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Abstract. We show that if we add any number of Cohen reals to
the ground model then, in the generic extension, a locally compact
scattered space has at most (2ℵ0)V many levels of size ω.

We also give a complete ZFC characterization of the cardinal
sequences of regular scattered spaces. Although the classes of the
regular and of the 0-dimensional scattered spaces are different, we
prove that they have the same cardinal sequences.

1. Introduction

Let us start by recalling that a topological space X is called scattered
if every non-empty subspace of X has an isolated point. Via the well-
known Cantor-Bendixson analysis then X decomposes into levels, the
αth Cantor-Bendixson level of X will be denoted by Iα(X). The height
of X, ht(X), is the least ordinal α with Iα(X) = ∅. The width of X,
wd(X), is defined by wd(X) = sup{ | Iα(X)| : α < ht(X)}. Our main
object of study is the cardinal sequence of X, denoted by CS(X), that
is the sequence of cardinalities of the non-empty Candor-Bendixson
levels of X, i.e.

CS(X) =
〈
|Iα(X)| : α < ht(X)

〉
.

The cardinality of a T3 , in particular of a locally compact, scat-
tered T2 (in short: LCS) space X is at most 2 | I0(X)|, hence clearly
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ht(X) < (2| I0(X)|)+ and |Iα(X)| ≤ 2| I0(X)| for each α. (Locally com-
pact scattered spaces are closely related to superatomic boolean alge-
bras via Stone duality and the study of their cardinal sequences was
actually originated in that subject.) Thus, in particular, under CH
there is no scattered T3 space of height ω2 and having only countably
many isolated points. After I. Juhász and W. Weiss, [5, theorem 4],
had proved in ZFC that for every α < ω2 there is an LCS space X
with ht(X) = α and wd(X) = ω, it was a natural question if the ex-
istence of an LCS space of height ω2 and width ω follows from ¬CH.
This question was answered in the negative by W. Just who proved,
[6, theorem 2.13], that if one blows up the continuum by adding Cohen
reals to a model of CH then in the resulting generic extension there is
no LCS space of height ω2 and width ω. On the other hand, in their
ground breaking work [1], J. Baumgartner and S. Shelah produced a
model in which there is an LCS space of height ω2 and width ω, more-
over they proved in ZFC that for each α < (2ω)+ there is a scattered
0-dimensional T2 space X with ht(X) = α and wd(X) = ω. Building
on the idea of the proof of this latter result, in section 3 we succeeded
in giving a complete characterization of the cardinal sequences of both
T3 and zero-dimensional T2 scattered spaces. Although the classes of
the regular and of the zero-dimensional scattered spaces are different,
it will turn out that they yield the same class of cardinal sequences. We
should add that, with quite a bit of extra effort, in [8], J.-C. Martinez
extended the former result of Baumgartner and Shelah by producing
a model in which for every ordinal α < ω3 there is an LCS space of
height α and width ω. The question if it is consistent to have an LCS
space of height ω3 and width ω remains a big mystery.

In section 2 we strengthen the result of Just by proving, in particular,
that in the same Cohen real extension no LCS space may have ω2

many countable (non-empty) levels. It seems to be an intriguing (and
natural) problem if the non-existence of an LCS space of width ω and
height ω2 implies in ZFC the above conclusion, or more generally: when
is a subsequence of the cardinal sequence of an LCS space again such a
cardinal sequence? In connection with this problem let us remark that,
(as is shown in [2] or [3]), in the side-by-side random real extension of
a model of CH the combinatorial principle Cs(ω2) introduced in [4,
definition 2.3] holds, consequently in such an extension there is no LCS
space X of height ω2 and width ω. In fact, by [4, theorem 4.12], Cs(ω2)
implies that {α ∈ ω2 : |Iα(X)| = ω} is non-stationary in ω2. However,
we do not know if our above mentioned result, namely theorem 2.1, is
implied by Cs(ω2) .
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The moral of our above discussion may be concisely formulated as
follows: The cardinal sequences of regular or zero-dimensional scattered
spaces are only subject to the trivial inequality |X| ≤ 2|I0(X)|, however
those of the LCS spaces are much harder to determine, in particular,
they are sensitive to the model of set theory in which we look at them.

2. Countable levels in Cohen real extensions

Let us formulate then the promised strengthening of Just’s result.
We note that no assumption (such as CH) is made on our ground model.

