INDESTRUCTIBLE PROPERTIES OF S- AND L-SPACES

L. SOUKUP

ABSTRACT. Building on a method of U. Abraham and S. Todorčevič we prove a preservation theorem on certain properties under c.c.c forcings. Applying this result we show that (1) an uncountable, first countable, 0-dimensional space containing only countable and co-countable open subspaces, and (2) S- and L-groups can exist under Martin's Axiom.

1. Introduction

An uncountable topological space is called O-space if its every open subspace is either countable or co-countable.

In [8], a locally compact (and so first countable) O-space on ω_1 was constructed using \diamondsuit . Such a space can not exist under Martin's Axiom because O-spaces are S-spaces and, by [10] or [11], there are no (locally) compact S-spaces under MA_{\aleph_1} .

On the other hand, by [1] a first countable S-space can exist under MA_{\aleph_1} . This result will be strengthened here: in theorem 3.7 we show that a first countable O-space can exist under MA_{\aleph_1} . Answering a question of J. Roitman [9] we show that S- and L-groups can also exist under MA_{\aleph_1} . These proofs are based on the preservation theorem 2.2 proved in section 2.

We use the standard notation, see e.g. [5]. Given a structure X and a property φ we say that the property φ of X is c.c.c-indestructible if for each c.c.c poset Q we have $1_Q \Vdash_Q$ "X has property φ ".

2. The preservation theorem

Given a set K and $m \in \omega$ denote by $\operatorname{Fn}_m(\omega_1, K)$ the family of functions mapping an m-element subset of ω_1 into K. A function s with $\operatorname{ran}(s) \subset \operatorname{Fn}_m(\omega_1, K)$ is called $\operatorname{dom-disjoint}$ iff $\operatorname{dom}(s(t)) \cap \operatorname{dom}(s(t')) = \emptyset$ for each $\{t, t'\} \in \left[\operatorname{dom}(s)\right]^2$. Especially, a sequence $\langle s_\alpha : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ is $\operatorname{dom-disjoint}$ iff $\operatorname{dom}(s_\alpha) \cap \operatorname{dom}(s_\beta) = \emptyset$ for all $\alpha < \beta < \omega_1$. Given two disjoint sets s and t write $[s, t] = \{\{\alpha, \beta\} : \alpha \in s \land \beta \in t\}$.

Definition 2.1. Let G be a graph on $\omega_1 \times K$, $m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

$$[s_{\alpha}, s_{\beta}] \subset G$$
.

G is called strongly solid iff it is m-solid for each $m \in \omega$.

1

 $^{1991\} Mathematics\ Subject\ Classification.\ 03E35,\ 54E25.$

Key words and phrases. Martin's Axiom, S-space, L-space, S-group, L-group, first countable, Ostaszewsky-space, preservation, iterated forcing.

The preparation of this paper was supported by the Hungarian National Foundation for Scientific Research grant no. 25745. and by Grant-in-Aid for JSPS Fellows No. 98259 of the Ministry of Education, Science, Sports and Culture, Japan.

Theorem 2.2. Assume $2^{\omega_1} = \omega_2$. If G is a strongly solid graph on $\omega_1 \times K$, where $|K| \leq 2^{\omega_1}$, then for each $m \in \omega$ there is a c.c.c poset P of size ω_2 such that

$$V^P \models$$
 "G is c.c.c-indestructibly m-solid."

Proof. We will argue in the following way. In definition 2.3 we introduce property $(*)_m$ and in lemma 2.4 we show that in some c.c.c extension of the ground model G has property $(*)_m$. Then, in lemma 2.7 we prove that property $(*)_m$ is c.c.c-indesctuctible. This concludes the proof of theorem 2.2 because it will be clear from definition 2.3 that property $(*)_m$ implies that G is m-solid.

To start with let T_{m+1} be the everywhere ω_1 -branching tree of height m+1 with ω_1 minimal points whose underlying set is $\bigcup \{\ell \omega_1 : 1 \leq \ell \leq m+1\}$ ordered by the inclusion. The m+1-branches of T_{m+1} will be denoted by \mathbf{b}_{m+1} . Let

$$\mathfrak{B}_{m+1} = \{\mathcal{B} \subset \mathbf{b}_{m+1} : b \cap b' = \emptyset \text{ for each } \{b,b'\} \in \left[\mathcal{B}\right]^2 \}$$

and

$$\mathfrak{B}_{m+1}^{\omega_1} = \{ \mathcal{B} \in \mathfrak{B}_{m+1} : |\mathcal{B}| = \omega_1 \}.$$

The following definition is modeled after [1, Definition 4.2]: their property (*) corresponds to our property $(*)_1$ for a certain graph G.

Definition 2.3. We say that G has $property (*)_m$ iff for each dom-disjoint function $s: T_{m+1} \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ there is $\mathcal{B} \in \mathfrak{B}_{m+1}^{\omega_1}$ such that

$$(\nabla_{s,\mathcal{B}}) \qquad \forall \{b,b'\} \in \left[\mathcal{B}\right]^2 \; \exists \; t \in b \; \exists t' \in b' \; [s(t),s(t')] \subset G.$$

Lemma 2.4. There is a c.c.c poset P of size ω_2 such that $V^P \models$ "G has property $(*)_m$ ".

Proof of lemma 2.4. We start with some definitions. Let $C = \{\gamma_{\eta} : \eta < \omega_1\} \subset \omega_1$ be a club set. We say that two subsets A and B of ω_1 are C-separated iff $A \cap [\gamma_{\eta}, \gamma_{\eta+1}) = \emptyset$ or $B \cap [\gamma_{\eta}, \gamma_{\eta+1}) = \emptyset$ for each $\eta < \omega_1$. A function $s: I \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ is called dom-separated by C iff $\operatorname{dom}(s(i))$ and $\operatorname{dom}(s(i'))$ are C-separated for each $\{i, i'\} \in [I]^2$, i.e. for each $\eta < \omega_1$ there is at most one $i \in I$ such that $(\operatorname{dom} s(i)) \cap [\gamma_{\eta}, \gamma_{\eta+1}) \neq \emptyset$. Let us remark that s is dom-disjoint iff it is dom-separated by ω_1 .

Definition 2.5. If $\mathcal{B} \in \mathfrak{B}_{m+1}$ and $s: \bigcup \mathcal{B} \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ is dom-disjoint put

$$E(s) = \big\{ \gamma < \omega_1 : \forall b \in \mathcal{B} \ \big[\big(\cup_{t \in b} \operatorname{dom} s(t) \big) \subset \gamma \vee \big(\cup_{t \in b} \operatorname{dom} s(t) \big) \cap \gamma = \emptyset \big] \big\}.$$

Observe that E(s) is club in ω_1 because the sets $(\bigcup_{t \in b} \operatorname{dom} s(t))$ for $b \in \mathcal{B}$ are pairwise disjoint.

We will define a c.c.c. iterated forcing $\langle P_{\nu}, \dot{Q}_{\nu} : \nu < \omega_2 \rangle$ with finite support such that $1_{P\nu} \Vdash "|\dot{Q}_{\nu}| = \omega_1$ ". In this case $(2^{\omega_1})^{V^{P\omega_2}} = \omega_2$ and so the family

$$\mathfrak{S} = \{ s \in V^{P_{\omega_2}} : s : T_{m+1} \longrightarrow \operatorname{Fn}_m(\omega_1, K) \text{ is a dom-disjoint function } \}$$

will be of size ω_2 because $|\operatorname{Fn}_m(\omega_1, K)| = \omega_1 + |K| \leq \omega_2$. Thus, using a bookkeeping function, we can pick $s_{\nu} \in \mathfrak{S} \cap V^{P_{\nu}}$ for $\nu < \omega_2$ such that $\{s_{\nu} : \nu < \omega_2\}$ enumerates \mathfrak{S} .

