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Introduction

How to use elementary submodels to prove theorems in infinite
combinatorics?

@ Basic concepts

o Easy applications

@ Simplified proofs

@ New results and problems
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Basic concept

@ A is a structure
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A | M to derive certain properties of A.
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@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A [ M to derive certain properties of A.
@ We can not find such an M ...
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A [ M to derive certain properties of A.
@ We can not find such an M ...
e Fix a regular cardinal 0 such that | 4] < ¢
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A [ M to derive certain properties of A.

@ We can not find such an M ...

e Fix a regular cardinal 0 such that | 4] < ¢

@ Let H(0)={x : the transitive closure of x has cardinality < 0 }.
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A [ M to derive certain properties of A.

@ We can not find such an M ...

e Fix a regular cardinal 0 such that | 4] < ¢

@ Let H(0)={x : the transitive closure of x has cardinality < 0 }.
o H(0)=(H(0),€,q,...)
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o A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]
Investigate M and A | M to derive certain properties of A.
We can not find such an M ...

Let H(0)={x : the transitive closure of x has cardinality < 6 }.
H(0)=(H(0),€,<,...)

°
°

e Fix a regular cardinal 0 such that | 4] < ¢

°

°

@ Concerning A the model H(#) and V are similar
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

@ Investigate M and A [ M to derive certain properties of A.

@ We can not find such an M ...

e Fix a regular cardinal 0 such that | 4] < ¢

@ Let H(0)={x : the transitive closure of x has cardinality < 0 }.
e H(0)=(H(0),€,q,...)

@ Concerning A the model H(#) and V are similar

o Let M= H(@) such that A € M but [M| < |A|.
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@ A is a structure

@ Let M be a small elementary submodel of V' which contains A, i.e.
Ae M=V but M| <|A]

Investigate M and A | M to derive certain properties of A.

We can not find such an M ...

Fix a regular cardinal 6 such that |A| < 6

Let H(0)={x : the transitive closure of x has cardinality < 6 }.
H(0)=(H(0),€,<,...)

Concerning A the model H(¢) and V are similar

Let M< H(0) such that A € M but |[M| < |A|.

Investigate M and A | M to derive certain properties of A.

e © ¢ 6 ¢ ¢ ¢ ¢

L. Soukup (Rényi Institute) The joy of elementary submodels Hejnice 2010 3 /16



Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w
o Pick Ac A\ M. Let D= M A.
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w
o Pick Ac A\ M. Let D= M N A.
o B={B C A: B is a A-system with kernel D}
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w

@ Pick Ac A\ M. Let D= MnNA.

o B={B C A: B is a A-system with kernel D}

@ Let BB be the <-minimal among the C-maximal elements of B.
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) |

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w

@ Pick Ac A\ M. Let D= MnNA.

o B={B C A: B is a A-system with kernel D}

@ Let BB be the <-minimal among the C-maximal elements of B.
oAEM=BecM=BecM
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) J

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w

@ Pick Ac A\ M. Let D= MnNA.

o B={B C A: B is a A-system with kernel D}

@ Let BB be the <-minimal among the C-maximal elements of B.
oAEM=BecM=BecM

o If |B| =ws: fine.
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Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) J

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w

Pick Ac A\ M. Let D= M N A.

B={B C A: B is a A-system with kernel D}

Let 3 be the <-minimal among the C-maximal elements of B.
AeM =BeM= BecM

If |B] = wi: fine.

If |[B] <w then BC M. So BC Mforall BeB. Thus ANB=D

e © 6 ¢ ¢ ¢

L. Soukup (Rényi Institute) The joy of elementary submodels Hejnice 2010 4 /16



Easy applications: A-systems

H(0)= {x : |TC(x)| < 0}. H(O)= (H(6),€,<,...) J

A is a A-system with kernel D iff D € NA and AN A" = D for each
A£A € A

Every uncountable A C [wl] < contains an uncountable A-system.

o Ae M <H(f)and M| =w

Pick Ac A\ M. Let D= M N A.

B={B C A: B is a A-system with kernel D}

Let 3 be the <-minimal among the C-maximal elements of B.
AeM =BeM= BecM

If |B] = wi: fine.

