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Abstract. We show in a direct way that a space is D if it is a finite union of
subparacompact scattered spaces. This result can not be extended to countable

unions, since it is known that there is a regular space which is a countable
union of paracompact scattered spaces and which is not D. Nevertheless, we

show that every space which is the union of countably many regular Lindelöf

C-scattered spaces has the D-property. Also, we prove that a space is D if it
is a locally finite union of regular Lindelöf C-scattered spaces.

1. Introduction

All spaces under consideration are Hausdorff. An open neighbourhood assign-
ment (ONA) for a space X is a function η from X to the topology of X such that
x ∈ η(x) for every x ∈ X. If Y is a subset of X, we write η[Y ] =

⋃
{η(y) : y ∈ Y }.

Then, we say that X is a D-space, if for every open neighbourhood assignment η
for X there is a closed discrete subset D of X such that η[D] = X.

It is obvious that every compact space is a D-space. However, it is not known
whether every Lindelöf space is D, and it is also unknown whether the D-property
is implied by paracompactness, subparacompactness or metacompactness. Never-
theless, it was shown in [5] that on the class of generalized ordered spaces paracom-
pactness is equivalent to the D-property, and it was proved in [7] that for subspaces
of finite produts of ordinals property D is equivalent to metacompactness.

On the other hand, it is known that some (finite unions of) generalized metric
spaces are D (see [1], [2], [4], [7] and [9]).

The relationship between D-spaces and topological games was studied by Peng
(see [8] and [9]). Recall that a space X is scattered, if every nonempty closed
subspace of X has an isolated point. And we say that a space X is C-scattered, if
every nonempty closed subspace Y of X has a point with a compact neighbourhood
in Y . By means of stationary strategies on the topological game G(DC, X) defined
in [10], it was shown by Peng in [9] that if a space X is the union of finitely
many regular subparacompact C-scattered spaces, then X has the D-property. In
this paper, we shall prove in a direct way (without using topological games) that
a space is D if it is a finite union of subparacompact scattered spaces. Also, the
space constructed by van Douwen and Wicke in [6] provides an example of a regular
space which is a union of countably many paracompact scattered spaces but which
is not D. However, by using the compact-open game, we shall prove that a space
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is D if it is a countable union of regular Lindelöf C-scattered spaces. Also, we shall
prove that a space is D if it is a locally finite union of regular Lindelöf C-scattered
spaces.

2. Proofs of the results for countable unions

First, we consider the Cantor-Bendixson process for topological spaces. For any
space X and any ordinal α, we define the α-derivative of X as follows: X0 = X; if
α = β + 1, Xα = {x ∈ X : x is an accumulation point of Xβ}; and if α is a limit,
Xα =

⋂
{Xβ : β < α}. It is well-known that a space X is scattered iff there is an

ordinal α such that Xα = ∅. Then, we define the height of a scattered space X by
ht(X) = the least ordinal α such that Xα = ∅.

If X is a scattered space and α is an ordinal, we write Iα(X) = Xα \ Xα+1.
Intuitively, Iα(X) denotes the set of points of X which are at level α. Now, assume
that x is a point of a scattered space X and U is a neighbourhood of x. Let β be the
ordinal such that x ∈ Iβ(X). Then, we say that U is a cone on x if U ∩Xβ = {x}.
Clearly, every point x of a scattered space has a local base whose elements are cones
on x.

By a basic ONA for a scattered space X we mean a function η that assigns to
every point x of X an open cone η(x) on x. The following lemma is easy to prove.

Lemma 2.1. Let X be a scattered space. Assume that for every basic ONA η for
X there is a closed discrete subset D of X such that X = η[D]. Then, X is a
D-space.

We shall use without explicit mention Lemma 2.1 and also the well-known fact
that the D-property is hereditary with respect to closed subspaces.

Now, our aim is to give a direct proof for the following result, in which we use a
modification of the argument given in [1, Theorem 1.4].

Theorem 2.1. If a space X is the union of a finite collection of subparacompact
scattered spaces, then X is D.

