Nran(q(¢,0)) for each j < £. We claim that (y; : j < £) is
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a q(¢, 0)-loop witnessed by the sequence (knm, : j < ¢), which contradicts the choice

of Q. Condition (iii) holds because rk¢(y;41) = rkc(ffmj (y;)) by (b) Assume on
the contrary that (iv) fails, i.e, there is j < £ such that {kp,, km,,, } = {—1,+1},
yien = 1. () and yira = SO (i) Since £ () = £ (@) =
and yj11 = Tp,,,, and SO Tpy;41 = T, ., Dy (c) it follows that m; + 1 = mj41.
Similarly, m;1 + 1 =mj 2. Thus 2, = yj, Tm,+1 = Yj+1 and o, 42 = Yj42. S0
hin; = him;+1 = fc and {kn,, km,+1} = {—1,+1} which contradicts our assumption
that (h; : i <n) and (k; : i < n) satisfied 2.8.(ii). O

Lemma 2.11. The induction hypothesis (II) holds in VCsPa e,
VePa = “yX ¢ [wl]wl Y e [w1]<w Vo <wp JA € [X \ 5]w A is up-dense for F
inw \Y7,

Proof. Assume that
lewp, IF X = {i¢: € <wi} € [wi]™"

Pick determined conditions pe = (c¢,qe) € C % Py and x¢ € wy such that pe |-
“C¢ = x¢”. We can assume that x¢ € suppce. Write J; = domge, qe(n) =
(g¢(n,0), g¢(n, 1)) for n € Je and Z¢ = supp(ce).

Now there is K € [wl}wl such that the conditions {p¢ : { € K} are “pairwise
twins”, i.e.

(1) {Z¢: & € K} forms a A-system with kernel Z,

(2) {Je : £ € K} forms a A-system with kernel J,

(3) max Z < min(Z¢ \ Z) < max(Zg \ Z) <min(Zg \ Z) for £ < ¢ € K,

(4) |Z¢| = |Zer| for {€,¢'} € [K]z. Denote by ¢¢ ¢ the natural bijection

between Z¢ and Zg.
(5) cer(peer(v), peer (V) = ce(w, ') for (v,v') € Ze x Ze and {€,€'} € [K]”,
(6) ger(n,1) = {{pee(V), peer (V) : (v,VV) € ge(n,i)} for n € J, i < 2 and
{6.¢') e [K]".
Since B, is a partition of w; into countable pieces for n € J, there is a club set
C={y :v<w} Cws in V€*Pa such that for each n € J and v < w; we have

[’YV7’YV+1) = U{B S Bn BN ['Yw’YVJrl) 7& ®}

Since C * P, is c.c.c we can assume that C' € V.

By thinning out K we can assume that if £ < £’ € K then there is v € C such
that max(Z¢ \ Z) < v < min(Zg \ Z), moreover max Z < minC.

By lemma 2.10 fix g € C such that § < p and lewp, IF “{f, : n € J} and
{gy :m € J} act loop-free on wy \ p”.

—

A pair <ﬁ, k:> is called relevant iff j = (ng,...,Mn—1) € "J and k= (koy... kn_1) €

"{—1,+1} for some n € w. For each relevant pair <ﬁ, E> let

iy =Fazt oo fa
and
G(rRy = Imisi OO O
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If p = (¢, q) is determined and J C dom(q) we define the g-approximation of f<77 Ry
q : .
f (7.F)’ in the natural way:
gy = 01,007 0+ 0 g(1, 0)*
(k) = 4\Mn—1, q(no; .
Similarly,
q _ 1)kn-16... l)ko
g<ﬁ,E> = q(Mn-1,1) o o q(no, .

—

We say that <ﬁ, k> is irreducible if there is no ¢« < n — 1 such that 7, = n;4+1 and
{kiskipa} ={-1,+1}.

Let £ € K be arbitrary. An irreducible <ﬁ', E> is active iff dom f?ﬁ i) N(ZN\Z) # 0
or domgz77 ) N(Z:\Z) # 0, i.e., there is a sequence & = (o, ...,Zn_1) € "(Zc \ Z)
such that z; 11 = g¢(n;, 0)Fi (x;) fori < mor w4 = qe (ms, 1)¥i(z;) for i < n. Observe
that the definition of activeness above does not depend on the choice £ because the
conditions {(c¢, g¢) : £ € K} are pairwise twins.

We say that & witnesses that <77, E> is active.

Let K’ € [K}w, A= {{pe,xe): € € K'} and ¢ € K\ K'. Let r* = (¢*,¢*) < p¢
be a determined condition such that for each active <f)’, E> and w € Z the values

q q"
f(ﬁ,E) (w) and g<ﬁ,]§> (w) are defined.
Let
. . i ;
Y = {9<77,;Z> (w) : f<ﬁk> is active and w € Z}.

Claim . Y is finite.

Proof of the claim. Since {f, :n € J} and {g, : n € J} act loop-free on Z; \ Z, the
elements of a witnessing sequence are pairwise different, so there are only finitely

many of them and a witnessing sequence works only for one active <ﬁ', E> So there

is only finitely many active <77, E> O

We show that
(o) r* I+ A is up-dense in w; \Y for F.

Indeed, assume that ' < r* v’ = (¢, ¢’} is determined, B € [wl \Y] <“ and b € B2.
Pick £ € K such that supp(c’) Nsupp(ce) = Z and dom(q’) Ndom(ge) = J. To
complete the proof of the lemma it is enough to construct a common extension
p=(c,q) of ' = (c,q') and p¢ = (c¢, q¢) such that c(x¢, ) = b(B) for each 8 € B.
Let supp(c) = supp(c’) Usupp(ce). Put dom ¢ = dom(q’) Udom(ge) and for i < 2
let

q'(n,i)Uge(n,i) ifnel,
q(n,i) =4 4'(n,1) if n € domg'\ J,
qe(n, 1) if n € domge \ J.