We will also define a mod countable decreasing sequence of club sets $\langle C_{\nu} : \nu < \omega_2 \rangle$ and sequences $\mathcal{B}_{\nu} \in \mathfrak{B}_{m+1}^{\omega_1}$ such that $s_{\nu} \upharpoonright \cup \mathcal{B}_{\nu}$ will be dom-separated by C_{ν} and $C_{\nu+1} \subset C_{\nu} \cap E(s_{\nu} \upharpoonright \cup \mathcal{B}_{\nu})$.

Assume that P_{ν} and C_{ν} are constructed.

We will work in $V^{P_{\nu}}$. Using our book-keeping function pick the next dom-disjoint function $s_{\nu}: T_{m+1} \longrightarrow \operatorname{Fn}_m(\omega_1, K)$.

Since s_{ν} is dom-disjoint, we can find a $\mathcal{B}_{\nu} \in \mathfrak{B}_{m+1}^{\omega_1}$ such that $s_{\nu} \upharpoonright \cup \mathcal{B}_{\nu}$ is dom-separated by C_{ν} . Let $C_{\nu+1}$ be a club subset of $C_{\nu} \cap E(s_{\nu} \upharpoonright \cup \mathcal{B}_{\nu})$ from the ground model.

Let $\mathbf{Q}'_{\nu} = \langle Q'_{\nu}, \supset \rangle$, where

$$Q'_{\nu} = \{ B \in [\mathcal{B}_{\nu}]^{<\omega} : \forall \{b, b'\} \in [B]^2 \ \exists t \in b \ \exists t' \in b' \ [s_{\nu}(t), s_{\nu}(t')] \subset G \}.$$

Thus, if Γ_{ν} is the Q'_{ν} -generic filter then $\mathcal{B} = \cup \Gamma$ satisfies $(\nabla_{s,\mathcal{B}})$. In lemma 2.6 we will show that \mathbf{Q}'_{ν} satisfies c.c.c thus we can pick $B \in Q'_{\nu}$ such that $B \Vdash$ "the Q'_{ν} -generic filter is uncountable". Put $\mathbf{Q}_{\nu} = \{B' \in Q'_{\nu} : B' \supset B\}$ and $P_{\nu+1} = P_{\nu} * \mathbf{Q}_{\nu}$. Thus $\cup \Gamma_{\nu}$ witnesses property $(*)_m$ for s_{ν} in $V^{P_{\nu+1}}$.

If $\mu < \omega_2$ is limit and $\langle C_{\nu} : \nu < \mu \rangle$ is constructed, then let C_{μ} be a club subset of ω_1 from the ground model such that $|C_{\mu} \setminus C_{\nu}| \leq \omega$ for each $\nu < \mu$.

Lemma 2.6. P_{ν} satisfies c.c.c. for $\nu \leq \omega_2$.

Proof of lemma 2.6. By induction on $\nu \leq \omega_2$ we prove statement (\bullet_{ν}) below which clearly yields that P_{ν} is c.c.c:

(• $_{\nu}$) If $\{p_{\xi}: \xi < \omega_1\} \subset P_{\nu}$, $\{I_{\xi}: \xi < \omega_1\}$ are pairwise disjoint finite sets, $I = \bigcup_{\xi < \omega_1} I_{\xi}$, $s: I \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ is dom-separated by C_{ν} , then there is a pair $\{\xi_0, \xi_1\} \in [\omega_1]^2$ such that p_{ξ_0} and p_{ξ_1} are compatible in P_{ν} and $[s(\rho_0), s(\rho_1)] \subset G$ for each $\rho_0 \in I_{\xi_0}$ and $\rho_1 \in I_{\xi_1}$.

Case 1. $\nu = 0$.

Let $t_{\xi} = \bigcup \{s(\rho) : \rho \in I_{\xi}\}$ for $\xi < \omega_1$. Since s is dom-disjoint it follows that $t_{\xi} \in \operatorname{Fn}_{|I_{\xi}| \cdot m}(\omega_1, K)$ and that the sequence $\langle t_{\xi} : \xi \in \omega_1 \rangle$ is dom-disjoint. So there is a pair $\{\xi_0, \xi_1\} \in \left[\omega_1\right]^2$ such that $[t_{\xi_0}, t_{\xi_1}] \subset G$ because G is strongly solid. Thus $[s(\rho_0), s(\rho_1)] \subset G$ for each $\rho_0 \in I_{\xi_0}$ and $\rho_1 \in I_{\xi_1}$. Since $P_0 = \{1\}$ and so $p_{\xi_0} = p_{\xi_1} = 1_{P_0}$, we are done.

Case 2. ν is limit.

Let $J_{\xi} = \operatorname{supp} p_{\xi}$. By thinning out our sequences we can assume that $\{J_{\xi} : \xi < \omega_1\}$ forms a Δ -system with kernel J. Let $\mu = (\max J) + 1 < \nu$. Since $|C_{\nu} \setminus C_{\mu}| \le \omega$, there is $\zeta < \omega_1$ such that $s' = s \upharpoonright \cup_{\xi \ge \zeta} I_{\xi}$ is dom-separated by C_{μ} . Applying (\bullet_{μ}) for $\{p_{\xi} \upharpoonright \mu : \xi \ge \zeta\}$, $\{I_{\xi} : \xi \ge \zeta\}$ and s' we can find $\{\xi_0, \xi_1\} \in [\omega_1 \setminus \zeta]^2$ such that $p_{\xi_0} \upharpoonright \mu$ and $p_{\xi_1} \upharpoonright \mu$ are compatible in P_{μ} and $[s(\rho_0), s(\rho_1)] \subset G$ for each $\rho_0 \in I_{\xi_0}$ and $\rho_1 \in I_{\xi_1}$. But $\operatorname{supp} p_{\xi_0} \cap \operatorname{supp} p_{\xi_1} \subset \mu$, so p_{ξ_0} and p_{ξ_1} are compatible in P_{ν} as well.

Case 3. $\nu = \mu + 1$.

We can assume that for each $\xi < \omega_1$ we have a finite set $B_{\xi} \subset \mathbf{b}_{m+1}$ and a finite function $r_{\xi} : \cup B_{\xi} \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ such that

$$p_\xi \restriction \mu \Vdash "p_\xi \dot(\mu) = B_\xi \land \dot{s}_\mu \restriction \cup B_\xi = r_\xi".$$

By thinning out our sequences we can assume that (i)–(v) below hold:

- (i) $\{B_{\xi}: \xi < \omega_1\}$ forms a Δ -system with kernel B.
- (ii) $r_{\xi}(t)$ is independent of ξ for each $t \in \cup B$.
- (iii) Writing $B'_{\xi} = B_{\xi} \setminus B$ the sets $\{ \cup B'_{\xi} : \xi < \omega \}$ are pairwise disjoint, i.e. $\langle B'_{\xi} : \xi < \omega_1 \rangle \in \mathfrak{B}^{\omega_1}_{m+1}$.
- (iv) the sets $D_{\xi} = \bigcup \{ \operatorname{dom} r_{\xi}(t) : t \in \bigcup B'_{\xi} \}$ are pairwise disjoint.
- (v) for each $\{\xi,\zeta\}\in [\omega_1]^2$ the sets D_{ξ} and D_{ζ} are separated by C_{ν} .

