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Abstract. If δ is an ordinal, we denote by C(δ) the class of
all cardinal sequences of length δ of locally compact scattered
(in short: LCS) spaces. If λ is an infinite cardinal, we write

Cλ(δ) = {s ∈ C(δ) : s(0) = λ = min[s(ζ) : ζ < δ]}.
An LCS space X is called Cλ(δ)-universal if SEQ(X) ∈

Cλ(δ), and for each sequence s ∈ Cλ(δ) there is an open sub-
space Y of X with SEQ(Y ) = s.

We show that
• there is a Cω(ω1)-universal LCS space,
• under CH there is a Cω(δ)-universal LCS space for every

ordinal δ < ω2,
• under GCH for every infinite cardinal λ and every ordi-

nal δ < ω2, there is a Cλ(δ)-universal LCS space,
• there may exist a Cω(ω2)-universal LCS space.

As a consequence, we obtain that it is consistent that 2ω = ω2

and Cω(ω2) is large as possible, i.e.

Cω(ω2) = {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.

1. Introduction

If X is a locally compact, scattered (in short: LCS) space and α
is an ordinal, we denote by Iα(X) the αth Cantor-Bendixson level
of X. If x ∈ X, we define the rank of x in X as
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rk(x) = the ordinal α such that x ∈ Iα(X).

If U is a neighbourhood of x, we say that U is a cone on x, if
x is the only point of U of rank ≥ rk(x). It is well-known that
the collection formed by the compact open cones on a point x is a
neighbourhood base of x.

We define the height of an LCS space X as

ht(X) = the least ordinal α such that Iα(X) = ∅.

Then we define the cardinal sequence of X, in symbols SEQ(X),
as the sequence formed by the cardinalities of the infinite levels of
X.

If δ is an ordinal, we denote by C(δ) the class of all cardinal
sequences of length δ of LCS spaces. If δ is an ordinal and λ is an
infinite cardinal, we write

Cλ(δ) = {s ∈ C(δ) : s(0) = λ = min[s(ζ) : ζ < δ]}.

In [4], the authors give a full description under GCH of the classes
Cλ(δ) for every ordinal δ < ω2 and every infinite cardinal λ, and
they also show that for every ordinal α the class C(α) is character-
ized if the classes Cλ(β) are characterized for every infinite cardinal
λ and every ordinal β ≤ α.

Assume that δ is an ordinal and λ is an infinite cardinal. We say
that an LCS space X is Cλ(δ)-universal, if SEQ(X) ∈ Cλ(δ) and
for each sequence s ∈ Cλ(δ) there is an open subspace Y of X with
SEQ(Y ) = s.

The following definitions will be used in the sequel. Assume that
κ is an infinite cardinal and α is an ordinal. Assume that L is a
subset of α. We say that L is κ-closed in α, if sup〈αi : i < κ〉 ∈
L∪{α} for each increasing sequence 〈αi : i < κ〉 ∈ κL. And we say
that L is successor closed in α, if β + 1 ∈ L ∪ {α} for all β ∈ L.

Why are the universal spaces important and interesting objects?
In the last twenty years there were many results saying that in
certain models certain sequences of cardinals are or are not cardinal
sequences of LCS spaces. In the recent years the attention was
turned to the characterization of whole classes Cλ(β). As we will see,
the universal spaces are useful tools in such characterizations. The
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main result of [7] says that for each uncountable regular cardinal
λ and ordinal α < λ++ it is consistent with GCH that Cλ(α) is as
large as possible, i.e.

(�) Cλ(α) = Dλ(α),

where
Dω(α) = {f ∈ α{ω, ω1} : f(0) = ω},

and if λ is uncountable,

Dλ(α) = {f ∈ α{λ, λ+} : f(0) = λ,

f−1{λ} is < λ-closed and successor-closed in α}.

The natural idea to prove (�) above is to try to carry out some
iterated forcing in such a way that in each step we add a space
Xf to the intermediate model with cardinal sequence f for some
f ∈ Dλ(α). Since typically |Xf | = λ+ and we want to preserve the
cardinals, we try to find an iteration of λ-complete, λ+-c.c. posets.
However, in each step we introduce new subsets of λ and the length
of the iteration is at least |Dλ(α)| = λ++! Hence in the final model
λ will have at least λ++ many new subsets, i.e. 2λ > λ+.

Here come the universal spaces into the picture. A Cλ(δ)-universal
space has cardinality λ+ so we may hope that there is a λ-complete,
λ+-c.c. poset P of cardinality λ+ such that V P contains a Cλ(δ)-
universal space. In this case (2λ)V

P ≤ ((|P |λ)λ)V = λ+. So in the
generic extension we might have GCH.

As it turned out, this idea worked in the proof of the above
mentioned result from [7].

The main result of [7] does not apply to the classes Cω(δ), δ < ω2.
However, we shall prove here that CH implies the existence of a
Cω(δ)-universal LCS space for every ordinal δ < ω2, and that GCH
implies the existence of a Cλ(δ)-universal LCS space for each infinite
cardinal λ and each ordinal δ < ω2.