Theorem 2.1. Let us set κ = (2ω)+ and add any number of Cohen
reals to our ground model. Then in the resulting extension no LCS
space contains a κ-sequence {Eα : α < κ} of pairwise disjoint countable
subspaces such that Eα ⊃ Eβ holds for all α < β < κ. In particular,
for any LCS space X we have

∣∣{α : | Iα(X)| = ω}
∣∣ < κ.

In fact, we shall prove a more general statement, but to formulate
that we need a definition. A family of pairs (of sets) D =

{
〈Dα

0 , Dα
1 〉 :

α ∈ I
}

is said to be dyadic over a set T iff Dα
0 ∩Dα

1 = ∅ for each α ∈ I
and

D[ε] =
⋂
{Dα

ε(α) : α ∈ dom ε}
intersects T for each ε ∈ Fn(I, 2). We simply say that D is dyadic iff
it is dyadic for some T , i.e. D[ε] 6= ∅ for each ε ∈ Fn(I, 2). (As usual,
Fn(I, 2) denotes the set of all finite partial functions from I into 2.)

Now, it is obvious that in an LCS space

• the compact open sets form a base that is closed under finite
unions,

• there is no infinite dyadic system of pairs of compact sets.

Consequently, theorem 2.2 below immediately yields theorem 2.1 above.

Theorem 2.2. Set κ = (2ω)+ and add any number of Cohen reals to
the ground model. Then in the resulting generic extension the follow-
ing statement holds: If X is any T2 space containing pairwise disjoint
countable subspaces {Eα : α < κ} such that Eα ⊃ Eβ for α < β < κ
and X = E0 (i. e. E0 is dense in X) , moreover, for each x ∈ X,
we have fixed a neighbourhood base B(x) of x in X that is closed under
finite unions then there is an infinite set a ∈

[
κ
]ω

, for each α ∈ a there
are disjoint finite subsets L0

α and L1
α of Eα, and for each x ∈ L0

α ∪ L1
α

there is a basic neighbourhood V (x) ∈ B(x) such that the infinite family
of pairs {〈 ⋃

x∈L0
α

V (x),
⋃

x∈L1
α

V (x)
〉

: α ∈ a
}
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is dyadic.

This topological statement in the Cohen extension in turn will follow
from a purely combinatorial one concerning certain matrices, namely
theorem 2.7.

To formulate this theorem we again need some notation and defini-
tions.

For an ordinal α the interval [ωα, ωα + ω) will be denoted by Iα.

Given two sets A and B we write f : A
p−→ B to denote that f is a

partial function from A to B, i. e. a function from a subset of A into
B. As usual, we let

Fn(A, B) = {f : |f | < ω and f : A
p−→ B}.

If A ⊂ On then for any partial function f : A
p−→ B we set

γ(f) =

{
min dom f if dom f 6= ∅,
sup A if dom f = ∅.

We let

Ω =
{
〈A, B〉 ∈

[
ω
]<ω ×

[
ω
]<ω

: A ∩B = ∅
}
,

and for ` = 〈A, B〉 ∈ Ω we set π0(`) = A and π1(`) = B.
If S and T are sets of ordinals, we denote by M(S, T ) the family

of all S × ω-matrices consisting of subsets of T , i. e. A ∈ M(S, T )
means that A = 〈Aα,i : α ∈ S, i ∈ ω〉, where Aα,i ⊂ T for each α ∈ S
and i < ω.

For A ∈ M(S, T ), f : S
p−→ S, and s : S

p−→ Ω the pair (f, s) is
said to be A-dyadic (over U) iff the family of pairs{〈

∪
{
Af(α),n : n ∈ π0(s(α))

}
,∪

{
Af(α),n : n ∈ π1(s(α))

}〉
:

α ∈ dom f ∩ dom s
}

.

is dyadic (over U). If the pair 〈idS, s〉 is A-dyadic (over U) then s is
simply called A-dyadic (over U). It is this latter notion of A-dyadicity
of a single partial function that is really important (that for pairs is
only of technical significance). Hence we state below an alternative
characterisation of it.

For A ∈M(S, T ), s : S
p−→ Ω, and ε ∈ Fn(dom s, 2) we write

A[s, ε] =
⋂

α∈dom ε

⋃
{Aα,n : n ∈ πε(α)(s(α))}.
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Observation 2.3. If A ∈M(S, T ) then s : S
p−→ Ω is A-dyadic over

U iff A[s, ε] ∩ U 6= ∅ for each ε ∈ Fn(dom s, 2) and⋃
{Aα,n : n ∈ π0(s(α))} ∩

⋃
{Aα,n : n ∈ π1(s(α))} = ∅

for each α ∈ dom s.