Indeed, (i) and (ii) are straightforward. As for (iii), since $1_{P_{\mu}} \Vdash$ "the elements of \mathcal{B}_{μ} are pairwise disjoint" and P_{μ} satisfies c.c.c by the induction hypothesis, for each $t \in T_{m+1}$ the set $\{b \in \mathbf{b}_{m+1} : t \in b \land \exists p \in P_{\mu} \ p \Vdash b \in \mathcal{B}_{\mu}\}$ is countable and so $|\{\xi : t \in \cup B'_{\xi}\}| \leq \omega$ as well. Thus (iii) can be guaranteed. Similarly, since $1_{P_{\mu}} \Vdash$ " $\dot{s}_{\mu} \upharpoonright \cup \mathcal{B}_{\mu}$ is dom-disjoint" and P_{μ} satisfies c.c.c, for each $\alpha \in \omega_1$ the set $\{t \in T_{m+1} : \exists p \in P_{\mu} \ p \Vdash \alpha \in \text{dom } \dot{s}_{\mu}(t)\}$ is countable. Thus $|\{\xi : \alpha \in \cup \{\text{dom } r_{\xi}(t) : t \in \cup B'_{\xi}\}\}| \leq \omega$, too. So we can ensure (iv). Finally, (v) is straightforward by (iv).

Since $p_{\xi} \Vdash "r_{\xi} \subset \dot{s}_{\mu}"$ it follows that $p_{\xi} \Vdash "E(r_{\xi}) \supset E(\dot{s}_{\mu}) \supset C_{\nu}"$, and so $E(r_{\xi}) \supset C_{\nu}$. Thus for each $b \in B_{\xi}$ there is $\gamma \in C_{\nu}$ such that $\cup \{\text{dom } r_{\xi}(t) : t \in b\} \subset [\gamma, \gamma')$, where $\gamma' = \min(C \setminus \gamma + 1)$. Since s is dom-separated by C_{ν} there is at most one $i_b \in I$ such that $\text{dom } s(i_b)$ intersects $[\gamma, \gamma')$ and so

(†)
$$\operatorname{dom} s(i) \text{ and } \cup \{\operatorname{dom} r_{\xi}(t) : t \in b\} \text{ are } C_{\nu}\text{-separated for each } i \in I \setminus \{i_b\}.$$

Since $|\operatorname{dom} s(i_b)| = m < m+1 = |b|$ and the sets $\{\operatorname{dom}(r_{\xi}(t)) : t \in b\}$ are pairwise C_{μ} -separated, there is $t_b \in b$ such that $\operatorname{dom}(s(i_b))$ and $\operatorname{dom}(r_{\xi}(t))$ are C_{μ} -separated. Thus

(‡)
$$\operatorname{dom} s(i)$$
 and $\operatorname{dom} r_{\xi}(t_b)$ are C_{μ} -separated for each $i \in I$.

Let $I_{\xi}^* = I_{\xi} \cup B_{\xi}$ for $\xi < \omega_1$, $I^* = \bigcup \{I_{\xi}^* : \xi < \omega_1\}$ and define the function $s^* : I^* \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ by stipulations $s^* \upharpoonright I = s$ and $s^*(b) = r_{\xi}(t_b)$ for $b \in B_{\xi}$. By (\ddagger) and by (\mathtt{v}) the function s^* is domseparated by C_{μ} . So we can apply induction hypothesis (\bullet_{μ}) for $\{p_{\xi} \upharpoonright \mu : \xi < \omega_1\}$, $\{I_{\xi}^* : \xi < \omega_1\}$ and for s^* to find $\{\xi_0, \xi_1\} \in \left[\omega_1\right]^2$ such that $p_{\xi_0} \upharpoonright \mu$ and $p_{\xi_1} \upharpoonright \mu$ are compatible in P_{μ} and $[s^*(\rho_0), s^*(\rho_1)] \subset G$ for each $\rho_0 \in I_{\xi_0}^*$ and $\rho_1 \in I_{\xi_1}^*$. Then $(p_{\xi_0} \upharpoonright \mu) \land (p_{\xi_1} \upharpoonright \mu) \Vdash_{P_{\mu}} "B_{\xi_0} \cup B_{\xi_1} \in Q_{\mu}"$ because for each $b_0 \in B_{\xi_0}$ and $b_1 \in B_{\xi_1}$ we have $[r_{\xi_0}(t_{b_0}), r_{\xi_1}(t_{b_1})] = [s^*(b_0), s^*(b_1)] \subset G$. Thus $(p_{\xi_0} \upharpoonright \mu) \land (p_{\xi_1} \upharpoonright \mu) \Vdash_{P_{\mu}} "p_{\xi_0}(\mu)$ and $p_{\xi_1}(\mu)$ are compatible in Q_{μ} ", i.e. p_{ξ_0} and p_{ξ_1} are compatible in P_{ν} . Thus the pair $\{\xi_0, \xi_1\}$ witnesses (\bullet_{ν}) . Lemma 2.6 is proved.

To verify property $(*)_m$ in $V^{P_{\omega_2}}$ let $s:T_{m+1}\longrightarrow \operatorname{Fn}_m(\omega_1,K)$ from $V^{P_{\omega_2}}$. Since P_{ω_2} is c.c.c and we used a suitable book-keeping function there is $\nu<\omega_2$ such that $s_{\nu}=s$. Let $\mathcal G$ be the Q_{ν} -generic filter over $V^{P_{\nu}}$. Then $\cup \mathcal G\in \mathfrak B^{\omega_1}_{m+1}$ witnesses $(*)_m$ for s. This completes the proof of 2.4.

Lemma 2.7. Property $(*)_m$ is c.c.c-indestructible.

Proof of lemma 2.7. Let Q be a c.c.c poset and assume that $1_Q \Vdash$ " $\dot{s}: T_{m+1} \longrightarrow \operatorname{Fn}_m(\omega_1, K)$ is $\operatorname{dom-disjoint}$ ". Let $q \in Q$ be arbitrary. By induction on $\ell \leq m$ for each $t \in \ell \omega_1$ choose a condition $q(t) \leq q$ from Q and an element $r(t) \in \operatorname{Fn}_m(\omega_1, K)$ such that

- (a) $(q(\emptyset) = q)$ and $q(t) \le q(t \upharpoonright \ell 1)$ for $\ell > 0$,
- (b) $q(t) \Vdash "\dot{s}(t) = r(t)"$.