Bagaria faced a similar problem in [1]. He proved that if MAℵ2
holds and there is a ∆-function (see [2]), then

Cω(ω2) ⊇ {s ∈ ω2{ω, ω1} : s(0) = ω}.
However, MAℵ2 implies 2ω0 ≥ ω3, and if 2ω0 = ωα, then the natural
“upper bound” of Cω(ω2) is a much larger family of sequences:

Cω(ω2) ⊆ {s ∈ ω2{ων : ν ≤ α} : s(0) = ω}.



4 J.C. MARTINEZ AND L. SOUKUP

Using universal spaces we prove Theorem 3.2 claiming that it is
consistent that 2ω = ω2 and Cω(ω2) is large as possible, i.e.

Cω(ω2) = {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.
Our set-theoretic and topological notation is standard.
We shall use the notation 〈κ〉α to denote the constant κ-valued

sequence of length α. Let us denote the concatenation of two se-
quences f and g of by f _g.

2. Cλ(δ)-universal spaces for δ < ω2

In this section our aim is to carry out some constructions of Cλ(δ)-
universal LCS spaces for δ < ω2. First, we need some preparation.

Assume that X is an LCS space, x ∈ X \ I0(X) and σx is a
neighbourhood base for x. We say that σx is an admissible base for
x, if there is a pairwise disjoint family {U (x)

n : n < ω} such that for
every n < ω, U (x)

n is a compact open cone on some point xn ∈ X
with rk(xn) < rk(x) in such a way that σx is the collection of sets
of the form

{x} ∪
⋃
{U (x)

n : n ≥ m},

where m < ω. Then, we will say that σx is the admissible base for
x given by {U (x)

n : n < ω}.
In what follows, by an enumeration of an infinite set a we mean

an enumeration of a without repetitions. By a decomposition of an
infinite set a we mean a partition of a in infinite subsets.

The proof of the following result is essentially contained in the
proofs of [5, Lemma 8 and Theorem 9].

Theorem 2.1. There is a Cω(ω1)-universal LCS space.

Proof. We write Cn = ω1 × {n} for every n < ω. Our aim is to
construct an LCS space X of height ω1 such that I0(X) = {0}×ω,
Iξ(X) = {ξ}×2ω for 0 < ξ < ω1 and Iω1(X) = ∅, in such a way that
for every x ∈ X there is a neighbourhood U of x with U \ {x} ⊆⋃
{Cn : n < ω}. To check that such a space X is Cω(ω1)-universal,

consider a sequence s = 〈κξ : ξ < ω1〉 ∈ Cω(ω1). Since κ0 = ω, we
have κξ ≤ 2ω for each ξ < ω1. Take Z =

⋃
{{ξ} × κξ : ξ < ω1}

with the relative topology of X. Clearly, Z is an open subspace of
X with SEQ(Z) = s.
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First, we need to construct an LCS space Y such that the fol-
lowing holds:

(∗) (1) The height of Y is ω1, Iξ(Y ) = {ξ} × ω for every ξ < ω1 and
Iω1(Y ) = ∅.

(2) C0 is a closed discrete subspace of Y .
(3) Every point x ∈ Y \ I0(Y ) has an admissible base given by a

collection {U (x)
n : n < ω} such that U (x)

n ∩ C0 = ∅ for every
n < ω.

Before constructing the space Y , we show how to construct the
desired space X from Y . We put C ′0 = C0 \ {(0, 0)}. For every
x ∈ C ′0 we consider a set {x(ξ) : ξ < 2ω} of pairwise different
elements with Y ∩ {x(ξ) : ξ < 2ω} = ∅ and such that if x, y ∈ C ′0
with x 6= y then x(ξ) 6= y(η) for every ξ, η < 2ω. Also, we consider
an almost disjoint family {aξ : ξ < 2ω} of infinite subsets of ω where
aξ 6= aη for ξ < η < 2ω. Then, the underlying set of X is the set

(Y \ C ′0) ∪
⋃
{{x(ξ) : ξ < 2ω} : x ∈ C ′0}.

If y ∈ Y \ C ′0, then a basic neighbourhood of y in X is a basic
neighbourhood U of y in Y with U ∩ C ′0 = ∅. Now assume that
y = x(ξ) for some x ∈ C ′0 and ξ < 2ω. Consider the pairwise disjoint
family {U (x)

n : n < ω} associated with x given by (∗)(3). Then we
take as a basic neighbourhood of y in X a set of the form

{x(ξ)} ∪
⋃
{U (x)

n : n ∈ aξ, n ≥ m}

where m < ω.
Since Y is Hausdorff and for every x ∈ C ′0 and every basic neigh-

bourhood U of x in Y we have that U \ {x} is the disjoint union of
{U (x)

n : n ≥ m} for some m < ω, we infer that X is also Hausdorff.
Then, it is easy to check that X is the desired space.

Now, we construct the space Y satisfying (∗)(1)− (3). For this,
we construct by transfinite induction on ξ < ω1 an LCS space Yξ
satisfying the following conditions:

(1) The height of Yξ is (ξ+ 1), Iµ(Yξ) = {µ}×ω for each µ ≤ ξ
and Iξ+1(Yξ) = ∅.

