The joy of elementary submodels #### Lajos Soukup http://www.renyi.hu/~soukup Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences ### Introduction #### Introduction How to use **elementary submodels** to prove theorems in infinite combinatorics? #### Introduction How to use **elementary submodels** to prove theorems in infinite combinatorics? - Basic concepts - Easy applications - Simplified proofs - New results and problems ullet $\mathcal A$ is a structure - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$ - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$ - Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$. - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$ - Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$. - $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$ - Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$. - $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ - Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$ - Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$. - $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ - Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar - Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|. - \bullet \mathcal{A} is a structure - Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$ - Investigate M and $A \upharpoonright M$ to derive certain properties of A. - We can not find such an M ... - ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$ - Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$. - $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ - Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar - Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|. - Investigate M and $A \upharpoonright M$ to derive certain properties of A. $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ $$H(\theta) = \{x : |TC(x)| < \theta\}.$$ $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. $$H(\theta) = \{x : |TC(x)| < \theta\}.$$ $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### **Theorem** $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem Every uncountable $\mathcal{A}\subset \left[\omega_1 ight]^{<\omega}$ contains an uncountable Δ -system. ullet $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(heta)$ and $|\mathcal{M}| = \omega$ $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - ullet $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(heta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} - Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$. $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} - Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$. - $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$ $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} - Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$. - $\bullet \ \mathcal{A} \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$ - If $|\mathcal{B}| = \omega_1$: fine. $$H(\theta) = \{x : |TC(x)| < \theta\}.$$ $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### Theorem - $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} - Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$. - $\bullet \ \mathcal{A} \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$ - If $|\mathcal{B}| = \omega_1$: fine. - If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$ $$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$ \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$. #### **Theorem** -
$\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$ - Pick $A \in A \setminus M$. Let $D = M \cap A$. - \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D} - Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$. - $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$ - If $|\mathcal{B}| = \omega_1$: fine. - If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$ - $\mathcal{B} \cup \{A\}$ is a larger Δ -system with kernel D than \mathcal{B} . Contradiction. #### Theorem #### Theorem A regressive function $f: \omega_1 \to \omega_1$ is constant on a stationary set. • Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\bullet \ \eta = M \cap \omega_1 \in \omega_1.$ #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$ #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: *S* is stationary. #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: *S* is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: S is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: *S* is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: *S* is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" - for each $\nu < \eta = M \cap \omega_1$ $M \models \exists \mu \in \mathcal{C}(\nu < \mu)$. #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: *S* is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" - for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$. - $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$ #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: S is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" - for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$. - $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$ - $C \cap \eta$ is unbounded in η . #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: S is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" - for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$. - $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$ - $C \cap \eta$ is unbounded in η . - C is closed $\Longrightarrow \eta \in C$. #### Theorem - Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $\eta = M \cap \omega_1 \in \omega_1$ - Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$. - Claim: S is stationary. - If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$. - $S \in M \Longrightarrow \exists C \in M \dots$ - "C is unbounded", so $M \models$ "C is unbounded" - for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$. - $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$ - $C \cap \eta$ is unbounded in η . - C is closed $\Longrightarrow \eta \in C$. Contradiction because $\eta \in S$ Let $G = \langle V, E \rangle$ be a graph. A cut of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) A graph G is decomposable into circles if and only if it has no odd cut. • If G is finite: trivial. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. - If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. - If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts. - $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. - If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts. - $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. - If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts. - $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts. - $G \setminus M = \langle V, E \setminus M \rangle$ has no odd cuts. Let $G = \langle V, E \rangle$ be a graph. A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$. #### Theorem (Nash-Williams) - If G is finite: trivial. - If G is countable: straightforward. - If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts. - $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$. - $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts. - $G \setminus M = \langle V, E \setminus M \rangle$ has no odd cuts. - chain of elementary submodels. If no odd cut in $G \in M \prec \mathcal{H}(\theta)$ then no odd cut in $G \upharpoonright M$ and in $G \setminus M$. • $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_\alpha: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| =
\omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $M_{\gamma} = \cup \{M_{\beta}: \beta < \gamma\}$ for γ limit. - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit. - $\bullet \ M_0=\emptyset.$ - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit. - $M_0 = \emptyset$. - Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$. - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit. - $M_0 = \emptyset$. - Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$. - ullet G_lpha has no odd cut $\Longrightarrow G_lpha$ is decomposable into circles - $G = \langle \omega_1, E \rangle$ graph without odd cuts - $G \in \mathcal{H}(\theta)$. - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that - $|M_{\alpha}| = \omega$, - $G \in M_1$, - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$, - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit. - $M_0 = \emptyset$ - Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$. - ullet G_lpha has no odd cut $\Longrightarrow G_lpha$ is decomposable into circles - $E(G) = \cup^* \{ E(G_{\alpha}) : \alpha < \omega_1 \} \Longrightarrow G$ is decomposable into circles joint results of Hajnal, Juhász, -, Szentmiklóssy • $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - f is a proper coloring of A iff $|f''A| \ge 2$ for each $A \in A$. - $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$. - $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$ - $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - f is a **proper coloring** of A iff $|f''A| \ge 2$ for each $A \in A$. - $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$ - f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. - $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - f is a **proper coloring** of A iff $|f''A| \ge 2$ for each $A \in A$. - $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$ - f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. - $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function - f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$. - $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$ - f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. - $\chi_{CF}(A) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ • $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$ f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ • $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$ \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$. f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ • $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$ \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$. $\chi[\kappa, m, k] = \sup{\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}}$ f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ • $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$ \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$. $$\chi[\kappa, m, k] = \sup\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$$ $\chi_{\mathsf{CF}}[\kappa, m, k] = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$ f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$ • $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$ \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$. $\chi[\kappa, m, k] = \sup\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$ $\chi_{\mathsf{CF}}[\kappa, m, k] = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$ #### Fact $\chi[\omega, m, 2] = \omega$ for $m \ge 2$. f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $$\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$$ $$\chi[\omega,m,2]=\omega$$ for $m\geq 2$ f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$ $$\chi[\omega, m, 2] = \omega$$ for $m \ge 2$ First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$ f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$ $$\chi[\omega, m, 2] = \omega$$ for $m \ge 2$ First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$ • $\chi[\omega_1, 3, 2] = ?$ f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$ $$\chi[\omega, m, 2] = \omega$$ for $m \ge 2$ First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$ • $\chi[\omega_1, 3, 2] = ?$ ## Theorem (Erdős, Hajnal) $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$ $$\chi[\omega, m, 2] = \omega$$ for $m \ge 2$ First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$ • $\chi[\omega_1, 3, 2] = ?$ ## Theorem (Erdős, Hajnal) $\chi[\omega_1, m, k+1] = \omega$ for $m \ge k+2$. ## Theorem (H, J, -, Sz) $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \geq 2k+1.$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. • $$A \subset [\omega_1]^m$$, $|A \cap A'| \leq k$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'|
\leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - Assume $D = A \cap M_{\alpha}$ has k+1 elements. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - Assume $D = A \cap M_{\alpha}$ has k+1 elements. - Then $D \in M_{\alpha}$ and A is the unique element of A which contains D. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - Assume $D = A \cap M_{\alpha}$ has k+1 elements. - Then $D \in M_{\alpha}$ and A is the unique element of A which contains D. - $D, A \in M_{\alpha} \Longrightarrow A \in M_{\alpha}$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$ - Let $\langle M_\alpha: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in \mathcal{M}_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$. - χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$. - χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$ - $\exists a \in A \cap (M_{\alpha+1} \setminus M_{\alpha}) \ c_{\alpha}(a) \notin c[A \cap M_{\alpha}]$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. - $\mathcal{A} \subset [\omega_1]^m$ - Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$ - For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus
M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1. - Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$ - $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ - For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$ - Key observation: $|A \cap M_{\alpha}| \leq k$. - χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$. - χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$ - $\exists a \in A \cap (M_{\alpha+1} \setminus M_{\alpha}) \ c_{\alpha}(a) \notin c[A \cap M_{\alpha}]$ - $\bullet \exists ! a' \in A \ c(a') = c(a).$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ • $$X = \omega_1 \times k$$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $X = \omega_1 \times k$ - $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $X = \omega_1 \times k$ - $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$ - \circ $c: X \to \omega$ $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\text{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $X = \omega_1 \times k$ - $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$ - \circ $c: X \to \omega$ - $\exists \alpha \neq \beta \ \forall i < k \ f(\alpha, i) = f(\beta, i)$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $X = \omega_1 \times k$ - $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$ - \circ $c: X \to \omega$ - $\exists \alpha \neq \beta \ \forall i < k \ f(\alpha, i) = f(\beta, i)$. - $\{\alpha, \beta\} \times k$ witnesses that f is not a CF-coloring. $\chi[\omega_1, m, k+1] = \omega$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ $$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$ • $$\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. $$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? $$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$ $$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$ $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$ $$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$ $$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$ $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? If CH holds then $\chi_{CF}[\omega_1, 5, 4] = \omega_1$. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? If CH holds then $\chi_{\mathsf{CF}}[\omega_1, 5, 4] = \omega_1$. ### Theorem It is consistent that $\chi_{CF}[\omega_1, 5, 4] = \omega_1$ and Martin's Axiom holds. $$\chi[\omega_1, m, k+1] = \omega$$ for $m \ge k+2$. $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$. $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? If CH holds then $\chi_{\sf CF}[\omega_1,5,4]=\omega_1$. ### Theorem It is consistent that $\chi_{\mathsf{CF}}[\omega_1, 5, 4] = \omega_1$ and Martin's Axiom holds. ### Theorem $$\chi_{\mathsf{CF}}[\omega_1, \ell, k+1] = \omega_1 \text{ for } k+1 \leq \ell \leq 2k.$$ $$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$ $$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$ $$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? $$\chi_{\mathsf{CF}}[\omega_1, \ell, k+1] = \omega_1 \text{ for } k+1 \le \ell \le 2k.$$ $$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$ - $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$. - What about $\chi_{CF}[\omega_1, 5, 4]$? - Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$ - Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$? $$\chi_{\mathsf{CF}}[\omega_1,\ell,k+1] = \omega_1 \text{ for } k+1 \leq \ell \leq 2k.$$ #### **Theorem** If $\kappa \to [\kappa]_{\kappa}^2$ then $\chi_{\mathsf{CF}}[\kappa, \ell, k+1] = \kappa$ for $k+1 \le \ell \le 2k$. A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(\mathcal{A}) \leq \kappa$. A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is a μ -almost disjont family. Is \mathcal{A} essentially disjoint? A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint? • If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth) A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A
family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is a μ -almost disjont family. Is \mathcal{A} essentially disjoint? - If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth) - If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.) A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint? - If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth) - If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.) - If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-). A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint? - If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth) - If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.) - If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-). Elementary submodels A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$ A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint • If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$. Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint? - If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth) - If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.) - If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-). Elementary submodels+ Shelah's revised GCH ### Shelah's revised GCH • $\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u \subset \cup \mathcal{P}$. ### Shelah's revised GCH - $\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u \subset \cup \mathcal{P}$. - Shelah's Revised GCH theorem: If $\rho \geq \beth_{\omega}$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_{\omega}$.