If |[B] <w then BC M. So BC Mforall BeB. Thus ANB=D
BU{A} is a larger A-system with kernel D than B. Contradiction.

e © ¢ ¢ ¢ ¢ ¢
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Easy applications: Fodor lemma
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Easy applications: Fodor lemma

A regressive function f : w; — w, is constant on a stationary set.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(0) and [M| = w.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(0) and [M| = w.
o n=MNuw; € w;.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(0) and [M| = w.
o n=MNuw; € w;.
o Let &= f(n) and S = F~1{¢}.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(A) and M| = w.
o n=MNuw; € w;.

o Let &= f(n) and S = F~1{¢}.
@ Claim: S is stationary.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(A) and M| = w.
o n=MNuw; € w;.

o Let (= f(n) and S = f1{¢}.
°

°

Claim: S is stationary.
If not, then 3CC w; closed unbounded s.t. SN C = 0.
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set. I

o Let f eM<H(A) and M| = w.

o n=MNuw; € w;.

o Let &= f(n) and S = F~1{¢}.

@ Claim: S is stationary.

o If not, then 3CC w; closed unbounded s.t. SN C = 0.
eSeM=—3dCeM...
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

o Let f eM<H(A) and M| = w.

o n=MNuw; € w;.

o Let (= f(n) and S = f1{¢}.

@ Claim: S is stationary.

o If not, then 3CC w; closed unbounded s.t. SN C = 0.
oSeM=3dCeM...

@ “C is unbounded”, so M = “C is unbounded”
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

Let f eM=< H(0) and |M| = w.

n=MNw; € w;.

Let (&= f(n) and S = F~1{¢}.

Claim: S is stationary.

If not, then 3CC w; closed unbounded s.t. SN C = 0.
SeM=3CeM...

“C is unbounded”, so M |= “C is unbounded”

°
°
°
°
°
°
°
@ foreachv<n=MnNw ME Jue C(r<p).
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

o Let f eM<H(A) and M| = w.

o n=MNuw; € w;.

o Let (= f(n) and S = f1{¢}.

@ Claim: S is stationary.

o If not, then 3CC w; closed unbounded s.t. SN C = 0.
oSeM=3dCeM...

@ “C is unbounded”, so M = “C is unbounded”

@ foreachv<n=MnNw ME Jue C(r<p).

o JueCNM=Cnn(v<up).
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

Let f eM=< H(0) and |M| = w.

n=MNw; € w;.

Let (&= f(n) and S = F~1{¢}.

Claim: S is stationary.

If not, then 3CC w; closed unbounded s.t. SN C = 0.
SeM=3CeM...

“C is unbounded”, so M |= “C is unbounded”
foreachv<n=MnNw M Jue C(v<p).

due CnNM=Cnn (v<p).

C Nn is unbounded in 7.

e © 6 ¢ 6 ¢ ¢ ¢ ¢ ¢
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Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

o Let f eM<H(A) and M| = w.

o n=MNuw; € w;.

o Let (= f(n) and S = f1{¢}.

@ Claim: S is stationary.

o If not, then 3CC w; closed unbounded s.t. SN C = 0.
oSeM=3dCeM...

@ “C is unbounded”, so M = “C is unbounded”
@ foreachv<n=MnNw ME Jue C(r<p).
o JueCNM=Cnn(v<up).

@ CNnis unbounded in 7.

@ Cisclosed = n € C.

L. Soukup (Rényi Institute) The joy of elementary submodels Hejnice 2010



Easy applications: Fodor lemma
A regressive function f : w; — w is constant on a stationary set.

o Let f eM<H(A) and M| = w.

o n=MNuw; € w;.

o Let (= f(n) and S = f1{¢}.

@ Claim: S is stationary.

o If not, then 3CC w; closed unbounded s.t. SN C = 0.
oSeM=3dCeM...

@ “C is unbounded”, so M = “C is unbounded”

@ foreachv<n=MnNw ME Jue C(r<p).

o JueCNM=Cnn(v<up).

@ CNnis unbounded in 7.