(2) {(α, 0) : α ≤ ξ} is a closed discrete subspace of Yξ.
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(3) Every point x ∈ Yξ \ I0(Yξ) has an admissible base given
by a collection {U (x)

n : n < ω} such that U (x)
n ∩ C0 = ∅ for

every n < ω.
(4) If ξ < η and x ∈ Yξ, then a neighbourhood base of x in Yξ

is also a neighbourhood base of x in Yη

We define Y0 as the set {0} × ω with the discrete topology. As-
sume ξ > 0. We may suppose that ξ is a limit. If ξ is a successor
ordinal, the considerations are similar. Let Z be the direct union
of {Yµ : µ < ξ}. Let {xk : k < ω} be an enumeration of Z. For
each n < ω we take a compact open cone Un on some un in Z
as follows. We take U0 as a compact open cone on x0. Suppose
that n > 0. First, assume that n = 2k for some k ≥ 1. Let un
be the first element in the enumeration {xk : k < ω} such that
un 6∈ (U0 ∪ · · · ∪ Un−1). Then we choose Un as a compact open
cone on un such that Un ∩ (U0 ∪ · · · ∪ Un−1) = ∅. Now assume
that n = 2k + 1 for some k ≥ 0. Let un be the first element in
{xk : k < ω} such that un 6∈ C0 and rk(un) > rk(um) for all
m < n. Then we take Un as a compact open cone on un such that
Un ∩ (U0 ∪ · · · ∪ Un−1) = ∅ and Un ∩ C0 = ∅.

Let {yn : n < ω} be an enumeration of {ξ}×ω. Let 〈ξn : n < ω〉
be a sequence of ordinals converging to ξ in a strictly increasing
way. For each n < ω we consider the first element u2k+1 for some
k ≥ 0 such that rk(u2k+1) ≥ ξn and then we put Vn = U2k+1.
Clearly, {Vn : n < ω} is a discrete family in Z. Let {an : n <
ω} be a decomposition of ω. For each n < ω we define a basic
neighbourhood of yn in Yξ as a set of the form

{yn} ∪
⋃
{Vm : m ∈ an \ l}

where l < ω. Also, if x ∈ Yµ for some µ < ξ, then a basic neigh-
bourhood of x in Yξ is a basic neighbourhood of x in Yµ.

Let Y be the direct union of {Yξ : ξ < ω1}. Then, Y is as
required. �

It was proved in [6] that it is consistent with ZFC that there is no
LCS space X of height ω1+1 such that |Iξ(X)| = ω for every ξ < ω1

and |Iω1(X)| = 2ω. So, we can not extend the general construction
given in the proof of Theorem 2.1 to the class Cω(ω1 +1). However,
we can prove the following result.
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Theorem 2.2. (CH) There is a Cω(δ)-universal LCS space for ev-
ery ordinal δ < ω2.

Proof . For every n < ω, we write Cn = δ×{n}. In order to prove
the theorem, we will construct an LCS space X of height δ such that
I0(X) = {0} × ω, Iξ(X) = {ξ} × ω1 for 0 < ξ < δ and Iδ(X) = ∅,
in such a way that for every x ∈ X there is a neighbourhood U
of x with U \ {x} ⊆

⋃
{Cn : n < ω}. Clearly, such a space is a

Cω(δ)-universal LCS space under CH.
Without loss of generality, we may assume that ω1 ≤ δ < ω2 and

δ is a limit ordinal. Let {αξ : ξ < ω1} be an enumeration of δ with
αn = n for each n < ω. In order to find the desired space X, we
construct by transfinite induction on ξ ∈ [ω, ω1] an space Xξ such
that the following holds:

(1) The underlying set of Xξ is {0}×ω∪
⋃
{{αµ}×ξ : 0 < µ < ξ}.

(2) Xξ is an LCS space such that if 〈βζ : ζ < ξ′〉 is the strictly
increasing enumeration of {αζ : ζ < ξ} , we have that ht(Xξ) = ξ′,
I0(X) = {0}×ω, Iζ(Xξ) = {βζ}× ξ for 0 < ζ < ξ′ and Iξ′(Xξ) = ∅.

(3) For every x ∈ Xξ there is a neighbourhood U of x such that
U \ {x} ⊆

⋃
{Cn : n < ω}.

If µ < ξ ≤ ω1, x ∈ Xµ and U is a basic neighbourhood of x in Xµ,
we will define a basic neighbourhood U (ξ) of x in Xξ with U ⊆ U (ξ)

in such a way that the following three conditions hold:
(a) If µ < ξ < η ≤ ω1 and V = U (ξ), then U (η) = V (η).
(b) If µ < ξ ≤ ω1, x, y ∈ Xµ and U, V are basic neighbourhoods

of x, y respectively in Xµ with U ⊆ V , then U (ξ) ⊆ V (ξ).
(c) If µ < ξ ≤ ω1, x, y ∈ Xµ and U, V are basic neighbourhoods

of x, y respectively in Xµ with U ∩ V = ∅, then U (ξ) ∩ V (ξ) = ∅.
We will have that Xω1 is the required space.
The construction of the space Xω is easy.
Assume that ξ = µ + 1 where ω ≤ µ < ω1. Suppose that 〈βζ :

ζ < µ′〉 is the strictly increasing enumeration of {αζ : ζ < µ}. In
order to construct Xξ, first we define for each ζ with 0 < ζ < µ′ a
countable LCS space Yζ such that ht(Yζ) = µ′, Iγ(Yζ) = {βγ} × ξ
for each γ with 0 < γ ≤ ζ and Iγ(Yζ) = Iγ(Xµ) otherwise, and
in such a way that for every x ∈ Yζ there is a neighbourhood U
of x with U \ {x} ⊆