The following easy observation will be applied later, in the proof of
lemma 2.9:

Observation 2.4. If g : S
p−→ S and s : S

p−→ Ω satisfy dom s ⊂
ran g, and the pair (g, s◦g) is A-dyadic over U then s is A-dyadic over
U , as well.

Definition 2.5. Fix a cardinal κ and let D ∈M(κ, κ). For s : κ
p−→ Ω

we say that s is D-min-dyadic (m.d.) iff s is D-dyadic over Iγ(s).
Moreover, we say that the matrix D is m.d.-extendible iff for each

finite D-min-dyadic partial function s : κ
p−→ Ω and for each γ < γ(s)

there is an ` ∈ Ω such that s ∪ {〈γ, `〉} is also D-min-dyadic, i. e.
D-dyadic over Iγ .

Since I0 = ω, we clearly have the following.

Observation 2.6. If D ∈ M(κ, κ) is m.d-extendible and s : κ
p−→ Ω

is a finite D-min-dyadic partial function then s is D-dyadic over ω.

Finally, a matrix D ∈M(κ, κ) will be called ω-determined iff Dα,n∩
Dα,m∩ω = ∅ implies Dα,n∩Dα,m = ∅ whenever α < κ and n < m < ω.

With this we now have all the necessary ingredients to formulate and
prove the promised combinatorial statement that will be valid in any
Cohen real extension.

Theorem 2.7. Set κ = (2ω)+ and add any number of Cohen reals to
the ground model. Then in the resulting generic extension for every ω-
determined and m.d.-extendible matrix D ∈M(κ, κ) there is an infinite

D-dyadic partial function h : κ
p−→ Ω.

Before proving theorem 2.7, however, we show how theorem 2.2 can
be deduced from it.

Proof of theorem 2.2 using theorem 2.7. We can assume without any
loss of generality that Eα = Iα for each α < κ and then will define an
appropriate matrix D ∈M(κ, κ).

To this end, for coding purposes, we first fix a bijection ρ :
[
ω
]2 −→ ω

and let η : ω −→ ω and ν : ω −→ ω be the ”co-ordinate” functions of
its inverse, i. e. k = ρ({ν(k), η(k)}) and ν(k) < η(k) for each k < ω.
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Since X is T2, for each n < ω we can simultaneously pick basic
neighbourhoods Bα

n (m) ∈ B(ωα+m) of the points ω ·α+m ∈ Eα = Iα

for all m < n such that the sets {Bα
n (m): m < n} are pairwise disjoint.

Now we define D = 〈Dα,k : 〈α, k〉 ∈ κ× ω〉 ∈ M(κ, κ) as follows:

Dα,k = Bα
η(k)(ν(k)) ∩ κ.

This matrix D is clearly ω-determined because E0 = I0 = ω is dense
in X. It is a bit less easy to establish the following

Claim . D is also m.d.-extendible.

Proof of the claim. Let s : κ
p−→ Ω be a finite D-min-dyadic partial

function and let γ < γ(s).
Since the sets {D[s, ε] : ε ∈ dom s2} are all open in the subspace

κ and they all intersect Iγ(s), moreover every element of Iγ(s) is an
accumulation point of Iγ, it follows that D[s, ε] ∩ Iγ must be infinite
for each ε ∈ dom s2. Thus we can easily pick two disjoint finite subsets
A0 and A1 of Iγ such that every D[s, ε] intersects both A0 and A1. Let
n < ω be chosen in such a way that A0 ∪ A1 ⊂ {ωγ + m : m < n},
and set Ki = {ρ{m,n} : m < n ∧ ωγ + m ∈ Ai} for i < 2. Since % is
one-to-one we have K0 ∩K1 = ∅, hence ` = 〈K0, K1〉 ∈ Ω, moreover

(?)
( ⋃

m∈K0

Dγ,m

)
∩

( ⋃
m∈K1

Dγ,m

)
= ∅

because the elements of the family {Bγ
n(m) : m < n} are pairwise

disjoint.
Now put t = s ∪ {〈γ, `〉}. Then for each ε ∈ dom t2 we clearly have

(??) Aε(γ) ∩ D[t, ε] 6= ∅,

hence (?) and (??) together yield that the extension t of s is D-dyadic
over Iγ = Iγ(t). �

Thus we may apply theorem 2.7 to the matrix D to obtain an infinite

D-dyadic partial function h : κ
p−→ Ω. Set a = dom h and for each

α ∈ a and i < 2 put Li
α = {ωα + ν(k) : k ∈ πi(h(α))}. For x ∈ Li

α put

V (x) = ∪{Bα
η(k)(ν(k)) : x = ωα + ν(k) and k ∈ πi(h(α))}.