@ Cis closed = n € C. Contradiction because n € S
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Simplified proofs: Nash-Williams theorem
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)
A graph G is decomposable into circles if and only if it has no odd cut.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)
A graph G is decomposable into circles if and only if it has no odd cut.

o If G is finite: trivial.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)
A graph G is decomposable into circles if and only if it has no odd cut.

o If G is finite: trivial.
o If G is countable: straightforward.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

o If G is finite: trivial.
o If G is countable: straightforward.

@ If |G| = wy: partition G into pieces {G, : @ < w1} s.t. Gy is
countable and has no odd cuts.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

o If G is finite: trivial.

o If G is countable: straightforward.

@ If |G| = wy: partition G into pieces {G, : @ < w1} s.t. Gy is
countable and has no odd cuts.

e GeM=<H(0) and M| =w.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

If G is finite: trivial.

(]

If G is countable: straightforward.

@ If |G| = wy: partition G into pieces {G, : @ < w1} s.t. Gy is
countable and has no odd cuts.

GeM=<H() and M| =w.
@ G| M=(VNnM,En M) has no odd cuts.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

If G is finite: trivial.
If G is countable: straightforward.

(]

@ If |G| = wy: partition G into pieces {G, : @ < w1} s.t. Gy is
countable and has no odd cuts.

GeM=<H() and M| =w.
GIM=(VnM,ENM) has no odd cuts.
@ G\ M= (V,E\ M) has no odd cuts.
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Simplified proofs: Nash-Williams theorem

Let G = (V, E) be a graph.
A cut of Gis EN[A, V \ A] for some A C V.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

If G is finite: trivial.

(]

If G is countable: straightforward.

(]

If |G| = wy: partition G into pieces {G, : @ < w1} s.t. G, is
countable and has no odd cuts.

e GeM=<H(0) and M| =w.

@ G| M=(VNnM,En M) has no odd cuts.
@ G\ M= (V,E\ M) has no odd cuts.
°

chain of elementary submodels.
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G [ M and in G\ M. J
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(h).
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(h).

@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(h).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
° |Ma| = w,
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

o G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
° |Ma| = w,
o G & M,
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

o G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
° |Ma| = w,
o G & M,
o <Ma e’ S,@> S Mg+1,
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
e My =w,
o G ¢ My,
L <Ma a7 §ﬂ> S MB+1,
o M, =U{Mpg: 3 <~} for ~ limit.
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
e My =w,
o G ¢ My,
L <Ma a7 §ﬂ> S MB+1,
o M, =U{Mpg: 3 <~} for ~ limit.
) MO = @
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
° |Ma| = w,
o G ¢ My,
o <Ma e’ §ﬂ> S MB+1,
o M, =U{Mpg: 3 <~} for ~ limit.
) MO = @
o Let G,= (G \ Ma) [ Myy1= <w1 N Mat1, EN (Ma—i-l \ Ma)>.
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
° |Ma| = w,
o G ¢ My,
o <Ma e’ §ﬂ> S MB+1,
o M, =U{Mpg: 3 <~} for ~ limit.
) MO = @
o Let G,= (G \ Ma) [ Myy1= <w1 N Mat1, EN (Ma—i-l \ Ma)>.

@ G, has no odd cut = G, is decomposable into circles
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Simplified proofs: Nash-Williams theorem

If no odd cut in G € M < H(0) then no odd cutin G | M and in G\ M. J

@ G = (w1, E) graph without odd cuts
o G e H(H).
@ Let (M, : 1 < a < wi) be a sequence of elementary submodels of
H(#) such that
e My =w,
o G ¢ My,
] <Ma e §ﬂ> S Mﬁ+1,
o M, =U{Mpg: 3 <~} for ~ limit.
) MO = @
o Let Go= (G \ Ma) [ Ma1= <W1 N Mat1, EN (Ma—i-l \ Ma)>-
@ G, has no odd cut = G, is decomposable into circles

@ £E(G) =UYE(Gy): @ <wi1} = G is decomposable into circles
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joint results of Hajnal, Juhasz, —, Szentmikléssy

o A C P(X) afamily of sets, f: X — p function
e f isa proper coloring of A iff [f”A| > 2 for each A € A.
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o A C P(X) afamily of sets, f: X — p function
e f isa proper coloring of A iff [f”A| > 2 for each A € A.
@ x(A)=min{p: 3f : X — p proper coloring}
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o A C P(X) afamily of sets, f: X — p function

e f isa proper coloring of A iff [f”A| > 2 for each A € A.