⋃
{Cn : n < ω}. Also, we will have that if
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η < ζ < µ′ and y ∈ Yη, then a basic neighbourhood of y in Yζ
is a basic neighbourhood of y in Yη. We start defining Y1. Put
Z = Xµ \ ({0}× ω). Let {zk : k < ω} be an enumeration of Z. For
each n < ω, we take a compact open neighbourhood Un of some
yn in Z as follows. We take U0 as a compact open cone on z0. If
n > 0, let yn be the first element in the enumeration {zk : k < ω}
such that yn 6∈ U0 ∪ . . . ∪ Un−1. We choose Un as a compact open
cone on yn such that Un ∩ (U0 ∪ . . . ∪ Un−1) = ∅. We take an
element uk ∈ I0(Xµ) ∩ Uk for each k ∈ ω. Then, we define a basic
neighbourhood of (1, µ) as a set of the form {(1, µ)} ∪ {ui : i ∈
ω \m} where m < ω. Now, assume that ζ = η + 1 is a successor
ordinal with η ≥ 1. Since Yη is countable, there is a discrete family
{Vk : k < ω} in Yη such that for every k < ω, Vk is a compact
open cone on some yk ∈

⋃
{Iγ(Yη) : ζ ≤ γ < µ′} in such a way

that Vk \ {yk} ⊆
⋃
{Cn : n < ω}. Now, for each k < ω, we take an

element uk ∈ Vk ∩ Iη(Yη) and a compact open cone Uk on uk with
Uk ⊆ Vk. Put z = (βζ , µ). Then, we define a basic neighbourhood
of z in Yζ as a set of the form {z} ∪

⋃
{Uk : k > m} where m < ω.

Now, assume that ζ is a limit ordinal. Let Z be the direct union
of the spaces Yη for η < ζ. By using an argument similar to the
one given above, we can define a neighbourhood base for the point
(βζ , µ). Then, we define Yζ as the resulting space.

If µ′ is a limit ordinal we define Y as the direct union of the
spaces Yζ for ζ < µ′, and if µ′ = ζ + 1 is a successor ordinal we
define Y = Yζ . We distinguish the following two cases:
Case 1. αµ < βζ for some ζ < µ′.

Let γ be the least ordinal ζ such that αµ < βζ . We assume that γ
is a successor ordinal η+1. If γ is a limit ordinal, the considerations
are similar. First, we define the space Y ′ of underlying set Y ∪
({αµ} × (ξ \ ω)) as follows. If y ∈ Y , a basic neighbourhood of y
in Y ′ is a basic neighbourhood of y in Y . Now, let {zn : n < ω} be
an enumeration of {αµ} × (ξ \ ω). Let {V ′k : k < ω} be a discrete
family in Y such that, for each k < ω, V ′k is a compact open cone
on some point v′k ∈

⋃
{Iζ(Y ) : γ ≤ ζ} such that V ′k \ {v′k} ⊆

⋃
{Cn :

n < ω}. For every k < ω, we take a point u′k ∈ Iη(Y ) ∩ V ′k and a
compact open cone U ′k on u′k with U ′k ⊆ V ′k. Let {an : n < ω} be
a decomposition of ω. We define a basic neighbourhood in Y ′ of a
point zn as a set of the form {zn}∪

⋃
{U ′k : k ∈ an \ l} where l < ω.
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Now, if x ∈
⋃
{{βζ} × ξ : ζ ≤ η} ∪ ({αµ} × (ξ \ ω)), we define

a basic neighbourhood of x in Xξ as a basic neighbourhood of x
in Y ′. Next, we define a neighbourhood base for each point in
{αµ} × ω. Let {vk : k < ω} be an enumeration of {βγ} × ξ. For
each k < ω, we take a compact open cone Vk on vk in Y ′ with
Vk \ {vk} ⊆

⋃
{Cn : n < ω} such that {Vk : k < ω} is a pairwise

disjoint family . Let {ak : k < ω} be a decomposition of {αµ} × ω.
For k < ω, put ak = {y(k)

m : m < ω}. Fix n < ω. Put ym = y
(n)
m for

m < ω. Let {uk : k < ω} be an enumeration of Vn∩({βη}×ω). For
each k < ω, we take a compact open cone Uk on uk with Uk ⊆ Vn
such that {Uk : k < ω} is a discrete family in Vn \ {vn}. Now,
we fix a decomposition {bk : k < ω} of ω. Then, we define a basic
neighbourhood inXξ of a point ym as a set of the form {ym}∪

⋃
{Ul :

l ∈ bm \ k} where k < ω. We put Wym = {ym} ∪
⋃
{Ul : l ∈ bm}

for each m < ω. Note that since Vn is compact, we have that if
U is a neighbourhood of vn in Y ′, then there is a k < ω such that
Ul ⊆ U ∩ Vn for every l ∈ ω \ k, and so Ul ⊆ U for every l ∈ ω \ k.
Then, we define a basic neighbourhood of the point vn in Xξ as a
set of the form

(U ∪ {ym : m < ω}) \ (Wy1 ∪ · · · ∪Wyl)
where U is a basic neighbourhood of vn in Y ′ and l < ω. Now,
assume that x ∈

⋃
{{βζ} × ξ : ζ > γ} . Then, we define a basic

neighbourhood of x in Xξ as a set of the form

U ∪
⋃
{{y(k)

m : m < ω} : vk ∈ U}
where U is a basic neighbourhood of x in Y ′.