Proof. It is easy to check that any space which is the union of finitely many
scattered spaces is also scattered. Then, suppose that X = X1 ∪ · · · ∪ Xk where
X1, . . . , Xk are subparacompact scattered spaces. We proceed by induction on k.
If k = 0, we have X = ∅, and so we are done. Now assume that the statement
holds for k = l for some l ≥ 0. Then, in order to show that the statement holds
for k = l + 1, we proceed by transfinite induction on the height α of X. The case
α = 0 is trivial. Suppose that α > 0 and that the statement holds for spaces of
height < α which are unions of at most k subparacompact scattered spaces. First,
assume that α = β + 1 is a successor ordinal. Let η be a basic ONA for X. Put
D = Iβ(X). Let Z = X \ η[D]. Since Z is closed in X and ht(Z) < α, we infer
that Z is D by the induction hypotheses. Let E be a closed discrete subset of Z
such that

⋃
{η(x)∩Z : x ∈ E} = Z. Then, it is easy to check that D∪E is a closed

discrete subset of X and η[D ∪ E] = X.
Now, assume that α is a limit ordinal and η is a basic ONA forX. Since eachXi is

subparacompact, we have that for 1 ≤ i ≤ k there is a covering Pi =
⋃
{ηij : j ≥ 0}

of Xi satisfying the following:
(1) Each element of Pi is a closed subset of Xi,
(2) Pi is a refinement of {η(x) ∩Xi : x ∈ Xi},
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(3) ηij is discrete in Xi for every j ≥ 0.
Now for every n ≥ 0 let

ηn =
⋃
{ηin : 1 ≤ i ≤ k}.

Since η(x) is a cone on x for every x ∈ X, by using (2), we deduce that ht(V ) < α
for every V ∈ ηn. Hence, by using (1), we infer from the induction hypotheses that
every element of ηn is D.

Proceeding by induction on n ≥ 0 we define closed discrete subsets En, Dn of X
with En ⊆ Dn such that the following holds:

(∗)n (a)
⋃
{η[Dm] : m ≤ n} ⊇

⋃
(η0 ∪ · · · ∪ ηn),

(b) Dn \ En ⊆ (
⋃
ηn) \ η[En],

(c) η0 ∪ · · · ∪ ηn is locally finite at every point of X \ (η[En] ∪
⋃
{η[Dm] : m < n}),

(d) Dn ∩
⋃
{η[Dm] : m < n} = ∅.

First, assume n = 0. For i ∈ {1, . . . , k} let Fi0 = {x ∈ X : ηi0 is not locally finite
at x}. Clearly, for 1 ≤ i ≤ k, Fi0 is closed in X and Fi0 ⊆ X \ Xi, and so Fi0 is
D by the induction hypothesis. Now let F0 =

⋃
{Fi0 : i ∈ {1, . . . , k}}. Clearly, F0

is the set of all x ∈ X such that η0 is not locally finite at x. Since F0 is a finite
union of closed D subspaces of X, we have that F0 is also D. So, let E0 be a closed
discrete subset of F0 such that F0 ⊆ η[E0]. Put W0 = η[E0]. Since every element
of η0 is D and W0 is open, we may consider for every V ∈ η0 a closed discrete
subset DV of V \W0 such that {η(x) \W0 : x ∈ DV } covers V \W0. Then, we put
D0 = E0 ∪

⋃
{DV : V ∈ η0}. It is easy to check that D0 is a closed discrete subset

of X and that condition (∗)0 holds.
Now assume that n ≥ 1. Let

Un =
⋃
{η[Dm] : m < n}.

Proceeding as above, we have that Fn = {x ∈ X : ηn is not locally finite at x} is
D, and so Fn \Un is also D. Let En be a closed discrete subset of Fn \Un such that
η[En] ⊇ Fn \ Un. Put Wn = Un ∪ η[En]. Then, for every V ∈ ηn we consider a
closed discrete subset DV of V \Wn such that {η(x)\Wn : x ∈ DV } covers V \Wn.
Now we set Dn = En ∪

⋃
{DV : V ∈ ηn}. We have that Dn is a closed discrete

subset of X and condition (∗)n holds.
Finally, we define D =

⋃
{Dn : n ≥ 0}. It is easy to see that D is as required. �

We do not know whether it is possible to prove in a direct way the result given in
[9, Corollary 9]. For this, note that if we want to refine the argument given in the
proof of Theorem 2.1, first we should show in a direct way that any locally compact
space which is the union of finitely many subparacompact C-scattered spaces has
the D-property.

Let K1 be the class of all regular Lindelöf spaces, K2 be the class of all paracom-
pact spaces and K3 be the class of all subparacompact spaces. Note that if every
dense in itself space of Ki is D, then every space of Ki is D (1 ≤ i ≤ 3). To check
this point, assume that every dense in itself space of Ki is D and consider a space
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X in Ki. If X is scattered, we are done. Otherwise, consider the least ordinal β
such that Xβ = Xβ+1. Let Z be the space Xβ with the relative topology of X.
Since Z is a dense in itself space of Ki, we infer that Z is D. Assume that η is an
ONA for X. Without loss of generality, we may assume that if x 6∈ Xβ , then η(x)
is a cone on x in the space X \Xβ . Since Z is D, there is a closed discrete subset
D of Z such that Z ⊆ η[D]. Let Y = X \ η[D]. Since Y is a scattered space of
Ki, we have that Y is D, and so there is a closed discrete subset E of Y such that
η[E] ⊇ Y . Then, it is easy to see that D ∪ E is a closed discrete subset of X, and
clearly X = η[D ∪ E].