Since Q is c.c.c and $1_Q \Vdash$ " \dot{s} is dom-disjoint", for each $\eta \in \omega_1$

$$|\{t \in T_{m+1} : \eta \in \operatorname{dom} r(t)\}| \le \omega.$$

Thus there is an everywhere ω_1 -branching subtree $T \subset T_{m+1}$ of height m+1 with ω_1 -many minimal points such that $r \upharpoonright T$ is dom-disjoint. Since T and T_{m+1} are isomorphic, we can apply $(*)_m$ for r in the ground model to find $\mathcal{B} \in \mathfrak{B}_{m+1}^{\omega_1}$ such that

$$(\diamond) \qquad \forall \{b,b'\} \in \left[\mathcal{B}\right]^2 \exists \ t \in b \ \exists t' \in b' \ [r(t),r(t')] \subset G.$$

For $b \in \mathcal{B}$ let t_b be the maximal element of the branch b in T_{m+1} and put $q'(b) = q(t_b)$. Since Q is c.c.c. there is a condition $q' \leq q$ such that

(00)
$$q' \Vdash$$
 "the set $\dot{\mathcal{C}} = \{b \in \mathcal{B} : q'(b) \in \mathcal{G}\}$ is uncountable,"

where \mathcal{G} is the canonical name of the Q-generic filter.

Since $q'(b) \leq_Q q(t)$ for each $t \in b$ it follows that $q'(b) \Vdash$ " $\dot{s}(t) = r(t)$ for each $t \in b$ ". Thus by (\circ) and $(\circ\circ)$

$$q' \Vdash$$
 "property $(*)_m$ for \dot{s} is witnessed by $\dot{\mathcal{C}}$ ",

which completes the proof of lemma 2.7.

It is straightforward from the definitions that if G has property $(*)_m$ then G is m-solid. Thus theorem 2.2 is proved.

3. Applications

We start this section with a simple application: we show that if $2^{\omega_1} = \omega_2$ then every strong HFD_w (strong HFC_w) gives a c.c.c-indestructible S-space (L-space)in a suitable generic extension Let us recall the definition:

Definition 3.1. A subset $X = \{x_{\nu} : \nu < \omega_1\} \subset 2^{\omega_1}$ is called HFD_w^n (HFC_w^n) iff

$$\forall f: \omega_1 \times n \xrightarrow{1-1} \omega_1 \ \forall m < \omega \ \forall g: \omega_1 \times m \xrightarrow{1-1} \omega_1 \ \forall H: n \times m \longrightarrow 2$$
$$\exists \alpha < \beta < \omega_1 \ (\exists \beta < \alpha < \omega_1) \ \forall i < n \ \forall j < m \ x_{f(\alpha,i)}(g(\beta,j)) = H(i,j).$$

X is strong HFD_w (strong HFC_w) iff it is HFD_w^n (HFC_w^n) for each $n < \omega$.

Definition 3.2. For $X = \{x_{\nu} : \nu < \omega_1\} \subset 2^{\omega_1}$ define two graphs $G_X^{<}$ and $G_X^{>}$ as follows. Fix a countable dense subset D of 2^{ω_1} , let $K = [\omega_1]^{<\omega} \times D$ and

$$G_X^{<} = \left\{ \left\{ \left\langle \nu_0, \left\langle a_0, d_0 \right\rangle \right\rangle, \left\langle \nu_1, \left\langle a_1, d_1 \right\rangle \right\rangle \right\} \in \left[\omega_1 \times K \right]^2 : \\ (\nu_0 \cap a_0 \neq \emptyset \vee \nu_1 \cap a_1 \neq \emptyset \vee d_0 \neq d_1) \vee (\nu_0 < \nu_1 \wedge x_{\nu_0} \upharpoonright a_1 = d_1 \upharpoonright a_1 \right\}$$

and

$$G_X^{>} = \Big\{ \{ \langle \nu_0, \langle a_0, d_0 \rangle \rangle, \langle \nu_1, \langle a_1, d_1 \rangle \rangle \} \in \big[\omega_1 \times K \big]^2 : \\ (\nu_0 \cap a_0 \neq \emptyset \vee \nu_1 \cap a_1 \neq \emptyset \vee d_0 \neq d_1) \vee (\nu_0 > \nu_1 \wedge x_{\nu_0} \upharpoonright a_1 = d_1 \upharpoonright a_1 \Big\}.$$

Lemma 3.3. X is HFD_w^n if and only if $G_X^{<}$ is n-solid. Similarly, X is HFC_w^n iff $G_X^{>}$ is n-solid.

Proof. We prove only the first equivalence because second one can be obtained by the same arguments.

Assume first that X is HFD_w^n and fix a dom-disjoint sequence $\langle s_{\xi} : \xi < \omega_1 \rangle \subset \operatorname{Fn}_n(\omega_1, K)$. For each $\xi < \omega_1$ write dom $s_{\xi} = \{\nu_{\xi,i} : i < n\}$ and $s_{\xi}(\nu_{\xi,i}) = \langle a_{\xi,i}, d_{\xi,i} \rangle$. We can assume that $\nu_{\xi,i} \cap a_{\xi,i} = \emptyset$ for each i < n and $\xi < \omega_1$.

Let $a_{\xi} = \bigcup \{\alpha_{\xi,i} : i < n\}$ and write $a_{\xi} = \{\alpha_{\xi,j} : j < m_{\xi}\}$. Define the function $H_{\xi} : n \times m_{\xi} \longrightarrow 2$ by the stipulation

(o)
$$H_{\xi}(i,j) = d_{\xi,i}(\alpha_{\xi,j}).$$

By thinning out our sequence we can assume that $m_{\xi} = m$, $H_{\xi} = H$ and $d_{\xi,i} = d_i$ for each i < n and $\xi < \omega_1$, moreover $\max a_{\zeta} < \min a_{\xi}$ for $\zeta < \xi < \omega_1$.

Since X is a HFD_w^n there are $\zeta < \xi < \omega_1$ such that

$$(\star) \qquad \forall i < n \ \forall j < m \ x_{\nu_{\zeta,i}}(\alpha_{\xi,j}) = H(i,j).$$

Let $i_0, i_1 < n$ and prove $\{\langle \nu_{\zeta,i_0}, \langle a_{\zeta,i_0}, d_{i_0} \rangle \rangle, \langle \nu_{\xi,i_1}, \langle a_{\xi,i_1}, d_{i_1} \rangle \rangle\} \in G_X^{<}$. Putting (\star) and (\circ) together, we have $x_{\nu_{\zeta,i_0}} \upharpoonright a_{\xi} = d_{i_0} \upharpoonright a_{\xi}$. Since by the definition of $G_X^{<}$ we can assume $d_{i_0} = d_{i_1}$

it follows that $x_{\nu_{\zeta,i_0}} \upharpoonright a_{\xi,i_1} = d_{i_0} \upharpoonright a_{\xi,i_1} = d_{i_1} \upharpoonright a_{\xi,i_1}$ which was to be proved. Thus $G_X^{<}$ is really n-solid.

Assume now that $G_X^{<}$ is n-solid. Let $f: \omega_1 \times n \xrightarrow{1-1} \omega_1$, $m \in \omega$, $g: \omega_1 \times m \xrightarrow{1-1} \omega_1$ and $H: n \times m \longrightarrow 2$. Put $a_{\alpha} = \{g(\alpha, j) : j < m\}$ and $t_{\alpha} = \{f(\alpha, i) : i < n\}$ for $\alpha < \omega_1$. By thinning out our sequences we can assume that that $\max(a_{\alpha} \cup t_{\alpha}) < \min(a_{\beta} \cup t_{\beta})$ for $\alpha < \beta < \omega_1$.