@ x(A)=min{p: 3f : X — p proper coloring}

e f is a conflict free coloring iff VA€ A 3¢ €pIlac Af(a) =¢.
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Colorings

joint results of Hajnal, Juhasz, —, Szentmikléssy

A C P(X) a family of sets, f: X — p function

f is a proper coloring of A iff |f”A| > 2 for each A € A.
X(A)=min{p : 3f : X — p proper coloring}

f is a conflict free coloring iff VA€ A 3¢ € pFlaec A f(a) =¢.
Xce(A)=min{p : If : X — p conflict free coloring}

e © ¢ ¢ ¢
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f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : If : X — p conflict free coloring} J
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f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : If : X — p conflict free coloring} J

® x(A) < xcr(A)
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f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : If : X — p conflict free coloring} J

® x(A) < xcr(A)

A is k-almost disjoint iff [ ANA'| < k for A# A € A.
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f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : If : X — p conflict free coloring} J

® x(A) < xcr(A)

A is k-almost disjoint iff [ ANA'| < k for A# A € A.

X[k, m, k= sup{x(A) : A C [k]™ is k-almost disjoint}
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f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : If : X — p conflict free coloring} J

® X(A) < xcr(A)
A is k-almost disjoint iff [ ANA'| < k for A# A € A.
X[k, m, k= sup{x(A) : A C [k]™ is k-almost disjoint}

xcelrw, m, k= sup{xcr(A) : A C [r]™ is k-almost disjoint}
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Colorings

f is a conflict free coloring iff VA€ A 3¢ € pJlac Af(a) =¢.
Xcr(A)= min{p : 3If : X — p conflict free coloring} J

® X(A) < xcr(A)
A is k-almost disjoint iff [ ANA'| < k for A# A € A.
X[k, m, k= sup{x(A) : A C [k]™ is k-almost disjoint}

xcelrw, m, k= sup{xcr(A) : A C [r]™ is k-almost disjoint}

X[w, m, 2] = w for m > 2.
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f is a conflict free coloring iff VA€ A 3¢ € p3lac A f(a) =¢.
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f is a conflict free coloring iff VA€ A 3¢ € p3lac A f(a) =¢.
Xce(A)= min{p : If : X — p conflict free coloring}

X[w, m,2] = w for m > 2

First interesting case: A C [wl]m is k + 1-almost disjoint, m > k + 2
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f is a conflict free coloring iff VA€ A 3¢ € p3lac A f(a) =¢.
Xce(A)= min{p : If : X — p conflict free coloring}

X[w, m,2] = w for m > 2

First interesting case: A C [wl]m is k + 1-almost disjoint, m > k + 2
o X[w1,3,2] =7
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Colorings

f is a conflict free coloring iff VA€ A 3¢ € p3lac A f(a) =¢.
Xce(A)= min{p : If : X — p conflict free coloring}

X[w, m,2] = w for m > 2

First interesting case: A C [wl]m is k + 1-almost disjoint, m > k + 2
o X[w1,3,2] =7

Theorem (Erdés, Hajnal)
X[wi,m k+1] =w for m > k + 2.
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Colorings

f is a conflict free coloring iff VA€ A 3¢ € p3lac A f(a) =¢.
xce(A)= min{p : If : X — p conflict free coloring}

X[w, m,2] = w for m > 2

First interesting case: A C [wl]m is k + 1-almost disjoint, m > k + 2
o X[w1,3,2] =7

Theorem (Erdés, Hajnal)
X[wi,m k+1] =w for m > k + 2.

