The joy of elementary submodels

Lajos Soukup

http://www.renyi.hu/~soukup

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Introduction

Introduction

How to use **elementary submodels** to prove theorems in infinite combinatorics?

Introduction

How to use **elementary submodels** to prove theorems in infinite combinatorics?

- Basic concepts
- Easy applications
- Simplified proofs
- New results and problems

ullet $\mathcal A$ is a structure

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a regular cardinal heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar
- Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|.

- \bullet \mathcal{A} is a structure
- Let M be a small elementary submodel of V which contains \mathcal{A} , i.e. $\mathcal{A} \in M \prec V$ but $|M| < |\mathcal{A}|$
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.
- We can not find such an M ...
- ullet Fix a **regular cardinal** heta such that $|\mathcal{A}| \ll heta$
- Let $H(\theta) = \{x : \text{the transitive closure of } x \text{ has cardinality } < \theta \}$.
- $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$
- Concerning \mathcal{A} the model $\mathcal{H}(\theta)$ and V are similar
- Let $M \prec \mathcal{H}(\theta)$ such that $A \in M$ but |M| < |A|.
- Investigate M and $A \upharpoonright M$ to derive certain properties of A.

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

Every uncountable $\mathcal{A}\subset \left[\omega_1
ight]^{<\omega}$ contains an uncountable Δ -system.

ullet $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(heta)$ and $|\mathcal{M}| = \omega$

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- ullet $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(heta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$.

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$.
- $\bullet \ \mathcal{A} \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.

$$H(\theta) = \{x : |TC(x)| < \theta\}.$$
 $\mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$.
- $\bullet \ \mathcal{A} \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.
- If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$

$$H(\theta) = \{x : |TC(x)| < \theta\}. \quad \mathcal{H}(\theta) = \langle H(\theta), \in, \triangleleft, \ldots \rangle$$

 \mathcal{A} is a Δ -system with kernel D iff $D \subset \cap \mathcal{A}$ and $A \cap A' = D$ for each $A \neq A' \in \mathcal{A}$.

Theorem

- $\mathcal{A} \in \mathcal{M} \prec \mathcal{H}(\theta)$ and $|\mathcal{M}| = \omega$
- Pick $A \in A \setminus M$. Let $D = M \cap A$.
- \mathbb{B} = { $\mathcal{B} \subset \mathcal{A} : \mathcal{B}$ is a Δ -system with kernel D}
- Let $\mathcal B$ be the \triangleleft -minimal among the \subset -maximal elements of $\mathbb B$.
- $A \in M \Longrightarrow \mathbb{B} \in M \Longrightarrow \mathcal{B} \in M$
- If $|\mathcal{B}| = \omega_1$: fine.
- If $|\mathcal{B}| \leq \omega$ then $\mathcal{B} \subset M$. So $B \subset M$ for all $B \in \mathcal{B}$. Thus $A \cap B = D$
- $\mathcal{B} \cup \{A\}$ is a larger Δ -system with kernel D than \mathcal{B} . Contradiction.

Theorem

Theorem

A regressive function $f: \omega_1 \to \omega_1$ is constant on a stationary set.

• Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\bullet \ \eta = M \cap \omega_1 \in \omega_1.$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: *S* is stationary.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: *S* is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: *S* is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: *S* is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1$ $M \models \exists \mu \in \mathcal{C}(\nu < \mu)$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: *S* is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$.
- $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$.
- $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$.
- $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .
- C is closed $\Longrightarrow \eta \in C$.

Theorem

- Let $f \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $\eta = M \cap \omega_1 \in \omega_1$
- Let $\xi = f(\eta)$ and $S = f^{-1}\{\xi\}$.
- Claim: S is stationary.
- If not, then $\exists C \subset \omega_1$ closed unbounded s.t. $S \cap C = \emptyset$.
- $S \in M \Longrightarrow \exists C \in M \dots$
- "C is unbounded", so $M \models$ "C is unbounded"
- for each $\nu < \eta = M \cap \omega_1 \ M \models \exists \mu \in \mathcal{C}(\nu < \mu)$.
- $\bullet \ \exists \mu \in \mathcal{C} \cap M = \mathcal{C} \cap \eta \ (\nu < \mu).$
- $C \cap \eta$ is unbounded in η .
- C is closed $\Longrightarrow \eta \in C$. Contradiction because $\eta \in S$

Let $G = \langle V, E \rangle$ be a graph.

A cut of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

A graph G is decomposable into circles if and only if it has no odd cut.

• If G is finite: trivial.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts.
- $G \setminus M = \langle V, E \setminus M \rangle$ has no odd cuts.

Let $G = \langle V, E \rangle$ be a graph.