Then V (x) ∈ B(x) because B(x) is closed under finite unions. Since
for i < 2 (

∪{V (x) : x ∈ Li
α}

)
∩ κ = ∪{Dα,k : k ∈ πi(h(α))}

and

∪{Dα,k : k ∈ π0(h(α))} ∩ ∪{Dα,k : k ∈ π1(h(α))} = ∅,
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we have (
∪{V (x) : x ∈ Li

α}
)
∩

(
∪{V (x) : x ∈ Li

α}
)

= ∅
because the latter intersection is an open set which does not intersect
the dense set I0 ⊂ κ. Hence the infinite family{〈 ⋃

x∈L0
α

V (x),
⋃

x∈L1
α

V (x)
〉

: α ∈ a
}

is indeed dyadic. �2.2

Proof of theorem 2.7. The proof will be based on the following two lem-
mas, 2.9 and 2.10. For these we need some more notation and a new
and rather technical notion of extendibility for set matrices.

Given a set A we set

F(A) = {f ∈ Fn(A, A) : f is injective and dom(f) ∩ ran(f) = ∅}.
Each function f ∈ F(A) can be extended in natural way to a bijection
f ∗ : A −→ A as follows:

f ∗(a) =

 f(a) if a ∈ dom f ,
f−1(a) if a ∈ ran f ,
a otherwise.

Definition 2.8. If S and T are sets of ordinals then the matrix A ∈
M(S, T ) is called nicely extendible iff for each f ∈ F(S) there are a

family N(f) ⊂ Fn(S, Ω) and a function Kf : N(f) −→
[
S
]≤ω

such
that

(1) the pair (f, s) is A-dyadic whenever f ∈ F(S) and s ∈ N(f),
(2) ∅ ∈ N(f) for each f ∈ F(S),
(3) for f, g ∈ F(S) and s ∈ N(f) if f ∗ |̀ Kf (s) = g∗ |̀ Kf (s) then

s ∈ N(g).
(4) for any f ∈ F(S), s ∈ N(f) and α ∈ S ∩ γ(s) there is ` ∈ Ω such

that s ∪ {〈α, `〉} ∈ N(f).

Clearly, this last condition (4) is what explains our terminology.

Lemma 2.9. If κ > ω1 is regular and A ∈ M(κ, ω) is a nicely ex-

tendible matrix then there is an infinite partial function h : κ
p−→ ω

that is A-dyadic .

Proof. By induction on n ∈ ω we will define functions h0 ⊂ h1 ⊂
. . . hn ⊂ . . . from Fn(κ, Ω) such that |hn| = n and for each ν ∈ κ

(∗)n
ν there is g ∈ F(κ) such that γ(g) > ν, ran g = dom hn and hn ◦g ∈

N(g).
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First observe that h0 = ∅ satisfies our requirements because, accord-
ing to (2), condition (∗)0

ν holds trivially for each ν < κ.
Next assume that the construction has been done and the induction

hypothesis has been established for n. For each ν < κ choose a function
gν ∈ F(κ) witnessing (∗)n

ν+ω1
and then write Kν = Kgν (hn ◦ gν) and

pick ζν ∈ (ν, ν + ω1) \Kν . Clearly the set

L = {ξ ∈ κ : |{ν < κ : ξ /∈ Kν}| < κ}
is countable and so we can pick ξn ∈ κ \ (L ∪ dom hn); then the set

J = {ν < κ : ξn /∈ Kν}
is of size κ.

Now set g′ν = gν ∪ {〈ζν , ξn〉} for every ν ∈ J . For every such ν then
ζν , ξn /∈ Kν implies gν

∗ |̀ Kν = g′ν
∗ |̀ Kν , hence hn ◦ gν ∈ N(g′ν) by (3).

Since ζν < ν + ω1 < γ(gν) = γ(hn ◦ gν), we can now apply (4) to get
`ν ∈ Ω such that (hn ◦ gν) ∪ {〈ζν , `

ν〉} ∈ N(g′ν).
We can then fix `n ∈ Ω such that Jn = {ν ∈ J : `ν = `n} is of size κ

and let hn+1 = hn ∪ {〈ξn, `n〉}.
If ν ∈ Jn then hn+1◦g′ν = (hn◦gν)∪{〈ζν , `n〉} ∈ N(g′ν) and γ(g′ν) > ν,

so g′ν witnesses (∗)n+1
ν . But Jn is unbounded in κ, hence the inductive

step is completed.
By (∗)n

0 , for each n < ω there is gn such that dom hn = ran gn and
hn◦gn ∈ N(gn). Hence, by (1), (gn, hn◦gn) is A-dyadic, and so hn is A-
dyadic according to observation 2.4. Consequently h =

⋃
{hn : n < ω}

is as required: it is A-dyadic and infinite. �2.9

Given any infinite set I we denote by CI the poset Fn(I, 2), i.e. the
standard notion of forcing that adds |I| many Cohen reals.