Note that in contrast with Theorem 2.1 there is a large class of compact scattered
spaces which are not hereditarily D. To check this point, for every ordinal α let T (α)
be the ordinal α equipped with the order topology. Then, it is easy to check that
if α is a limit ordinal of uncountable cofinality, then T (α+ 1) is compact scattered
but T (α) is not D.

It was shown in [8] that every metacompact scattered space of countable height
is D. However, it is not known whether every metacompact scattered space is D.
Note that the notions of “paracompactness”, “subparacompactness” and “meta-
compactness” are not equivalent on scattered spaces (see [3, Examples 4.2, 4.3 and
4.4]). Also, by slightly modifying the constructions explained in [3, Examples 4.2
and 4.3 ], we can show that for every ordinal α ≥ 2, there are spaces Xα, Yα such
that ht(Xα) = ht(Yα) = α, Xα is metacompact but not subparacompact, and Yα
is a metacompact subparacompact space which is not paracompact.

On the other hand, since the space constructed by van Douwen and Wicke in [6]
is a regular scattered space of height ω which is not D, that space is an example
of a disjoint union of countably many regular paracompact scattered spaces which
does not have property D. However, we can prove the following result.

Theorem 2.2. If a space X is the union of a countable collection of regular Lindelöf
C-scattered spaces, then X is D.

In order to prove Theorem 2.2, we will use the compact-open game G(X) for a
space X, which is defined as follows. There are two players I and II, and there are
ω moves in a play. In each move i of a play there are two steps. At the first step,
player I chooses a compact subspace Ci of X; at the second step, player II chooses
an open set Vi in X such that Ci ⊆ Vi. Player I wins the play, if X =

⋃
i≥0 Vi.

Otherwise, player II wins.

Lemma 2.2. If player I has a winning strategy in the compact-open game G(X),
then X is a D-space.

Proof. Assume that player I has a winning strategy in the game G(X). Towards
showing that X is D, let η be an ONA for X. Then, we consider the following play
〈C0, V0, C1, V1, . . . 〉 in the game G(X): in the i-th move,
(1) player I uses his winning strategy to pick Ci,
(2) if Ci 6⊆

⋃
{Vj : j < i}, then we consider a finite subset Fi of Ci \

⋃
{Vj : j < i}

such that η[Fi] ⊇ Ci \
⋃
{Vj : j < i} and we put Vi =

⋃
{Vj : j < i} ∪ η[Fi],

(3) if Ci ⊆
⋃
{Vj : j < i}, then we let Vi =

⋃
{Vj : j < i}.

Put
a = {i ∈ ω : Ci 6⊆

⋃
{Vj : j < i}}.



THE D-PROPERTY ON UNIONS OF SCATTERED SPACES 5

Since I uses his winning strategy in G(X), we have X =
⋃
i∈ω Vi. But

⋃
i∈ω Vi =⋃

i∈a Vi = η[
⋃
{Fi : i ∈ a}]. Also, since Fk ∩Vi = ∅ for every i, k ∈ a with i < k, we

deduce that
⋃
{Fi : i ∈ a} is a closed discrete subset of X. �

The converse of Lemma 2.2 is not true even for Lindelöf spaces, since it is well-
known that the Sorgenfrey line S is a Lindelöf D-space and, by [10, Theorem 5.12],
we have that player II has a winning strategy in the game G(S). Note also that
every uncountable discrete space X is an example of a scattered D-space such that
player II has a winning strategy in the game G(X).

Lemma 2.3. Assume that X =
⋃
{Xn : n ≥ 0}. Suppose that player I has a

winning strategy in G(Xn) for every n ≥ 0. Then, player I has also a winning
strategy in the game G(X).

Proof. Let {an : n ≥ 0} be a partition of ω in infinite subsets. We describe
a winning strategy of player I in the game G(X): play I just uses his winning
strategy for G(Xn) in the steps whose indexes are in an. �

Note that Lemma 2.3 can not be extended to most of the games studied in [10].

The proof for the following lemma is given in [10, Theorem 9.3].

Lemma 2.4. If X is a regular Lindelöf C-scattered space, then player I has a
winning strategy in the game G(X).