For $\alpha < \omega_1$ define the function $s_\alpha \in \operatorname{Fn}_n(\omega_1, K)$ as follows: let $\operatorname{dom}(s_\alpha) = t_\alpha$, for each i < n pick $d_{\alpha,i} \in D$ such that $d_{\alpha,i}(g(\alpha+1,j)) = H(i,j)$ for each j < m and let $s_\alpha(f(\alpha,i)) = \langle a_{\alpha+1}, d_{\alpha,i} \rangle$. By thinning out our sequences we can assume that $d_{\alpha,i} = d_i$ for each i < n and $\alpha < \omega_1$. Since $G_X^{<}$ is n-solid there are $\alpha < \beta < \omega_1$ such that $[s_\alpha, s_\beta] \subset G_X^{<}$. Especially, for each i < n we have $\{\langle f(\alpha,i), \langle a_{\alpha+1}, d_i \rangle \rangle, \langle f(\beta,i), \langle a_{\beta+1}, d_i \rangle \rangle\} \in G_X^{<}$, i.e. $x_{f(\alpha,i)} \upharpoonright a_{\beta+1} = d_i \upharpoonright a_{\beta+1}$. Thus, by the choice of $d_i = d_{\beta,i}$ we have $x_{f(\alpha,i)}(g(\beta+1,j)) = H(i,j)$ for each i < n and j < m, so α and $\beta+1$ satisfy the requirements of 3.1. Thus X is HFD_n^n .

Theorem 3.4. Assume that $2^{\omega_1} = \omega_2$. If $X = \{x_{\nu} : \nu < \omega_1\} \subset 2^{\omega_1}$ is a strong HFD_w , then for each natural number m we have a c.c.c-poset P_m of cardinality ω_2 such that

$$V^{P_m} \models "X \text{ is a c.c.c-indestructible } HFD_w^m".$$

Proof. By lemma 3.3, G_X^{\leq} is strongly solid . Since $2^{\omega_1}=\omega_2$ we can apply theorem 2.2 to obtain a c.c.c-poset P_m of cardinality ω_2 such that

$$V^{P_m} \models G_X^{^<}$$
 is c.c.c-indestructibly $m\text{-solid."}$

By lemma 3.3 this implies that

$$V^{P_m} \models$$
 "the space X is a c.c.c-indestructible HFD_w",

that is, the poset P_m satisfies the requirements.

The same argument gives the following theorem.

Theorem 3.5. Assume that $2^{\omega_1} = \omega_2$. If $X = \{x_{\nu} : \nu < \omega_1\} \subset 2^{\omega_1}$ is a strong HFC_w, then for each natural number m we have a c.c.c-poset P_m of cardinality ω_2 such that

$$V^{P_m} \models$$
 "X is a c.c.c-indestructible HFC".

K. Kunen [7] proved that under MA there are no strong S- and L-spaces. Theorems 3.4 and 3.5 above clearly yield corollary 3.6 below which shows that Kunen's result is sharp. It should be mentioned that this corollary is not new: by folklore it was known that the method of [1] can be applied to prove it but its proof was never published.

Corollary 3.6. If ZF is consistent then so is ZFC + Martin's Axiom + "for each natural number n there are topological spaces spaces X_n and Y_n such that $(X_n)^n$ is an S-space and $(Y_n)^n$ is an L-space".

The next application of theorem 2.2 is less straightforward.

Theorem 3.7. A first countable O-space can exist under Martin's Axiom.

Proof of theorem 3.7. First we sketch the idea of our proof. Assume that $2^{\omega_1} = \omega_2$ in the ground model. We construct a c.c.c poset \mathcal{Q} of size ω_1 to get a 0-dimensional, first countable space $X = \langle \omega_1, \tau \rangle$ in $V^{\mathcal{Q}}$. Then we define a graph G on $\omega_1 \times K$, where $K = \omega \times \omega$, and in lemma 3.8 we show that G is strongly solid.

we show that G is strongly solid. Since $(2^{\omega_1})^{V^{\mathcal{Q}}} = (2^{\omega_1})^V = \omega_2$, we can apply theorem 2.2 to get a c.c.c poset R in $V^{\mathcal{Q}}$ such that

$$V^{\mathcal{Q}*R} \models$$
 "G is c.c.c-indestructibly 2-solid".

So introducing Martin's axiom by forcing with a c.c.c poset P we obtain

$$V^{\mathcal{Q}*R*P} \models "MA_{\aleph_1} + G \text{ is 2-solid."}$$

Now to complete the proof of the theorem we prove in lemma 3.9 that if G is 2-solid, then X is an O-space.

To start with we define the poset $Q = \langle Q, \leq \rangle$ as follows.

The underlying set of \mathcal{Q} consists of triples $q = \langle I, n, u \rangle$, where $I \in [\omega_1]^{<\omega}$, $n \in \omega$ and $u: I \times n \longrightarrow \mathcal{P}(I)$ such that $\alpha \in u(\alpha, k) \subset u(\alpha, 0) = I \cap (\alpha + 1)$ for each $\alpha \in I$ and k < n.

If
$$q = \langle I, n, u \rangle$$
, $q' = \langle I', n', u' \rangle \in Q$ put $q \leq q'$ iff $I' \subset I$, $n' \leq n$, $u'(\alpha, k) = u(\alpha, k) \cap I'$, if $u'(\alpha, i) \cap u'(\beta, j) = \emptyset$ then $u(\alpha, i) \cap u(\beta, j) = \emptyset$, if $u'(\alpha, i) \subset u'(\beta, j)$ then $u(\alpha, i) \subset u(\beta, j)$ for each $\alpha, \beta \in I'$ and $1 \leq i, j, k < n'$.

Write $q = \langle I^q, n^q, u^q \rangle$ for $q \in \mathcal{Q}$. The set $D_{\alpha} = \{q \in Q : \alpha \in I^q\}$ is dense in \mathcal{Q} for each $\alpha \in \omega_1$. If \mathcal{G} is a \mathcal{Q} -generic filter let

$$U^{\mathcal{G}}(\alpha, k) = \bigcup \{ u^{q}(\alpha, k) : q \in \mathcal{G}, \alpha \in I^{q}, k < n^{q} \}$$

for $\alpha < \omega_1$ and $k < \omega$ and let

$$\mathcal{B}^{\mathcal{G}} = \{ U^{\mathcal{G}}(\alpha, k) : \alpha \in \omega_1, k < \omega \}$$

and

$$\mathcal{B}_{+}^{\mathcal{G}} = \{ U^{\mathcal{G}}(\alpha, k) : \alpha \in \omega_1, 1 \le k < \omega \}.$$

We show that

(*) $\mathcal{B}_{+}^{\mathcal{G}}$ is a clopen base of a T_2 topological space $X^{\mathcal{G}}$ on ω_1 .

Let $D = \{q \in Q : n^q \ge 2 \text{ and } u^q(\alpha, n^q - 1) = \{\alpha\} \text{ for each } \alpha \in I^q\}$. If $q \in D$ then for each $\{\alpha, \beta\} \in [I^q]^2$ and $1 \le k < n^q$ we have

$$q \Vdash U^{\mathcal{G}}(\alpha, n^q - 1) \subset U^{\mathcal{G}}(\beta, k) \text{ or } U^{\mathcal{G}}(\alpha, n^q - 1) \cap U^{\mathcal{G}}(\beta, k) = \emptyset, \text{ and }$$

$$U^{\mathcal{G}}(\alpha, n^q - 1) \cap U^{\mathcal{G}}(\beta, n^q - 1) = \emptyset$$

by the definition of the order on Q. Since the set D is dense in Q, it follows that (*) holds.