Theorem (H, J, -, Sz)

Xcelwi, m k+ 1] =w for m > 2k + 1.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wi]™,

ANA| <k
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

@ For each oo < wy let ¢t (Mpt1 \ M) Nwi — w be 1-1.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

@ For each oo < wy let ¢t (Mpt1 \ M) Nwi — w be 1-1.
o Let c=J{cn v <wi}
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k
@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

@ For each oo < wy let ¢t (Mpt1 \ M) Nwi — w be 1-1.
o Let c=J{cn v <wi}
0w CUMp:a<wi}and AC U My:a<w}
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

Let (M, : 1 < o < wy) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.
Let c=U{co :a < w1}

w CU{My ca<witand AC (M, a < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.
Let c=U{co :a < w1}

w CU{My ca<witand AC (M, a < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

e 6 ¢ ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co :a < w1}

w CU{My ca<witand AC (M, a < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.
@ Assume D= AN M, has k + 1 elements.

e 6 ¢ ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co :a < w1}

w CU{My ca<witand AC (M, a < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

@ Assume D= AN M, has k + 1 elements.
@ Then D € M, and A is the unique element of A which contains D.

e 6 ¢ ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m, ANA| <k

@ Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co :a < w1}

w CU{My ca<witand AC (M, a < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

@ Assume D= AN M, has k + 1 elements.
@ Then D € M, and A is the unique element of A which contains D.
o D Ae M, — Ac M,,.

e 6 ¢ ¢ ¢

L. Soukup (Rényi Institute) The joy of elementary submodels Hejnice 2010 11 / 16



X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m

o Let (M, :1 < < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co : @ < w1}

w CU{My ca<witand ACU{My o < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

e © 6 ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m

o Let (M, :1 < < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co : @ < w1}

w CU{My ca<witand ACU{My o < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

X: AC Myq1s0 |[AN (Mas1\ My)| > 2s0 |[chA| > 2.

e © 6 ¢ ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

o AC [wl}m

o Let (M, :1 < < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.

Let c=U{co : @ < w1}

w CU{My ca<witand ACU{My o < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

X: AC Myq1s0 |[AN (Mas1\ My)| > 2s0 |[chA| > 2.

Xcr: [ANMy|< k< k+1<|AN(Mys1\ My)|

¢ © 6 6 ¢ ¢ ¢
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

)

)

¢ © ¢ 6 ¢ ¢ ¢ ¢

AC [wl]m

Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.
Let c=U{co : @ < w1}

w CU{My ca<witand ACU{My o < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

X: AC Myq1s0 |[AN (Mas1\ My)| > 2s0 |[chA| > 2.
Xcr: [ANMy|< k< k+1<|AN(Mys1\ My)|

Jage AN (Mag1 \ My) cala) ¢ c[AN M,]
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

)

)

e © ¢ 6 ¢ ¢ ¢ ¢ ¢

AC [wl]m

Let (M, : 1 < a < wi) be a continuous sequence of countable
elementary submodels of H(6) such that A € M;

For each a < wy let ¢,: (May1 \ My) Nw1 — w be 1-1.
Let c=U{co : @ < w1}

w CU{My ca<witand ACU{My o < wi}

For A€ A pick a <wy s.t. A€ (Mat1 \ My)

Key observation: |[AN M,| < k.

X: AC Myq1s0 |[AN (Mas1\ My)| > 2s0 |[chA| > 2.
Xcr: [ANMy|< k< k+1<|AN(Mys1\ My)|

Jage AN (Mag1 \ My) cala) ¢ c[AN M,]

Jla" € A ¢(d') = c(a).
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.

Xcrlwi, 2k, k+ 1] = w; \
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

Xcrlwi, 2k, k+ 1] = w;

_

Proof:
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

Xcrlwi, 2k, k+ 1] = w;

_

Proof:

o X=uwi xk
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

_

Xcrlwi, 2k, k+ 1] = w;

Proof:

) X:wl x k
o A= {8} x kia<B<w)c [X]*
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

_

Xcrlwi, 2k, k+ 1] = w;

Proof:

) X:wl x k
o A= {8} x kia<B<w)c [X]*

o c: X—w
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

Xcrlwi, 2k, k+ 1] = w;

_

Proof:
@ X=uw; x k
o A= {{a,ﬁ}xk:a<ﬁ<w1}c [X]zk
o c: X —w

@ Ja# B Vi<kf(a,i)="F(B,i).
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X[w1, m k+ 1] =w for m> k + 2.
X’CF[w1,m,k+1] =w form>2k+1.