Now, for every x ∈ Xµ and every compact open cone U on x in
Xµ we define U (ξ) as follows. If x ∈ Iζ(Xµ) for some ζ ≥ γ we put

U (ξ) = U ∪
⋃
{{y(k)

m : m < ω} : vk ∈ U}

and we put U (ξ) = U otherwise. Also, if x ∈ Xζ with ζ < µ and U

is a compact open cone on x in Xζ , we consider V = U (µ) and then
we define U (ξ) = V (ξ).
Case 2. βζ < αµ for every ζ < µ′.

Let {zn : n < ω} be an enumeration of {αµ}× ξ. Without loss of
generality, we may assume that µ′ is a limit ordinal. Let 〈µk : k <
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ω〉 be a strictly increasing sequence of ordinals converging to µ′. For
each k < ω we take a compact open cone Vk on some point vk in Y
such that rk(vk) > µk, Vk\{vk} ⊆

⋃
{Cn : n ≥ 0} and {Vk : k < ω}

is a discrete family in Y . Now, for every k ∈ ω we choose a point
uk ∈ Vk \ {vk} with rk(uk) ≥ µk and we take a compact open cone
Uk on uk with Uk ⊆ Vk . Consider a decomposition {an : n < ω}
of ω. Fix n < ω. We define a basic neighbourhood of zn in Xξ as
a set of the form {zn} ∪

⋃
{Uk : k ∈ an \ l} where l < ω.

Also, if x ∈ Y we define a basic neighbourhood of x in Xξ as a
basic neighbourhood of x in Y .

If x ∈ Xµ and U is a compact open cone on x in Xµ, we define
U (ξ) = U . And if x ∈ Xζ for some ζ < µ and U is a compact open
cone on x in Xζ , we put U (ξ) = U (µ).

Next, assume that ξ is a limit ordinal. We want to define the
space Xξ. The underlying set of Xξ is the union of the underlying
sets of the spaces Xµ for µ < ξ. If U is a compact open cone on a
point in Xµ for µ < ξ, we define

U (ξ) = U ∪
⋃
{U (η) : µ < η < ξ}.

Assume that x ∈ Xξ. We define a basic neighbourhood of x in Xξ

as a set of the form

U (ξ) \ (V (ξ)
1 ∪ . . . ∪ V (ξ)

n )

where U is a compact open cone on x in some space Xζ with ζ < ξ,
n < ω and there are µ1, . . . , µn < ξ such that for every i = 1, . . . , n,
Vi is a compact open cone on some yi ∈ U (ξ) \{x} in the space Xµi .
It can be verified that if U is a compact open cone on x in some
space Xζ with ζ < ξ, then U (ξ) is a compact open cone on x in Xξ.
It is clear that U (ξ) is an open cone on x. To show compactness,
we consider the strictly increasing enumeration 〈βµ : µ < ξ′〉 of
{αµ : µ < ξ} and then, proceeding by transfinite induction on
µ < ξ′, we can prove that if x ∈ {βµ} × ξ and U is a compact open
cone on x in an space Xζ with ζ < ξ, then U (ξ) is compact in Xξ.

It can be checked that Xω1 is the required space. �

Theorem 2.3. (GCH) For every infinite cardinal λ and every or-
dinal δ < ω2, there is a Cλ(δ)-universal LCS space.
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Proof . Assume that λ is an infinite cardinal and δ is an ordinal
< ω2. Since GCH holds, for every s ∈ Cλ(δ) we have s(α) ∈ {λ, λ+}
for each α < δ. If λ = ω, we are done by Theorem 2.2. Assume
λ = ω1. It follows from [4, Theorem 3.9] that if α < β ≤ δ and
cf(α) = ω1 then there is an LCS space Xα,β of height β such that
Iµ(Xα,β) = ω1 for each µ < α, Iµ(Xα,β) = ω2 for α ≤ µ < β and
Iβ(Xα,β) = ∅. Let X be the disjoint union of {Xα,β : α < β ≤
δ, cf(α) = ω1}. Clearly, X ∈ Cω1(δ). Now consider a sequence
s ∈ Cω1(δ). It follows from GCH that s−1(ω1) is successor closed
and ω-closed in δ. Then, it is not difficult to see that there is a
Y ⊆ {Xα,β : α < β ≤ δ, cf(α) = ω1} such that SEQ(

⋃
Y) = s.

Hence, X is Cω1(δ)-universal.
Finally, assume that λ ≥ ω2. Note that |Cλ(δ)| ≤ 2|δ| ≤ 2ω1 = ω2.