A standard density argument gives that ω is dense in $X^{\mathcal{G}}$.

Let
$$K = \omega \times \omega$$
, $\mathcal{J} = \{\langle \alpha, \langle k, d \rangle \rangle \in \omega_1 \times K : d \in U^{\mathcal{G}}(\alpha, k) \}$ and

$$G^{\mathcal{G}} = \left(\left[\omega_1 \times K \right]^2 \setminus \left[\mathcal{J} \right]^2 \right) \cup \left\{ \left\{ \left\langle \alpha_0, \left\langle k_0, d_0 \right\rangle \right\rangle, \left\langle \alpha_1, \left\langle k_1, d_1 \right\rangle \right\rangle \right\} \in \left[\mathcal{J} \right]^2 :$$

$$d_0 \neq d_1 \vee \alpha_0 \in U^{\mathcal{G}}(\alpha_1, k_1) \vee \alpha_1 \in U^{\mathcal{G}}(\alpha_0, k_0) \bigg\}.$$

The following lemma yields that Q is c.c.c and $G^{\mathcal{G}}$ is n-solid in $V^{\mathcal{Q}}$.

Lemma 3.8. If $n \in \omega$, $\{q_{\alpha} : \alpha < \omega_1\} \subset \mathcal{Q}$, $\{s_{\alpha} : \alpha < \omega_1\} \subset \operatorname{Fn}_n(\omega_1, K)$ is dom-disjoint, then there are $\{\alpha, \beta\} \in [\omega_1]^2$ and $q \in \mathcal{Q}$ such that $q \leq q_{\alpha}, q_{\beta}$ and $q \Vdash [s_{\alpha}, s_{\beta}] \subset G^{\mathcal{G}}$.

Proof of lemma 3.8. Write $q_{\alpha} = \langle I_{\alpha}, n_{\alpha}, u_{\alpha} \rangle$. We can assume that $s_{\alpha} \subset I_{\alpha} \times (n_{\alpha} \times n_{\alpha})$. By the definition of $G^{\mathcal{G}}$ we can also assume that $s_{\alpha} \subset \mathcal{J}$ because of $1_{\mathcal{Q}} \Vdash [s_{\alpha} \setminus \mathcal{J}, \omega_{1} \times K] \subset G^{\mathcal{G}}$. By standard Δ -system and counting arguments we can find $\{\alpha, \beta\} \in [\omega_{1}]^{2}$ such that

(1)
$$\alpha < \beta$$
,

- (2) $I_{\alpha} \cap I_{\beta} < I_{\alpha} \setminus I_{\beta} < I_{\beta} \setminus I_{\alpha}$,
- (3) $|I_{\alpha}| = |I_{\beta}|$ and $n_{\alpha} = n_{\beta} = n$,
- (4) the natural bijection σ between I_{α} and I_{β} gives an isomorphism between q_{α} and q_{β} , and between s_{α} and s_{β} in the following sense:
 - (i) $(\forall \nu \in I_{\alpha})$ $(\forall k < n)$ $\sigma''u_{\alpha}(\nu, k) = u_{\beta}(\sigma(\nu), k),$
 - (ii) $s_{\beta} = \{ \langle \sigma(\nu), x \rangle : \langle \nu, x \rangle \in s_{\alpha} \}.$

Now define the condition $q = \langle I, n, u \rangle$ as follows. Roughly speaking, q will be the minimal amalgamation of q_{α} and q_{β} which may force " $[s_{\alpha}, s_{\beta}] \subset G^{\mathcal{G}}$ ". Let $I = I_{\alpha} \cup I_{\beta}$. For $\nu \in I_{\alpha}$ and m < n let $u(\nu, k) = u_{\alpha}(\nu, k)$. For $\nu \in I_{\beta} \setminus I_{\alpha}$ let $u(\nu, 0) = I \cap (\nu + 1)$ and for $1 \le m < n$ put

 $u(\nu, m) = u_{\beta}(\nu, m) \cup \{\xi \in \text{dom } s_{\alpha} : \exists \zeta \in \text{dom } s_{\beta} \ \exists d \in \omega$

$$s_{\alpha}(\xi) = \langle k_{\xi}, d \rangle \wedge s_{\beta}(\zeta) = \langle k_{\zeta}, d \rangle \wedge u_{\beta}(\zeta, k_{\zeta}) \subset u_{\beta}(\nu, m) \}.$$

Then $q \in \mathcal{Q}$ and $q \Vdash [s_{\alpha}, s_{\beta}] \subset G^{\mathcal{G}}$, so we need to check only $q \leq q_{\alpha}, q_{\beta}$. First observe that $q \leq q_{\alpha}$ is straightforward because I_{α} is an initial segment of I and $u \upharpoonright I_{\alpha} \times n = u_{\alpha}$.

To check $q \leq q_{\beta}$ assume that $\nu_0, \nu_1 \in I_{\beta} \setminus I_{\alpha}$ and $m_0, m_1 < n$ such that $u(\nu_0, m_0) \cap u(\nu_1, m_1) \cap (I_{\alpha} \setminus I_{\beta}) \neq \emptyset$. We need to show $u_{\beta}(\nu_0, m_0) \cap u_{\beta}(\nu_1, m_1) \neq \emptyset$. If $m_0 = 0$ or $m_1 = 0$ then it is clear because $u_{\beta}(\nu, 0) = (\nu + 1) \cap I_{\beta}$. So assume $m_0, m_1 \geq 1$ and pick $\xi \in u(\nu_0, m_0) \cap u(\nu_1, m_1) \cap (I_{\alpha} \setminus I_{\beta})$. Then $\xi \in \text{dom } s_{\alpha}$ and there are $\zeta_0, \zeta_1 \in \text{dom } s_{\beta}$ such that $s_{\alpha}(\xi) = \langle k_{\xi}, d \rangle$, $s_{\beta}(\zeta_i) = \langle k_{\zeta_i}, d \rangle$ and $u_{\beta}(\zeta_i, k_{\zeta_i}) \subset u_{\beta}(\nu_i, m_i)$ for i = 0, 1.

Since $s_{\beta} \subset \mathcal{J}$, it follows that $d \in u_{\beta}(\nu_0, m_0) \cap u_{\beta}(\nu_1, m_1)$, i.e. $u_{\beta}(\nu_0, m_0) \cap u_{\beta}(\nu_1, m_1) \neq \emptyset$. Since $u_{\beta}(\nu_0, m_0) \subset u_{\beta}(\nu_1, m_1)$ clearly implies $u(\nu_0, m_0) \subset u(\nu_1, m_1)$ by the construction of u it follows that $q \leq q_{\beta}$.

Carrying out our plan we apply theorem 2.2 to find a c.c.c extension V^{Q*R*P} of V^Q such that

$$V^{\mathcal{Q}*R*P} \models \text{``}MA_{\aleph_1} \text{ holds} + G^{\mathcal{G}} \text{ is 2-solid.''}$$

Thus the following lemma completes the proof of theorem 3.7.

Lemma 3.9. If $G^{\mathcal{G}}$ is 2-solid then every open set in $X^{\mathcal{G}}$ is either countable or co-countable.