Lemma 2.10. Let κ = (2ω)+. Then for each λ we have

V Cλ |= If D ∈M(κ, κ) is both ω-determined and m.d.-extendible

then there is I ∈
[
κ
]κ

such that

D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉 is nicely extendible.

Proof. Assume that

1Cλ
‖—Ḋ ∈ M(κ, κ) is m.d.-extendible.

Let θ be a large enough regular cardinal and consider the structure

Hθ =
〈
Hθ,∈, /, κ, λ, Ḋ

〉
, where Hθ =

{
x : |TC(x)| < θ

}
and / is a

fixed well-ordering of Hθ.
Working in V , for each α < κ choose a countable elementary sub-

model Nα of Hθ with α ∈ Nα. Then there is I ∈
[
κ
]κ

such that the
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models {Nα : α ∈ I} are not only pairwise isomorphic but, denoting
by σα,β the unique isomorphism between Nα and Nβ, we have

(i) the family {Nα ∩ θ : α ∈ I} forms a ∆-system with kernel Λ,
(ii) σα,β(ξ) = ξ for each ξ ∈ Λ,
(iii) σα,β(α) = β.

For each α < κ and n < ω let Ḋα,n be the /-minimal Cλ-name of the

〈α, n〉th entry of Ḋ. Since / is in Hθ and σα,β(α) = β we have

Claim 2.10.1. σα,β(Ḋα,n) = Ḋβ,n for each α, β ∈ I and n ∈ ω.

Let G be any Cλ-generic filter over V . We shall show that

V [G] |= “D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉 is nicely extendible.”

For each f ∈ F(I) define the bijection ρf : λ −→ λ as follows:

ρf (ξ) =

{
σα,f∗(α)(ξ) if ξ ∈ Nα ∩ λ for some α ∈ I,
ξ otherwise.

In a natural way ρf extends to an automorphism of Cλ, which will
be denoted by ρf as well. Clearly, we have

Claim 2.10.2. If f ∈ F(I), f(α) = β, p ∈ Cλ ∩ Nα then σα,β(p) =
ρf (p).

For f ∈ F(I) let Gf = {ρ−1
f (p) : p ∈ G} and then set

N(f) = {s ∈ Fn(I, Ω) : s is Ḋ[Gf ]-min-dyadic} =

{s ∈ Fn(I, Ω) : ∃q ∈ Gf q‖—“s is Ḋ-min-dyadic”}.

To define Kf , for each s ∈ N(f) pick a condition ps ∈ G such that

ρ−1
f (ps)‖—s is Ḋ-min-dyadic

and let
Kf (s) = {α ∈ I : (Nα \ Λ) ∩ dom ps 6= ∅}.

Note that Kf (s) as defined above is finite, although 2.8.(3) only
requires Kf (s) to be countable.

To check property 2.8.(3) assume that f, g ∈ F(I) and s ∈ N(f)
with g∗ |̀ Kf (s) = f ∗ |̀ Kf (s). Then ρ−1

g (ps) = ρ−1
f (ps) and so

ρ−1
g (ps)‖—s is Ḋ-min-dyadic,

hence s is also Ḋ[Gg]-min-dyadic , i.e. s ∈ N(g).
Before checking 2.8.(1) we need one more observation.

Claim 2.10.3. Ḋf(α),n[G] ∩ ω = Ḋα,n[Gf ] ∩ ω whenever f ∈ F(I),
α ∈ dom f , and n < ω.
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Proof of claim 2.10.3. Let k ∈ ω. Then k ∈ Ḋf(α),n[G] iff ∃p ∈ G p‖—

“k ∈ Ḋf(α),n” iff ∃p ∈ G ∩ Nf(α) p‖— “k ∈ Ḋf(α),n” iff ∃q ∈ Gf ∩ Nα

p = σα,f(α)(q)‖— “k ∈ Ḋf(α),n” iff ∃q ∈ Gf ∩ Nα q‖— “k ∈ Ḋα,n” iff

∃q ∈ Gf q‖— “k ∈ Ḋα,n” iff k ∈ Ḋα,n[Gf ]. �2.10

Now let f ∈ F(I) and s ∈ N(f). By the definition of N(f), s is
Ḋ[Gf ]-min-dyadic and so by observation 2.6 s is Ḋ[Gf ]-dyadic over ω.
But it follows from 2.10.3, that s is Ḋ[Gf ]-dyadic over ω if and only if
the pair (f, s) is Ḋ[G]-dyadic over ω.