Put ¢™ = Uce. Let H =supp(c’) and Z; = Z¢ \ Z = Z¢ \ H.
Now dom(c) = supp(c) x supp(c) = (HU Z;) x (HUZg) = (H x H)U(H U Z{) U
(Z¢ x H)U(Z{ x Z{).
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Definition 2.12. For (a,b),(a’,b’) € dom(c) put {(a,b) = (a’, V') iff there is <77, E>

q — q _
such that f(ﬁ,E> (a) = d’ and g<ﬁE>(b) =0
We should define ¢ D ¢~ such that
(%) if {a,b) = (a’, ") then c(a,b) = c(a’, ),
(%) c(ze, B) = b(B)

The first two claims are straightforward.
Claim 2.12.1. The sets (H x H), (HUZ), (Z{ x H) and (Z; x Z{) are =-closed.

Claim 2.12.2. Assume that (a,b) = (a',b'). If (a,b) € Z; x H then there is an

. - 7 /o Qe ;4 /

active <77,k> such that o/ = f<ﬁj>(a) and b/ = g<ﬁE>(b) If (a,b) € H x Z{ then
; ; = 7 r_ pd ;4

there is an active <77,k:> such that o/ = f{ﬁE} (a) and V/ = g<ﬁ7E> (d).

Claim 2.12.3. Assume that (a,b) = (a’,V'). If (a,b),(a’,V') € Z{ x H and a = d’

then (a,b) = (a’,V'). If (a,b),(a’,V') € H x Z{ and b=1" then (a,b) = (a’,V).

Proof of the claim 2.12.3. Assume first that (a,b), (a’,b') € Zg x H and b # b'. By

2.12.2 there is an active <ﬁ, E> such that o’ = fg; E>(ae) and b = g‘<1;7 ) (b). Since

b # U it follows that <ﬁ, E> # (0,0). Since 1 I- “{f, : n € J} acts loop-free on
wr \ p” it follows that a # fé’% i) (a) and so a # a’.

If (a,b), (a',V') € H x Z{ then the same arguments work using that 1 I “{g, :
1 € J} acts loop-free on wy \ p”. O

Claim 2.12.4. If (a,b),{a’,V’) € ((Zé x H)U (H x Zé)) Ndom(c™) and {a,b) =

(a’, V') then ¢ (a,b) = ¢ (a', V).

Proof of the claim 2.12.4. Assume first that (a,b), (a’,0') € Z{ x H. Fix an active
= 7 ;o gl 4 : ’opr —

<77,k> such that a’ = f<ﬁ;;> (a) and b’ = g<ﬁj> (b). Since (a, by, {a’,V’) € dom(c™)

it follows that (a,b) , (a’,V’) € dom(c¢) and so b,V € Z. If b € dom gq; By’ then we

(

are done because in this case b’ = gz% Q) (b) and so ¢ (a,b) = ce(a,b) = ce(a’, V) =
¢ (d,b) for (ce,qe) € C x P,. Unfortunately, b, € dom g‘éf7 Q) can not be guaran-

teed, so we need an additional argument here.
Let ¢ = ¢ ¢ be the function witnessing that ps and p¢ are twins.

b) is defined and so

=

Since <ﬁ,k> is active and b € Z it follows that gzﬁE>(
g?ﬁa (b) =b. Put b= ¢(b), b = ¢(b) a = ¢(a) and @’ = p(a’). Since ¢~ (a,b) =
ce(a,b) = cc(a,b) = c*(a,b) and ¢ (a’,b) = ce(a, V) = cc(a',b) = c*(d, b)) it is
enough to show that ¢*(a,b) = ¢*(a’, ). )

First observe that b = p(b) = b, b’ = p(b') =V and so b/ = fgﬁ713>(b)' Moreover

a = p(d) = w(fg;@(a)) = fg;@(w(a)) = fg;@(g) = fgﬁ@ a). Thus using
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*

r* = (c*,q*) < {c¢,qc) we have

* /2 NANESE q* q* %

) = (] 1 @1 () = (@.D)
which completes the proof of the claim. O
Claim 2.12.5. If (a,b) € (Z; x H) Ndom(c™) and (a,b) = (a’,b') then b’ € Y.
Proof of the claim 2.12.5. Since (a,b) € (Z¢ x H) Ndom(c™) we have b € Z. Fix

an active <ﬁ, E> such that o' = fgf? E>(a) and b = fg?; ) (b). Since <ﬁ, E> is active
: a* : a* a _ 4
it follows that g<ﬁ,’;>(b) is defined and g<ﬁ’;>(b) €Y. But g<ﬁ7g> (b) = g(ﬁ,E> (b) so
b’ € Y which was to be proved. O
By claims 2.12.3-2.12.5 we can find a condition ¢ € C with suppc¢ = suppc U

supp ¢¢ and dom ¢ = supp ¢ x supp ¢ such that

(a) ¢D Ucg,

(b) (%) holds, i.e. ¢(a,b) = c(a’,b") whenever (a,b) = {(a’,b),

() e(ze,B) = b(B) for § € B.
Then by (x) we have {c,q) € C * P, and

(c,q) IF (VB € domb) F(z¢, 5) = b(5).

Thus (e) holds. Hence lemma 2.11 is proved. g

So we have shown that (II) is preserved during the inductive construction, which

was the last step to prove theorem 2.1 (I
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