A **cut** of G is $E \cap [A, V \setminus A]$ for some $A \subset V$.

Theorem (Nash-Williams)

- If G is finite: trivial.
- If G is countable: straightforward.
- If $|G| = \omega_1$: partition G into pieces $\{G_\alpha : \alpha < \omega_1\}$ s.t. G_α is countable and has no odd cuts.
- $G \in M \prec \mathcal{H}(\theta)$ and $|M| = \omega$.
- $G \upharpoonright M = \langle V \cap M, E \cap M \rangle$ has no odd cuts.
- $G \setminus M = \langle V, E \setminus M \rangle$ has no odd cuts.
- chain of elementary submodels.

If no odd cut in $G \in M \prec \mathcal{H}(\theta)$ then no odd cut in $G \upharpoonright M$ and in $G \setminus M$.

• $G = \langle \omega_1, E \rangle$ graph without odd cuts

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_\alpha: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,
 - $M_{\gamma} = \cup \{M_{\beta}: \beta < \gamma\}$ for γ limit.

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,
 - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit.
 - $\bullet \ M_0=\emptyset.$

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,
 - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit.
 - $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,
 - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit.
 - $M_0 = \emptyset$.
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.
- ullet G_lpha has no odd cut $\Longrightarrow G_lpha$ is decomposable into circles

- $G = \langle \omega_1, E \rangle$ graph without odd cuts
- $G \in \mathcal{H}(\theta)$.
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a sequence of elementary submodels of $\mathcal{H}(\theta)$ such that
 - $|M_{\alpha}| = \omega$,
 - $G \in M_1$,
 - $\langle M_{\alpha} : \alpha \leq \beta \rangle \in M_{\beta+1}$,
 - $M_{\gamma} = \cup \{M_{\beta} : \beta < \gamma\}$ for γ limit.
 - $M_0 = \emptyset$
- Let $G_{\alpha} = (G \setminus M_{\alpha}) \upharpoonright M_{\alpha+1} = \langle \omega_1 \cap M_{\alpha+1}, E \cap (M_{\alpha+1} \setminus M_{\alpha}) \rangle$.
- ullet G_lpha has no odd cut $\Longrightarrow G_lpha$ is decomposable into circles
- $E(G) = \cup^* \{ E(G_{\alpha}) : \alpha < \omega_1 \} \Longrightarrow G$ is decomposable into circles

joint results of Hajnal, Juhász, -, Szentmiklóssy

• $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function
- f is a proper coloring of A iff $|f''A| \ge 2$ for each $A \in A$.

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function
- f is a **proper coloring** of A iff $|f''A| \ge 2$ for each $A \in A$.
- $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$
- f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function
- f is a **proper coloring** of A iff $|f''A| \ge 2$ for each $A \in A$.
- $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$
- f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

- $\mathcal{A} \subset \mathcal{P}(X)$ a family of sets, $f: X \to \rho$ function
- f is a **proper coloring** of \mathcal{A} iff $|f''A| \geq 2$ for each $A \in \mathcal{A}$.
- $\chi(A) = \min\{\rho : \exists f : X \to \rho \text{ proper coloring}\}\$
- f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.
- $\chi_{CF}(A) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

• $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

• $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$

 \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$.

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

• $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$

 \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$.

 $\chi[\kappa, m, k] = \sup{\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}}$

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

• $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$

 \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$.

$$\chi[\kappa, m, k] = \sup\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$$

 $\chi_{\mathsf{CF}}[\kappa, m, k] = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$

f is a **conflict free coloring** iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$. $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}$

• $\chi(\mathcal{A}) \leq \chi_{\mathsf{CF}}(\mathcal{A})$

 \mathcal{A} is k-almost disjoint iff $|A \cap A'| < k$ for $A \neq A' \in \mathcal{A}$.

 $\chi[\kappa, m, k] = \sup\{\chi(A) : A \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$

 $\chi_{\mathsf{CF}}[\kappa, m, k] = \sup\{\chi_{\mathsf{CF}}(\mathcal{A}) : \mathcal{A} \subset [\kappa]^m \text{ is } k\text{-almost disjoint}\}$

Fact

 $\chi[\omega, m, 2] = \omega$ for $m \ge 2$.

f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

$$\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$$

$$\chi[\omega,m,2]=\omega$$
 for $m\geq 2$

f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

 $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$

$$\chi[\omega, m, 2] = \omega$$
 for $m \ge 2$

First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$

f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

 $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$

$$\chi[\omega, m, 2] = \omega$$
 for $m \ge 2$

First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$

• $\chi[\omega_1, 3, 2] = ?$

f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

 $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$

$$\chi[\omega, m, 2] = \omega$$
 for $m \ge 2$

First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$

• $\chi[\omega_1, 3, 2] = ?$

Theorem (Erdős, Hajnal)

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.

f is a conflict free coloring iff $\forall A \in \mathcal{A} \ \exists \xi \in \rho \ \exists ! a \in A \ f(a) = \xi$.