Now, in order to prove Theorem 2.2, we obtain from Lemmas 2.3 and 2.4 that
if X is a countable union of regular Lindelöf C-scattered spaces, then player I has
a winning strategy in the game G(X), and hence we deduce from Lemma 2.2 that
X has property D.

The following result is an immediate consequence of Theorem 2.2.

Corollary 2.1. (a) If a space X is the union of a countable collection of regular
Lindelöf scattered spaces, then X is D.

(b) If a space X is the union of a countable collection of Lindelöf locally compact
spaces, then X is D.

3. A result for locally finite unions

If a space X is a locally finite union of closed D subspaces, then X is D. It is
not clear whether we can drop the assumption closed from the statement above.
However, we can do this provided the subspaces are not just D, but player I has a
winning strategy in the compact-open game !

Theorem 3.1. Assume that X is a space and Y is a locally finite cover of X such
that for each Y ∈ Y, player I has a winning strategy in the game G(Y ). Then X
is D.

Proof. Let η be an ONA for X. We can assume that for each x ∈ X the set

(∗) {Y ∈ Y : Y ∩ η(x) 6= ∅} is finite.
Write Y = {Yα : α < κ}.
We will consider a play τ of κ · ω moves such that for each α < κ, in the moves

κ · n + α for n ≥ 0 player I uses his winning strategy in the game G(Yα). More
precisely, for ξ < κ · ω write ξ = κ · iξ + αξ where iξ < ω and αξ < κ. Then, in
the ξ-move of the play τ we carry out the iξ-move in the game G(Yαξ) as follows.
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Assume that we have Cζ and Uζ for ζ < ξ. Then, player I uses his winning strategy
in the game G(Yαξ) for the play〈〈

Cκ·i+αξ , Uκ·i+αξ ∩ Yαξ
〉

: i < iξ
〉

to get Cξ. Now if Cξ ⊆
⋃
{Uζ : ζ < ξ}, player II chooses Uξ =

⋃
{Uζ : ζ < ξ}.

Otherwise, player II takes a finite subset Fξ of Cξ \
⋃
{Uζ : ζ < ξ} such that

η[Fξ] ⊇ Cξ \
⋃
{Uζ : ζ < ξ} and then he chooses Uξ =

⋃
{Uζ : ζ < ξ} ∪ η[Fξ].

Put
a = {ξ ∈ κ · ω : Cξ 6⊆

⋃
{Uζ : ζ < ξ}}

and
D =

⋃
{Fξ : ξ ∈ a}.

Claim 1. η[D] covers X.
Let z ∈ X. Pick α < κ with z ∈ Yα. Write αi = κ · i+α for i < ω and consider the
sequence

Cα0 , Uα0 ∩ Yα, Cα1 , Uα1 ∩ Yα, . . . , Cαi , Uαi ∩ Yα, Cαi+1 , Uαi+1 ∩ Yα, . . .
This sequence is a play in G(Yα), where I played according with his winning

strategy. Thus z ∈
⋃
{Uαi : i < ω}. Let ξ = min{ζ ∈ κ · ω : z ∈ Uζ}.

If ξ 6∈ a, then Uξ =
⋃
{Uζ : ζ < ξ}, and so z ∈ Uζ for some ζ < ξ, which

contradicts the minimality of ξ. Thus ξ ∈ a, and so Uξ =
⋃
{Uζ : ζ < ξ} ∪ η[Fξ].

Hence, again by the minimality of ξ, we have that z ∈ η[Fξ]..

Claim 2. D is closed discrete.
Let z ∈ X. We show that z is not an accumulation point of D. By Claim 1, we
can take ξ = min{ζ ∈ a : z ∈ η[Fζ ]}.

Then, η[Fξ] ∩ D is finite. For this, suppose that σ ∈ a. Indeed, if σ > ξ then
Fσ ∩ η[Fξ] = ∅ by the way in which Fσ is chosen. Now, assume that σ < ξ and
Fσ ∩ η[Fξ] 6= ∅. Put σ = κ · iσ + ασ. It follows that η[Fξ] ∩ Yασ 6= ∅. Moreover,
iσ ≤ iξ. By (∗), the set A = {α ∈ κ : η[Fξ] ∩ Yα 6= ∅} is finite. Hence, σ should be
an element of the finite set {κ · i+ α : α ∈ A ∧ i ≤ iξ}. So z has a neighbourhood
which intersects D in a finite set, which proves the claim. �

As a consequence of Theorem 3.1 and Lemma 2.4 , we obtain the following result.

Theorem 3.2. If a space X is the union of a locally finite collection of regular
Lindelöf C-scattered spaces, then X is D.
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