Proof of the lemma 3.9. Let $V \subset X^{\mathcal{G}}$ be an uncountable open set and $Y \in [X]^{\omega_1}$. To show $V \cap Y \neq \emptyset$ pick pairwise disjoint, infinite ordinals $\{\nu_{\alpha}, \mu_{\alpha} : \alpha < \omega_1\}$ and natural numbers $\{k_{\alpha}, d_{\alpha} : \alpha < \omega_1\}$ such that

- (i) $\nu_{\alpha} \in V$ and $U^{\mathcal{G}}(\nu_{\alpha}, k_{\alpha}) \subset V$,
- (ii) $d_{\alpha} \in U^{\mathcal{G}}(\nu_{\alpha}, k_{\alpha}),$
- (iii) $\mu_{\alpha} \in Y$,
- (iv) $\nu_{\alpha} < \mu_{\alpha} < \nu_{\beta} < \mu_{\beta}$ for $\alpha < \beta < \omega_1$.

By thinning out our sequence we can assume that $d_{\alpha} = d$. Let $s_{\alpha} = \{\langle \nu_{\alpha}, \langle k_{\alpha}, d \rangle \rangle, \langle \mu_{\alpha}, \langle 0, d \rangle \rangle \}$ for $\alpha < \omega_1$. Then $s_{\alpha} \in \mathcal{J}$ because of $d \in \omega \subset U^{\mathcal{G}}(\mu_{\alpha}, 0)$.

Since G is 2-solid there are $\alpha < \beta < \omega_1$ such that $[s_{\alpha}, s_{\beta}] \subset G$, especially,

$$\{\langle \mu_{\alpha}, \langle 0, d \rangle \rangle, \langle \nu_{\beta}, \langle k_{\beta}, d \rangle \rangle\} \in G.$$

Since $\nu_{\beta} \notin \mu_{\alpha} + 1 = U^{\mathcal{G}}(\mu_{\alpha}, 0)$ it follows that $\mu_{\alpha} \in U^{\mathcal{G}}(\nu_{\beta}, k_{\beta}) \subset V$ and so $V \cap Y \neq \emptyset$ which was to be proved.

Theorem 3.7 is proved. \Box

Denote by $\mathbf{2}^{\omega_1}$ the ω_1^{th} power of the discrete, additive topological group $\mathbf{2} = \{0, 1\}$.

Theorem 3.10. If GCH holds then there is a c.c.c poset P such that

$$V^P \models \mathbf{\hat{2}}^{\omega_1} \text{ contains an S-group and } MA_{\aleph_1} \text{ holds}$$
".

Proof. Since $2^{\omega} = \omega_1$ we have a strong $HFD_w X = \{x_{\nu} : \nu < \omega_1\} \subset 2^{\omega_1}$.

We can assume that $x_{\nu}(\nu+1)=0$ and $x_{\nu}(\xi)=1$ for each $\xi \leq \nu < \omega_1$. Let A be the subgroup of $\mathbf{2}^{\omega_1}$ generated by X. We show that A will be a c.c.c-indestructible S-group in a certain generic extension.

If $a \in [\omega_1]^{<\omega} \setminus \{\emptyset\}$ write $x_a = \sum \{x_\nu : \nu \in a\}$ and let x_\emptyset be the unit element of $\mathbf{2}^{\omega_1}$. Since $x_a + x_b = x_{a \triangle b}$ and so $-(x_a) = x_a$, we have $A = \{x_a : a \in [\omega_1]^{<\omega}\}$.

Fix a countable dense subset D of 2^{ω_1} . Let $K = [\omega_1]^{<\omega} \times [\omega_1]^{<\omega} \times D$ and

$$\mathcal{J} = \{ \langle \nu, \langle a, t, d \rangle \rangle \in \omega_1 \times K : \nu = \min a \le \min t, x_a \upharpoonright t = d \upharpoonright t \}.$$

Put

$$G = (\left[\omega_{1} \times K\right]^{2} \setminus \left[\mathcal{J}\right]^{2}) \cup \\ \left\{ \left\{ \left\langle \nu_{0}, \left\langle a_{0}, t_{0}, d_{0} \right\rangle \right\rangle, \left\langle \nu_{1}, \left\langle a_{1}, t_{1}, d_{1} \right\rangle \right\rangle \right\} \in \left[\mathcal{J}\right]^{2} : \\ d_{0} \neq d_{1} \vee (\nu_{0} < \nu_{1} \wedge x_{a_{0}} \upharpoonright t_{1} = d_{1} \upharpoonright t_{1}) \right\}.$$

Lemma 3.11. *G* is strongly solid.

Proof. Let $n \in \omega$. Fix a dom-disjoint sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_n(\omega_1, K)$. For each $\alpha < \omega_1$ write dom $s_{\alpha} = \{ \sigma_{\alpha,i} : i < n \}$ and let $s_{\alpha}(\sigma_{\alpha,i}) = \langle a_{\alpha,i}, t_{\alpha,i}, d_{\alpha,i} \rangle$.

By the definition of G we can assume that $s_{\alpha} \subset \mathcal{J}$.

Let $a_{\alpha} = \bigcup \{a_{\alpha,i} : i < n\}$ and $t_{\alpha} = \bigcup \{t_{\alpha,i} : i < n\}$ and fix increasing enumerations $a_{\alpha} = \{\gamma_{\alpha,j} : j < k_{\alpha}\}$ and $t_{\alpha} = \{\tau_{\alpha,\ell} : \ell < m_{\alpha}\}$.

By thinning out our sequence we may assume that

- (i) $k_{\alpha} = k$ and $m_{\alpha} = m$ for each $\alpha < \omega_1$,
- (ii) there are elements $\{d_i : i < m\} \subset B$ such that $d_{\alpha,i} = d_i$ for each $\alpha < \omega_1$ and i < n,
- (iii) $\max a_{\alpha} \cup t_{\alpha} < \min a_{\beta} \cup t_{\beta}$ for $\alpha < \beta < \omega_1$.
- (iv) $\gamma_{\alpha,j} \in a_{\alpha,i}$ iff $\gamma_{\beta,j} \in a_{\beta,i}$ for each $\alpha < \beta < \omega_1$ and i < n, j < k.

Define functions $H_{\alpha}: k \times m \longrightarrow 2$ as follows. Fix $\ell < m$. We will determine the values of $H_{\alpha}(k-1,\ell), \ H_{\alpha}(k-2,\ell), \ldots, \ H(0,\ell)$ successively. Assume j < k and $H_{\alpha}(j',\ell)$ is defined for j < j' < k. If $\gamma_{\alpha,j} \notin \text{dom } s_{\alpha}$, then let $H_{\alpha}(j,\ell)$ be arbitrary. If $\gamma_{\alpha,j} = \sigma_{\alpha,i} \in \text{dom } s_{\alpha}$ then let

$$(*) H_{\alpha}(j,\ell) = d_i(\tau_{\alpha,\ell}) - \sum \left\{ H_{\alpha}(j',\ell) : j < j' < k, \gamma_{\alpha,j'} \in a_{\alpha,i} \right\}.$$

Observe that for each i < n and $\ell < m$ by (*) and by $\sigma_{\alpha,i} = \min a_{\alpha,i}$ we have

$$(\star) d_i(\tau_{\alpha,\ell}) = \sum \{ H_{\alpha}(j,\ell) : \gamma_{\alpha,j} \in a_{\alpha,i} \}.$$

We can assume that $H_{\alpha} = H$ for each $\alpha < \omega_1$.

Since X is a HFD_w there are $\alpha < \beta < \omega_1$ such that

$$\forall j < k \ \forall \ell < m \ x_{\gamma_{\alpha,j}}(\tau_{\beta,\ell}) = H(j,\ell).$$

We claim that $[s_{\alpha}, s_{\beta}] \subset G$.