 $\chi_{\mathsf{CF}}(\mathcal{A}) = \min\{\rho : \exists f : X \to \rho \text{ conflict free coloring}\}\$

$$\chi[\omega, m, 2] = \omega$$
 for $m \ge 2$

First interesting case: $\mathcal{A} \subset \left[\omega_1\right]^m$ is k+1-almost disjoint, $m \geq k+2$

• $\chi[\omega_1, 3, 2] = ?$

Theorem (Erdős, Hajnal)

 $\chi[\omega_1, m, k+1] = \omega$ for $m \ge k+2$.

Theorem (H, J, -, Sz)

 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \geq 2k+1.$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

•
$$A \subset [\omega_1]^m$$
, $|A \cap A'| \leq k$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
 - Assume $D = A \cap M_{\alpha}$ has k+1 elements.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
 - Assume $D = A \cap M_{\alpha}$ has k+1 elements.
 - Then $D \in M_{\alpha}$ and A is the unique element of A which contains D.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $A \subset [\omega_1]^m$, $|A \cap A'| \leq k$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
 - Assume $D = A \cap M_{\alpha}$ has k+1 elements.
 - Then $D \in M_{\alpha}$ and A is the unique element of A which contains D.
 - $D, A \in M_{\alpha} \Longrightarrow A \in M_{\alpha}$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$
- Let $\langle M_\alpha: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in \mathcal{M}_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
- χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $\mathcal{A} \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
- χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$.
- χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
- χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$.
- χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$
- $\exists a \in A \cap (M_{\alpha+1} \setminus M_{\alpha}) \ c_{\alpha}(a) \notin c[A \cap M_{\alpha}]$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

- $\mathcal{A} \subset [\omega_1]^m$
- Let $\langle M_{\alpha}: 1 \leq \alpha < \omega_1 \rangle$ be a continuous sequence of countable elementary submodels of $\mathcal{H}(\theta)$ such that $\mathcal{A} \in M_1$
- For each $\alpha < \omega_1$ let c_{α} : $(M_{\alpha+1} \setminus M_{\alpha}) \cap \omega_1 \to \omega$ be 1-1.
- Let $c = \bigcup \{c_{\alpha} : \alpha < \omega_1\}$
- $\omega_1 \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$ and $A \subset \bigcup \{M_\alpha : \alpha < \omega_1\}$
- For $A \in \mathcal{A}$ pick $\alpha < \omega_1$ s.t. $A \in (M_{\alpha+1} \setminus M_{\alpha})$
- Key observation: $|A \cap M_{\alpha}| \leq k$.
- χ : $A \subset M_{\alpha+1}$ so $|A \cap (M_{\alpha+1} \setminus M_{\alpha})| \ge 2$ so $|c''_{\alpha}A| \ge 2$.
- χ_{CF} : $|A \cap M_{\alpha}| \leq k < k+1 \leq |A \cap (M_{\alpha+1} \setminus M_{\alpha})|$
- $\exists a \in A \cap (M_{\alpha+1} \setminus M_{\alpha}) \ c_{\alpha}(a) \notin c[A \cap M_{\alpha}]$
- $\bullet \exists ! a' \in A \ c(a') = c(a).$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

•
$$X = \omega_1 \times k$$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $X = \omega_1 \times k$
- $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $X = \omega_1 \times k$
- $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$
- \circ $c: X \to \omega$

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\text{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $X = \omega_1 \times k$
- $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$
- \circ $c: X \to \omega$
- $\exists \alpha \neq \beta \ \forall i < k \ f(\alpha, i) = f(\beta, i)$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $X = \omega_1 \times k$
- $\mathcal{A} = \{\{\alpha, \beta\} \times k : \alpha < \beta < \omega_1\} \subset [X]^{2k}$
- \circ $c: X \to \omega$
- $\exists \alpha \neq \beta \ \forall i < k \ f(\alpha, i) = f(\beta, i)$.
- $\{\alpha, \beta\} \times k$ witnesses that f is not a CF-coloring.

 $\chi[\omega_1, m, k+1] = \omega$ for $m \ge k+2$. $\chi_{CF}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

$$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$

•
$$\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$$
, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.

$$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?

$$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$

$$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$

$$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$

$$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.
 $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

If CH holds then $\chi_{CF}[\omega_1, 5, 4] = \omega_1$.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.
 $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

If CH holds then $\chi_{\mathsf{CF}}[\omega_1, 5, 4] = \omega_1$.