Then for each s ∈ Cλ(δ) pick an LCS space Xs with SEQ(Xs) = s,
and take X as the disjoint union of the spaces Xs. Clearly, X is
Cλ(δ)-universal. �

3. A Cω(ω2)-universal space

Baumgartner and Shelah introduced the notion of ∆-functions in
[2, Section 8]. In that paper they also proved that (a) the existence
of a ∆-function is consistent with ZFC + GCH, (b) if there is a
∆-function then 〈ω〉ω2

∈ Cω(ω2) holds in a “natural” c.c.c forcing
extension of the ground model. “Natural” means that the elements
of the posets are just finite approximations of the locally compact
right-separating neighbourhoods of the points of the desired space.
Building on their method, Bagaria, [1], proved that

(†) Cω(ω2) ⊇ {s ∈ ω2{ω, ω1} : s(0) = ω}.
is also consistent. More precisely, he showed that if there is a ∆-
function and MAℵ2 holds (which is a consistent assumption), then
(†) above holds.

However, MAℵ2 implies 2ω0 ≥ ω3, and if 2ω0 = ωα, then the nat-
ural “upper bound” of Cω(ω2) is a much larger family of sequences:

(‡) Cω(ω2) ⊆ {s ∈ ω2{ων : ν ≤ α} : s(0) = ω}.
These results naturally raised the following questions.

Problem 3.1. Does 〈ω〉ω2
∈ Cω(ω2) imply (†), or even

(∗) Cω(ω2) ⊇ {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.
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Although these questions remain still open we prove Theorem
3.10 claiming that if there is a “natural” poset P such that 〈ω〉ω2

∈
Cω(ω2) holds in V P then there is a natural poset Q such that (∗)
holds in V Q. Especially, the posets used by Bagaria can be con-
structed directly from the poset applied by Baumgartner and She-
lah without even mentioning a ∆-function.

Moreover,

Theorem 3.2. Con(ZFC) −→ Con(ZFC + 2ω = ω2 + there is a
Cω(ω2)-universal LCS space witnessing that Cω(ω2) is as large as
possible, i.e.

Cω(ω2) = {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.
Before proving these results we need some preparation.
Let T0 = {0} × ω, Tα = {α} × ω2 for 1 ≤ α < ω2, and

T =
⋃
{Tα : α < ω2}.

Let π : T → ω2 be the natural projection: π(〈α, ξ〉) = α.

Definition 3.3. Define the poset P∗ = 〈P ∗,�〉 as follows. The
underlying set P ∗ consists of triples p = 〈ap,≤p, ip〉 satisfying the
following requirements:
(1) ap ∈

[
T
]<ω,

(2) ≤p is a partial ordering on ap with the property that if x <p y
then x ∈ ω2 × ω and π(x) < π(y),

(3) ip :
[
ap
]2 → [

ap
]<ω is such that

(3.1) if {x, y} ∈
[
ap
]2 then

(3.1.1) if x, y ∈ ω2×ω and π(x) = π(y) then ip{x, y} = ∅,
(3.1.2) if x <p y then ip{x, y} = {x}.

(3.2) if {x, y} ∈
[
ap
]2 and z ∈ ap then(

(z ≤p x ∧ z ≤p y) iff ∃t ∈ i{x, y} z ≤p t
)
.

Set p � q iff ap ⊇ aq, ≤p� aq =≤q and ip �
[
aq
]2 = iq.

Let P ∗ω = {p ∈ P ∗ : ap ⊆ ω2 × ω} and P∗ω = 〈P ∗ω ,�〉.

Consider a function d :
[
ω2

]2 → [
ω2

]≤ω. An element p ∈ P ∗ω is
d-good iff

(?d) if {x, y} ∈
[
ap
]2, π(x) < π(y) and x 6<p y then

π′′ip{x, y} ⊆ d(π(x), π(y)).
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Let P ∗d be the family of d-good elements of P ∗ω and put P∗d =
〈P ∗d ,�〉.

Observation 3.4. Our poset P ∗d is just “the poset P defined from
d” in [2, Section 7]. (Stipulation (?d) corresponds to (3.1.3), the
other requirements have the same numbering here as in [2].)

A condition r ∈ P is an amalgamation of conditions p and q iff
r ≺ p and r ≺ q, ar = ap ∪ aq, and ≤r is the partial ordering on ar
generated by ≤p ∪ ≤q. Let Q ⊆ P ∗. The poset Q = 〈Q,≺〉 has the
amalgamation property iff every uncountable subset of Q contains
two elements which have an amalgamation in Q.

Clearly the amalgamation property implies the countable chain
condition.

Baumgartner and Shelah proved, [2, Theorem 8.1], that if d :[
ω2

]2 → [
ω2

]≤ω is a ∆-function then P∗d has the countable chain
condition. Actually, they proved the following:

Proposition 3.5. If d is a ∆-function then P∗d has the amalgama-
tion property.

For a condition p ∈ P ∗ and x ∈ (T ) \ ap define the condition
q = p ] {x}, as follows. Let aq = ap ∪ {x}. Put u ≤q t iff u ≤p t
or u = t = x. Let iq{u, t} = ip{u, t} unless u or t is x. Let
iq{u, x} = ∅. Clearly q = p ] {x} ∈ P ∗.

Let P ′ ⊆ P ∗. The poset P ′ = 〈P ′,�〉 has the density property D
(or the density property Dω) iff p] {x} ∈ P for each p ∈ P and for
each x ∈ (T ) \ ap (or for each x ∈ (ω2 × ω) \ ap, respectively).