_

Xcrlwi, 2k, k+ 1] = w;

Proof:
@ X=uw; x k
o A= {{a,ﬁ} xk:a<f< wl}C [X]zk
o c: X —w
o Ja#pVi<kf(a,i)=F(8,1).
o {a, 8} x k witnesses that f is not a CF-coloring.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

o XCF[w1,7,4] = w, but XCF[w1’674] = w1.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

o XCF[w1,7,4] = w, but XCF[w1’674] = w1.
@ What about ycp[ws,5,4]?
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

<] ch[wl, 7,4] = w, but ch[wl, 6,4] = wi.
@ What about xcg[wi,5,4]?
o Clearly x[x, m, k] > x[x, m+ 1, k]
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

® Xcglw1,7,4] = w, but xcflwi, 6,4] = wi.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[x, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

® xcFlwi,7,4] = w, but xcrlw1,6,4] = wi.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[x, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?

If CH holds then xcg[w1,5,4] = w;. I
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X[w1, m k+ 1] =w for m> k + 2.

XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

] ch[wl, 7,4] = w, but ch[wl, 6,4] = wi.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[r, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?

If CH holds then xcf[w1,5,4] = w;.
It is consistent that xcg|w1,5,4] = wy and Martin’s Axiom holds.

Hejnice 2010 14 / 16
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X[w1, m k+ 1] =w for m> k + 2.

X’CF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

° XCF[WI’ 774] = w, but XCF[WI’ 674] = W1.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[r, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?

If CH holds then xcg[wi1,5,4] = w;.
It is consistent that xcg|w1,5,4] = wy and Martin’s Axiom holds.
Xcelwi, bk + 1] =w; for k+1 < ¢ < 2k.
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X[w1, m k+ 1] =w for m> k + 2.

'XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

® Xcglw1,7,4] = w, but xcflwi, 6,4] = wi.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[x, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?

Xcelw1, b,k + 1] = w; for k+1 <0 < 2k. I

L. Soukup (Rényi Institute) The joy of elementary submodels Hejnice 2010 14 / 16



X[w1, m k+ 1] =w for m> k + 2.

XCF[WL m, k + 1] =w form>2k+1.
Xcrlwi, 2k, k+ 1] = wy

® Xcglw1,7,4] = w, but xcflwi, 6,4] = wi.

@ What about xcg[wi,5,4]?

o Clearly x[x, m, k] > x[x, m+ 1, k]

o Question: xcg[k, m, k] > xcglk, m+ 1, k|?

Xcelw1, b,k + 1] = w; for k+1 <0 < 2k.
If k /> [K]? then xcE[k, ¢, k +1] =k for k +1 < £ < 2k.
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?

o If k=w and u < w, then YES (P. Komjath)
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?

o If k=w and u < w, then YES (P. Komjath)
o If Kk =w; and p = w, then MAYBE (H, J, -, Sz.)
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?

o If k=w and u < w, then YES (P. Komjath)
o If Kk =w; and p = w, then MAYBE (H, J, -, Sz.)
o If k=2, and < 3, then YES (-).
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?

o If k=w and u < w, then YES (P. Komjath)

o If Kk =w; and p = w, then MAYBE (H, J, -, Sz.)

o If k=2, and < 3, then YES (-).

Elementary submodels
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Almost vs essentially disjointness

A family A C [A]" is p-almost disjoint iff |[AN A’| < p for for each
A£A e A

A family A C [)\r is essentially disjoint iff for each A € A there is
F(A) € [A]™" such that {A\ F(A): A € A} is disjoint

o If a family A C [A]" is essentially disjoint then xcg(A) < k.

Question: Assume that A C [/\]h is a pu-almost disjont family. Is A
essentially disjoint?

o If k=w and u < w, then YES (P. Komjath)

o If Kk =w; and p = w, then MAYBE (H, J, -, Sz.)

o If k=2, and < 3, then YES (-).
Elementary submodels+ Shelah’s revised GCH
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Shelah’s revised GCH

o plYl = p iff there is a family B C [p]gy of size p such that for all

ue [p]y there is P € [B]<V such that v C UP.
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Shelah’s revised GCH

o plYl = p iff there is a family B C [p]gy of size p such that for all

ue [p]y there is P € [B]<V such that v C UP.

@ Shelah’s Revised GCH theorem: If p > 3., then pl*! = p for each
large enough regular v < 3.
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