2.8.(2) is clear because ∅ is trivially A-min-dyadic for any A ∈
M(κ, ω). Finally 2.8.(4) follows from the definition of N(f) because
Ḋ[Gf ] is m.d.-extendible. �2.10

Now, to complete the proof of theorem 2.7, first apply lemma 2.10
to get I ∈

[
κ
]κ

such that

D∗ = 〈Dα,n ∩ ω : 〈α, n〉 ∈ I × ω〉

is nicely extendible. Then applying lemma 2.9 to D∗ we obtain an

infinite D∗-dyadic function h : κ
p−→ Ω. Since the matrix D is ω-

determined the function h is D-dyadic, as well. �2.7

3. Cardinal sequences of regular and 0-dimensional
spaces

For convenience, in this section space will always mean Hausdorff
space.Then for any regular, scattered space X we have |X| ≤ 2|I0(X)|,
hence for such a space X its cardinal sequence s satisfies length(s) <
(2|I0(X)|)+ and s(α) ≤ 2s(β) whenever β < α. We shall show below
that these properties of a sequence s actually characterize the cardinal
sequences of regular scattered spaces.

In [1], for each γ < (2ω)+, a 0-dimensional, scattered space of height
γ and width ω was constructed. The next lemma generalizes that
construction.

For an infinite cardinal κ, let Sκ be the following family of sequences
of cardinals:

Sκ =
{
〈κα : α < δ〉 : δ < (2κ)+, κ0 = κ and κ ≤ κα ≤ 2κ for each α < δ

}
.

Lemma 3.1. For any infinite cardinal κ and s ∈ Sκ there is a 0-
dimensional scattered space X with CS(X) = s.

Proof. Let s = 〈κα : α < δ〉 ∈ Sκ. Write X =
⋃{

{α} × κα : α < δ
}
.

Since |X| ≤ 2κ we can fix an independent family {Fx : x ∈ X} ⊂
[
κ
]κ

.
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The underlying set of our space is X and and the topology τ on X
is given by declaring for each x = 〈α, ξ〉 ∈ X the set

Ux = {x} ∪ (α× Fx)

to be clopen, i.e. {Ux, X \ Ux : x ∈ X} is a subbase for τ .
The space X is clearly 0-dimensional and T2.

Claim 3.1.1. If x = 〈β, ξ〉 ∈ U ∈ τ and α < β then U ∩ ({α} × κα) is
infinite.

Proof of the claim. We can find disjoint sets A, B ∈
[
X \ {x}

]<ω
such

that

x ∈ Ux ∩
⋂
y∈A

Uy \
⋃
z∈B

Uz ⊂ U.

Observe that if 〈γ, ξ〉 ∈ A then β < γ. Thus

U ∩ ({α} × κα) ⊃ {α} ×
( ⋂

y∈A∪{x}

Fy \
⋃
z∈B

Fz

)
,

and the set on the right side is infinite because {Fx : x ∈ X} was
chosen to be independent. �

To complete our proof, by induction on α < κ, we verify that Iα(X) =
{α} × κα, hence CS(X) = s. Assume that this is true for ν < α. If
x ∈ {α} × κα then

Ux ∩
(
X \

⋃
ν<α

Iν(X)
)

= {x},

hence {α} × κα ⊂ Iα(X). On the other hand, if x = 〈β, ξ〉 ∈ X with
β > α and U ∈ τ is a neighbourhood of x, then, by the claim above,
U ∩ ({α} × κα) is infinite, hence x is not isolated in X \

⋃
ν<α Iν(X),

i.e., x /∈ Iα(X). Thus Iα(X) = {α} × κα. �3.1

Theorem 3.2. For any sequence s of cardinals the following statements
are equivalent:

(1) s = CS(X) for some regular scattered space X,
(2) s = CS(X) for some 0-dimensional scattered space X,
(3) for some natural number m there are infinite cardinals κ0 > κ1 >

· · · > κm−1 and for all i < m sequences si ∈ Sκi
such that s =

s0
_s1

_ . . . _sm−1 or s = s0
_s1

_ . . . _sm−1
_ 〈n〉 for some natural

number n > 0.