For p ∈ P ∗, y ∈ ap and x ∈ (ω2×ω) \ap with π(x) < π(y) define
the condition q = p]y {x} as follows. Let aq = ap∪{x}. Put u ≤q t
iff u ≤p t, or u = x and y ≤p t. Let iq{u, t} = ip{u, t} unless u or t,
say t, is x. Let iq{x, u} = x if x ≤q u and iq{x, u} = ∅ otherwise.

Since x is a minimal element in ≤q we have q = p ]y {x} ∈ P ∗.
Let P ⊆ P ∗. The poset P = 〈P,≺〉 has the density property E

iff p ]x {y} ∈ P for each p ∈ P , x ∈ ap and y ∈ (ω2 × ω) \ ap with
π(y) < π(x).

The following claim is straightforward from the definition of P∗d .

Proposition 3.6. For each function d :
[
ω2

]2 → [
ω2

]≤ω the poset
P∗d has the density properties Dω and E.
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Definition 3.7. (a) LetQ ⊆ P ∗ω . We say that the posetQ = 〈Q,�〉
is a BS-poset iff Q has the amalgamation property, and the density
properties Dω and E.
(b) Let P ⊆ P ∗. We say that the poset P = 〈P,�〉 is a U-poset
iff P has the amalgamation property, and the density properties D
and E.

In [2, Section 9] Baumgartner and Shelah also proved that

Proposition 3.8. It is consistent that 2ω ≤ ω2 and there is a ∆-
function d.

Putting together Propositions 3.5, 3.6 and 3.8 we obtain

Proposition 3.9. It is consistent that 2ω ≤ ω2 and there is a BS-
poset Q = 〈Q,�〉.

As we will see, Theorem 3.2 follows almost immediately from the
Proposition above and from the next two theorems.

Theorem 3.10. If there is a BS-poset then there is a U-poset as
well.

Theorem 3.11. If P is a U-poset then in V P there is an LCS
space X such that SEQ(X) = 〈ω〉_〈ω2〉ω2

∈ Cω(ω2), and for every
s ∈ ω2{ω, ω1, ω2} with s(0) = ω there is an open subspace Y ⊆ X
with SEQ(Y ) = s.

Proof of Theorem 3.2. By Proposition 3.9 and Theorem 3.10 we
can assume that in the ground model we have 2ω ≤ ω2 and there
is a U-poset P = 〈P,�〉. We show that the model V P satisfies the
requirements.

Since |P | = ω2, P satisfies c.c.c and 2ω ≤ ω2, we have (2ω)V
P ≤

((|P|ω)ω)V = ω2.
By Theorem 3.11, in V P there is an LCS space X such that

SEQ(X) ∈ Cω(ω2) and

(•) {SEQ(Y ) : Y ⊆ X is open } ⊇ {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.

Since |X| ≥ ω2 and | I0(X)| = ω, we have 2ω ≥ ω2 in V P . So
2ω = ω2 in V P .

Thus

(◦) Cω(ω2) ⊆ {s ∈ ω2{ω, ω1, ω2} : s(0) = ω}.
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But (•) and (◦) together yield that

Cω(ω2) = {s ∈ ω2{ω, ω1, ω2} : s(0) = ω},
and that X is a Cω(ω2)-universal space. �3.2

Proof of Theorem 3.11. Let G be a P-generic filter. Recall that
T0 = {0} × ω, Tα = {α} × ω2 for 1 ≤ α < ω2, and T =

⋃
{Tα : α <

ω2} Let
≤G=

⋃
{≤p: p ∈ G}

and for each x ∈ T put

U(x) = {z ∈ T : z ≤G x}.
Let X = 〈T, τ〉 be the LCS space generated by the family {U(x) :
x ∈ T}. Density properties D and E imply that Iα(X) = Tα for
α < ω2.

Let s ∈ ω2{ω, ω1, ω2} with s(0) = ω. Put

Y = {〈α, ξ〉 : α < ω2, ξ < s(α)}.
If x ∈ Iα(X) then U(x) \ {x} ⊆ α× ω. Hence

Y =
⋃
{U(y) : y ∈ Y },

therefore Y is open. Thus Iα(Y ) = Iα(X) ∩ Y , that is, Iα(Y ) =
{α} × s(α). Thus the cardinal sequence of Y is exactly s. �3.11

Proof of Theorem 3.10. Fix an injective function ϕ : ω2 × ω2
1–1−→

ω2 × ω such that
(A) if π(x) < π(y) and x ∈ ω2 × ω then π(ϕ(x)) < π(ϕ(y)),
(B) if x 6= y then π(ϕ(x)) = π(ϕ(y)) iff π(x) = π(y) and x, y ∈

ω2 × ω.
“Lift” this ϕ to a function ϕ : P ∗ → P ∗ω in the natural way: for

p = 〈ap,≤p, ip〉 ∈ P ∗ let ϕ(p) =
〈
aϕ(p),≤ϕ(p), iϕ(p)

〉
, where aϕ(p) =

ϕ′′ap, ϕ(x) ≤ϕ(p) ϕ(y) iff x ≤p y and iϕ(p){ϕ(x), ϕ(y)} = ϕ′′ip{x, y}.
Let Q = 〈Q,�〉 be a BS-poset. Take

P = {p ∈ P ∗ : ϕ(p) ∈ Q}
and P = 〈P,�〉.