Fix $i_0, i_1 < n$ and check $\{\langle \sigma_{\alpha,i_0}, \langle a_{\alpha,i_0}, t_{\alpha,i_0}, d_{i_0} \rangle \rangle, \langle \sigma_{\beta,i_1}, \langle a_{\beta,i_1}, t_{\beta,i_1}, d_{i_1} \rangle \rangle \} \in G$. By the definition of G we can assume $d_{i_0} = d_{i_1}$. To show $x_{a_{\alpha,i_0}} \upharpoonright t_{\beta,i_1} = d_{i_1} \upharpoonright t_{\beta,i_1}$ let $\tau_{\beta,\ell} \in t_{\beta,i_1}$. Then

$$\begin{split} x_{a_{\alpha,i_0}}(\tau_{\beta,\ell}) &= \sum \left\{ x_{\gamma_{\alpha,j}}(\tau_{\beta,\ell}) : \gamma_{\alpha,j} \in a_{\alpha,i_0} \right\} = \sum \left\{ H(j,\ell) : \gamma_{\alpha,j} \in a_{\alpha,i_0} \right\} = \\ & \sum \left\{ H(j,\ell) : \gamma_{\beta,j} \in a_{\beta,i_0} \right\} = d_{i_0}(\tau_{\beta,\ell}) = d_{i_1}(\tau_{\beta,\ell}), \end{split}$$

where the first equality holds by definition, the second is satisfied by the choice of α and β , the third is fulfilled by (iv), and the fourth holds by (\star). This completes the proof of the lemma. \square

Lemma 3.12. If G is 1-solid in some model $W \supset V$ then $W \models$ "A is hereditarily separable".

Proof. Assume on the contrary that $\{x_{a_{\alpha}}: \alpha < \omega_1\} \subset A$ is a left separated subspace witnessed by basic open sets $[c_{\alpha}]$, i.e. $c_{\alpha} \in \operatorname{Fn}(\omega_1, 2)$ such that $c_{\alpha} \subset x_{a_{\alpha}}$ and $c_{\gamma} \not\subset x_{a_{\alpha}}$ for $\gamma < \alpha$. Pick $d_{\alpha} \in D$ with $c_{\alpha} \subset d_{\alpha}$.

We can assume that

- (a) $d_{\alpha} = d$ for $\alpha < \omega_1$,
- (b) $\{a_{\alpha} : \alpha < \omega_1\}$ forms a Δ -system with kernel a,
- (c) $a = \emptyset$ because the mapping $g \longrightarrow g + x_a$ is a homeomorphism of A,
- (d) $\max(a_{\alpha}) < \min(a_{\beta})$ for $\alpha < \beta < \omega_1$,
- (e) $\{\operatorname{dom}(c_{\alpha}): \alpha < \omega_1\}$ forms a Δ -system with kernel r,
- (f) $c_{\alpha} \upharpoonright r = c$ and so $r = \emptyset$ because c_{α} can be replaced by $c_{\alpha} \upharpoonright (\text{dom } c_{\alpha} \setminus r)$,
- (g) $\max((\operatorname{dom} c_{\alpha}) \cup a_{\alpha}) < \min((\operatorname{dom} c_{\beta}) \cup a_{\beta})$ for $\alpha < \beta < \omega_1$.

For $\alpha < \omega_1$ let $\sigma_\alpha = \min a_\alpha$ and $s_\alpha = \{ \langle \sigma_\alpha, \langle a_\alpha, \dim c_{\alpha+1}, d \rangle \rangle \}$.

Since G is 1-solid, there are $\alpha < \beta < \omega_1$ such that $[s_{\alpha}, s_{\beta}] \subset G$, i.e. $x_{a_{\alpha}} \upharpoonright \text{dom } c_{\beta+1} = d \upharpoonright \text{dom } c_{\beta+1} = c_{\beta+1}$ which contradicts the choice of $c_{\beta+1}$.

By lemma 3.11, G is strongly solid , so applying theorem 2.2 we obtain a c.c.c. poset P such that

$$V^P \models$$
 "G is 1-solid + MA_{\aleph_1} holds".

Then, by lemma 3.12,

$$V^P \models$$
 "A is hereditarily separable".

Finally we show that A is not Lindelöf. Indeed, take $U_{\nu} = \{f \in A : f(\nu) = 0\}$ for $\nu < \omega_1$. Then $\mathcal{U} = \{U_{\nu} : \nu < \omega_1\}$ is an open cover of A, because for each $a \in [\omega_1]^{<\omega} \setminus \{\emptyset\}$, taking $\alpha = \min a$, we have $x_a(\alpha) + x_a(\alpha + 1) = 1$ and so $x_a \in U_{\alpha} \cup U_{\alpha+1}$. On the other hand, \mathcal{U} does not contain a countable subcover, because $x_{\nu} \notin \bigcup_{\zeta \leq \nu} U_{\zeta}$. Thus the group A and the poset P satisfy the requirements of the theorem.

Using similar arguments we can also get the following result.

Theorem 3.13. If GCH holds then there is a c.c.c poset P such that

$$V^P \models \mathbf{\tilde{z}}^{\omega_1} \text{ contains an } L\text{-group and } MA_{\aleph_1} \text{ holds}$$
".

References

- U. Abraham, S. Todorčevič, Martin's Axiom and first countable S- and L-spaces, HANDBOOK OF SET-THEO-RETICAL TOPOLOGY, e.d. K. Kunen and J. E. Vaughan, 327–345, North-Holland, New York, 1984.
- [2] A. Hajnal, I. Juhász, On hereditarily α-Lindelöf and hereditarily α-separable spaces, Annales Univ. Sci. Budapest, 9 (1968) 115–125
- [3] A. Hajnal, I. Juhász, A consistency result concerning α-separable spaces, INDAG. MATH. 24(1973) 301–307
- [4] A. Hajnal, I. Juhász, A consistency result concerning α-Lindelöf spaces, ACTA MATH. ACAD. Sci. Hung., 24 (1973) 307–312
- [5] T. Jech, Set theory, 1978, Academic Press, New York
- [6] I. Juhász, A survey of S and L-spaces, Coll. Math. Soc. János Bolyai 23. Topology, 1978 675–688, Budapest (Hungary)
- [7] K. Kunen, Strong S and L-spaces under MA, Set-Theoretic Topology 265-268, Academic Press, 1977
- [8] A. Ostaszewsky, On countably compact, perfectly normal spaces, J. London Math. Soc (2) 14, pp. 505-516,
- [9] J. Roitman, Easy S and L groups. PROC. Am. MATH. Soc., 78 (1980), pp 424-428.
- $\overline{[10]}$ Z. SzentmiklóssyS and L-spaces under MA Coll. Math. Soc. János Bolyai 23. Topology, 1978 Budapest (Hungary) , 1139–1145

[11] Z. Szentmiklóssy S spaces can exists under MA $\,$ Topology and its Applications 16(1983) 243–251

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, V. Reáltanoda u. 13-55, Hungary

Dept. of Computer Sciences, Kitami Institute of Technology, Koen-cho 165 Kitami, Hokkaido 090-8507 Japan

 $E\text{-}mail\ address:\ {\tt soukup@math-inst.hu,soukup@math.cs.kitami-it.ac.jp}$