Proof.
(1)=⇒ (3)
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By induction on j we choose ordinals νj < ht(X) and cardinals κj such
that ν0 = 0 and κ0 = | I0(X)|, moreover, for j > 0 with κj−1 infinite

νj = min
{
ν ≤ ht(X) : | Iν(X)| < κj−1},

and κj = | Iνj
(X)|. We stop when κm is finite. For each j < m let

δj = νj+1

.
− νj. Then the sequence sj =

〈
| Iνj+δ(X)| : δ < δj

〉
is in Sκj

.
Thus CS(X) = s0

_s1
_ . . . _sm−1 provided κm = 0 (i.e. Iνm(X) = ∅)

and CS(X) = s0
_s1

_ . . . _sm−1
_ 〈κm〉 when 0 < κm < ω.

(3)=⇒ (2)
First we prove this implication for sequences s of the form s0

_s1
_ . . . _sm−1

by induction on m. If s ∈ Sκo then the statement is just lemma 3.1
Assume now that s = s0

_s1
_ . . . _sm−1, where κ0 > κ1 > · · · >

κm−1 and si ∈ Sκi
for i < m.

According to lemma 3.1 there is a 0-dimensional space Y with cardi-
nal sequence sm−1. Using the inductive assumption we can also fix
pairwise disjoint 0-dimensional topological spaces Xy,n for 〈y, n〉 ∈
I0(Y ) × ω, each having the cardinal sequence s′ = s0

_s1
_ . . . _sm−2.

We then define the space Z = 〈Z, τ〉 as follows. Let

Z = Y ∪
⋃
{Xy,n : y ∈ I0(Y ), n < ω}.

A set U ⊂ Z is in τ iff

(i) U ∩ Y is open in Y ,
(ii) U ∩Xy,n is open in Xy,n for each 〈y, n〉 ∈ I0(Y )× ω,
(iii) if y ∈ I0(Y )∩U then there is m < ω such that

⋃
{Xy,n : m < n <

ω} ⊂ U .

If U is a clopen subset of Y and n < ω then it is easy to check that

Z(U, n) = U ∪
⋃
{Xy,m : y ∈ I0(Y ) ∩ U, n < m < ω}

is clopen in Z. Hence

B = {Z(U, n) : U ⊂ Y is clopen, n < ω}∪
{T : T is a clopen subset of some Xy,n}

is a clopen base of Z and so Z is 0-dimensional.
Let δ′ = length(s′) and δ = length(s).

Claim 3.2.1. Iα(Z) =
⋃
{Iα(Xy,n) : 〈y, n〉 ∈ I0(Y )× ω} for α < δ′.

Proof of the claim 3.2.1. Since Xy,n is an open subspace of Z it follows
that Iα(Xy,n) ⊂ Iα(Z). On the other hand,

Y ⊂
⋃
{Iα(Xy,n) : 〈y, n〉 ∈ I0(Y )× ω}

Z

,
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hence Y ∩ Iα(Z) = ∅. �3.2.1

Since, by claim 3.2.1,

Z \
⋃

α<δ′

Iα(Z) = Y,

it follows that for δ′ ≤ α < δ we have

(∗) Iα(Z) = I
α

.
−δ′(Y ).

Thus Z =
⋃

α<δ Iα(Z), hence Z is a scattered space of height δ.
If α < δ′ then, by claim 3.2.1,

| Iα(Z)| = | I0(y)| · ω · s′(α) = κm−1 · ω · s′(α) = s′(α) = s(α).

If δ′ ≤ α < δ then, by (∗), | Iα(Z)| = | I
α

.
−δ′(Y )| = sm−1(α

.
− δ′) = s(α),

consequently CS(Z) = s.
Thus we proved the statement for sequences of the form s0

_ . . . _sm−1.
If s = s0

_ . . . _sm−1
_ 〈n〉 then writing s′ = s0

_ . . . _sm−1 we can
first find pairwise disjoint 0-dimensional scattered spaces Xi,m, 〈i, m〉 ∈
n× ω each having cardinal sequence s′. Let

Z = {xi : i < n} ∪
⋃
{X〈i,m〉 : i < n,m < ω}.

Declare a set U ⊂ Z open iff

(i) U ∩Xi,m is open in Xi,m for each 〈i, m〉 ∈ n× ω,
(ii) if xi ∈ U then there is ni < ω such that

⋃
{Xi,m : ni < m < ω} ⊂

U .

Then Z is 0-dimensional, and

Iα(Z) =

{ ⋃
{Iα(Xi,m) : i < n,m < ω} if α < length(s′),

{xi : i < n} if α = length(s′).

Hence again Z is a scattered space with CS(Z) = s.