Theorem

It is consistent that $\chi_{CF}[\omega_1, 5, 4] = \omega_1$ and Martin's Axiom holds.

$$\chi[\omega_1, m, k+1] = \omega$$
 for $m \ge k+2$.
 $\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega$ for $m \ge 2k+1$.
 $\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m+1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

If CH holds then $\chi_{\sf CF}[\omega_1,5,4]=\omega_1$.

Theorem

It is consistent that $\chi_{\mathsf{CF}}[\omega_1, 5, 4] = \omega_1$ and Martin's Axiom holds.

Theorem

$$\chi_{\mathsf{CF}}[\omega_1, \ell, k+1] = \omega_1 \text{ for } k+1 \leq \ell \leq 2k.$$

$$\chi[\omega_1, m, k+1] = \omega \text{ for } m \ge k+2.$$

$$\chi_{\mathsf{CF}}[\omega_1, m, k+1] = \omega \text{ for } m \ge 2k+1.$$

$$\chi_{\mathsf{CF}}[\omega_1, 2k, k+1] = \omega_1$$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

$$\chi_{\mathsf{CF}}[\omega_1, \ell, k+1] = \omega_1 \text{ for } k+1 \le \ell \le 2k.$$

$$\begin{split} \chi[\omega_1, m, k+1] &= \omega \text{ for } m \geq k+2. \\ \chi_{\mathsf{CF}}[\omega_1, m, k+1] &= \omega \text{ for } m \geq 2k+1. \\ \chi_{\mathsf{CF}}[\omega_1, 2k, k+1] &= \omega_1 \end{split}$$

- $\chi_{\mathsf{CF}}[\omega_1, 7, 4] = \omega$, but $\chi_{\mathsf{CF}}[\omega_1, 6, 4] = \omega_1$.
- What about $\chi_{CF}[\omega_1, 5, 4]$?
- Clearly $\chi[\kappa, m, k] \ge \chi[\kappa, m + 1, k]$
- Question: $\chi_{CF}[\kappa, m, k] \ge \chi_{CF}[\kappa, m+1, k]$?

$$\chi_{\mathsf{CF}}[\omega_1,\ell,k+1] = \omega_1 \text{ for } k+1 \leq \ell \leq 2k.$$

Theorem

If $\kappa \to [\kappa]_{\kappa}^2$ then $\chi_{\mathsf{CF}}[\kappa, \ell, k+1] = \kappa$ for $k+1 \le \ell \le 2k$.

A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(\mathcal{A}) \leq \kappa$.

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is a μ -almost disjont family. Is \mathcal{A} essentially disjoint?

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint?

• If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth)

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is a μ -almost disjont family. Is \mathcal{A} essentially disjoint?

- If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth)
- If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.)

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint?

- If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth)
- If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.)
- If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-).

A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is essentially disjoint iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint?

- If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth)
- If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.)
- If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-).

Elementary submodels

A family $\mathcal{A} \subset \left[\lambda\right]^{\kappa}$ is μ -almost disjoint iff $|A \cap A'| < \mu$ for for each $A \neq A' \in \mathcal{A}$

A family $\mathcal{A} \subset [\lambda]^{\kappa}$ is **essentially disjoint** iff for each $A \in \mathcal{A}$ there is $F(A) \in [A]^{<\kappa}$ such that $\{A \setminus F(A) : A \in \mathcal{A}\}$ is disjoint

• If a family $A \subset [\lambda]^{\kappa}$ is essentially disjoint then $\chi_{\mathsf{CF}}(A) \leq \kappa$.

Question: Assume that $\mathcal{A} \subset [\lambda]^{\kappa}$ is a μ -almost disjoint family. Is \mathcal{A} essentially disjoint?

- If $\kappa = \omega$ and $\mu < \omega$, then YES (P. Komjáth)
- If $\kappa=\omega_1$ and $\mu=\omega$, then MAYBE (H, J, -, Sz.)
- If $\kappa = \beth_{\omega}$ and $\mu < \beth_{\omega}$ then YES (-).

Elementary submodels+ Shelah's revised GCH

Shelah's revised GCH

• $\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u \subset \cup \mathcal{P}$.

Shelah's revised GCH

- $\rho^{[\nu]} = \rho$ iff there is a family $\mathcal{B} \subset [\rho]^{\leq \nu}$ of size ρ such that for all $u \in [\rho]^{\nu}$ there is $\mathcal{P} \in [\mathcal{B}]^{<\nu}$ such that $u \subset \cup \mathcal{P}$.
- Shelah's Revised GCH theorem: If $\rho \geq \beth_{\omega}$, then $\rho^{[\nu]} = \rho$ for each large enough regular $\nu < \beth_{\omega}$.