We claim that P is a U-poset. Before proving it we need some
preparation.

Claim 3.12. ϕ(p) ∈ P ∗ω for each p ∈ P ∗.
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Proof. To check that ϕ(p) satisfies (2), assume that ϕ(x) <ϕ(p)

ϕ(y). Then {x, y} ∈
[
ap
]2 with x <p y and hence π(x) < π(y)

and x ∈ ω2 × ω by applying (2) for p. Thus, by (A), we have
π(ϕ(x)) < π(ϕ(y)), and so (2) holds for ϕ(p).

To check that ϕ(p) satisfies (3.1.1), assume that π(ϕ(x)) = π(ϕ(y)).
Then, by (B), π(x) = π(y) and x, y ∈ ω2 × ω. Hence, apply-
ing (3.1.1) for p, we have ip{x, y} = ∅. Thus iϕ(p){ϕ(x), ϕ(y)} =
ϕ′′ip{x, y} = ∅.
ϕ(p) clearly satisfies the other requirements. �

Claim 3.13. p ≺ q iff ϕ(p) ≺ ϕ(q).

Straightforward. �

Claim 3.14. If p ]y {x} is defined then ϕ(p) ]ϕ(y) {ϕ(x)} is also
defined and ϕ(p ]y {x}) = ϕ(p) ]ϕ(y) {ϕ(x)}.

Proof. If p]y{x} is defined then π(x) < π(y) and x ∈ ω2×ω. Hence,
by (A), π(ϕ(x)) < π(ϕ(y)). Since ϕ(x) ∈ ω2×ω, ϕ(p)]ϕ(y) {ϕ(x)}
is defined. The equality is clear. �

Claim 3.15. If ϕ(p) and ϕ(q) have an amalgamation s, then p and
q have an amalgamation r with ϕ(r) = s.

Proof. Since we want s = ϕ(r), we should define r = 〈ar,≤r, ir〉
as follows: ar = ap ∪ aq, x ≤r y iff ϕ(x) ≤s ϕ(y), ir{x, y} =
ϕ−1is{ϕ(x), ϕ(y)}.

To check that r satisfies (2), assume that x <r y. If x <p y or
x <q y then π(x) < π(y) and x ∈ ω2 × ω. Thus we can assume
that e.g. x ∈ ap \ aq and y ∈ aq \ ap. Since ϕ(x) <s ϕ(y) and ≤s
is generated by ≤ϕ(p) ∪ ≤ϕ(q) there is t ∈ aϕ(p) ∩ aϕ(q) such that
ϕ(x) ≤ϕ(p) t ≤ϕ(q) ϕ(y). Let u = ϕ−1(t). Then as u ∈ ap ∩ aq,
we have x <p u <q y. Hence, applying (2) for p and q we have
π(x) < π(u) < π(y) and x ∈ ω2 × ω.

As for (3.1.1), assume that {x, y} ∈
[
ar ∩ (ω2 × ω)

]2 with π(x) =
π(y). Then, by (B), π(ϕ(x)) = π(ϕ(y)). Since ϕ(x), ϕ(y) ∈ as ⊆
ω2×ω, we can apply (3.1.1) for s to get is{ϕ(x), ϕ(y)} = ∅. Hence,
we have ir{x, y} = ϕ−1is{ϕ(x), ϕ(y)} = ∅.

The other requirements are clear, so r ∈ P ∗.
By the construction, it is also clear that r is an amalgamation of

p and q. �
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Claim 3.16. P has the amalgamation property.

Indeed, let S be an uncountable subset of P . Then {ϕ(p) : p ∈
S} is an uncountable subset of Q and Q has the amalgamation
property, so there are p 6= q ∈ S such that ϕ(p) and ϕ(q) have
an amalgamation s in Q. But then, by (3.15), p and q have an
amalgamation r in P ∗ with ϕ(r) = s ∈ Q. Thus r ∈ P , i.e. p and
q have an amalgamation in P . �

Claim 3.17. P has the density property D.

Indeed, let p ∈ P and x ∈ (T ) \ ap. Then ϕ(p) ∈ Q and ϕ(x) ∈
(ω2 × ω) \ aϕ(p). Since Q has the density property Dω, we have
ϕ(p) ] {ϕ(x)} ∈ Q. Since ϕ(p ] {x}) = ϕ(p) ] {ϕ(x)}, we have
ϕ(p ] {x}) ∈ Q and so x ] {p} ∈ P . �

Claim 3.18. P has the density property E.

Indeed, let p ∈ P , y ∈ ap and x ∈ (ω2×ω)\ap with π(x) < π(y).
Then ϕ(p) ∈ Q, ϕ(x) ∈ (ω2 × ω) \ aϕ(p) and π(ϕ(x)) < π(ϕ(y)) by
(A). Then, by (3.14), ϕ(p)]ϕ(y){ϕ(x)} is defined and ϕ(p]y {x}) =
ϕ(p) ]ϕ(y) {ϕ(x)}. Since Q has the density property E, we have
ϕ(p ]y {x}) = ϕ(p) ]ϕ(y) {ϕ(x)} ∈ Q. Thus p ]y {x} ∈ P . �

Claims 3.16-3.18 above give that P = 〈P,≺〉 is a U-poset. �3.10
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