(2)=⇒ (1) is trivial.
�3.2

We leave it to the reader to verify that the sequences described in
item (3) of theorem 3.2 are exactly those mentioned in the beginning
of the section with the additional obvious necessary condition that all
but the last term of the sequence are infinite cardinals.
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4. An alternative proof

We are grateful to the referee for pointing out to us the following
alternative (and simpler) approach to obtain a proof of theorem 2.1.
This proof deduces 2.1 not from theorem 2.2 but from the following
weaker statement. We emphasize that the proof sketch given below is
due to the referee.

Theorem 4.1. In V , set κ = (2ω)+. Let V [G] be formed by adding
any number of Cohen reals to V . Then in V [G], the following holds:
Suppose we are given:

(1) A separable zero-dimensional T3 space X.
(2) Pairwise disjoint countable Eα for α < κ such that Eα ⊃ Eβ for

α < β < κ

Then we can find a sequence of clopen sets {Kn : n ∈ ω} which is
independent; that is, if we let Kµ

n be Kn if µ = 0 and X \Kn if µ = 1,

then
⋂

i<n K
s(n)
n 6= ∅ for each n < ω and s ∈ 2n.

Proof. To prove this, first work in V [G]. Assume that ω ⊂ X and
ω is dense in X. For each α < κ, let Bα ⊂ P(X) be a countable
subalgebra of the clopen sets such that Bα separates the points of Eα.
Let Cα = {K ∩ ω : K ∈ Bα}. Then Cα is a countable subalgebra of
P(ω). Observe that the map K 7→ K ∩ ω is an isomorphism from Bα

onto Cα; its inverse is the map H 7→ H.
Still in V [G], let T be the tree of height ω whose nodes at level n

are pairs (~α, ~H), where ~α = 〈αi : i < n〉 ∈ κn is a sequence of distinct

ordinals and ~H = 〈Hi : i < n〉 ∈ (P(ω))n is an independent sequence,
with each Hi ∈ Cαi

. Use < for the usual tree order, with the root
(∅, ∅) at the top. Assume that there is no independent ω-sequence, as
claimed in the theorem. Then T must be well-founded, and hence has
an ordinal-valued rank function, ρ, defined by ρ(x) = sup{ρ(y) + 1 :
y ∈ T ∧ y < x}.

Still in V [G], we note that since κ ≥ ω2, T must have nodes of

uncountable rank. To prove this, call a node x = (~α, ~H) special iff

α0 > α1 > · · · > αn−1 and each
⋂

i<n K
s(i)
i (for s ∈ 2n) meets Eαn−1 ,

where Ki = Hi. We prove that ρ(x) ≥ αn−1 for such special nodes x.
The proof proceeds by induction on αn−1; it is sufficient to prove that

for each β < αn−1: x has an extension of the form y = (~α′, ~H ′), where

y is special, ~α′ = 〈α0, α1, . . . , αn−1,αn〉, with αn = β, and ~H ′ extends
~H; so, we need to define Hn. Since each clopen set

⋂
i<n K

s(i)
i meets

Eαn−1 , and Eβ ⊃ Eαn−1 , each ∩i<nK
s(i)
i meets Eβ in an infinite set.
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Since Bβ separates points of Eβ, we can choose Kn so that it and its

complements meets all 2n sets Eβ ∩
⋂

i<n K
s(i)
i . Then let Hn = Kn ∩ω.

Now, in V , we have, for each α < κ, a name Ċα which is forced to
name a countable subalgebra of P(ω). Since κ = (2ω)+, we may apply
a ∆-system and thinning-out argument and assume, without loss of
generality, that the names Ċα are disjointly supported and isomorphic;
this means that given any permutation π of κ, there is an automorphism
σ of the forcing order P such that each σ(Ċα) = Ċπ(α). We do this

thinning-out before we define the tree Ṫ . We also have a name ρ̇ for
the rank function. But now, using the automorphisms, it is easily
proved that ρ̇ is forced to take on only countable values, which is a
contradiction. To see this: whenever ~α ∈ κ<ω(in V ) is a sequence of
distinct ordinals, let

R~α = {ξ : ∃p ∈ P
[
p‖—

(
∃ ~H[(~α, ~H) ∈ Ṫ ∧ ρ̇(~α, ~H) = ξ]

)]
}.

Then each R~α is countable (by the ccc) and R~α only depends on the
length of ~α (by the automorphisms). It follows that the union of all
the R~α is countable. Since this union must also be an initial segment
of the ordinals, it is forced that ρ̇ only takes countable values. �
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