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A topological space X is x-resolvable iff X contains « disjoint dense sub- J
sets.

dense open UnD#0

If X is k-resolvable then x <A(X) = min{|U|: U € 7 \ {0}}.

A(X) dispersion character

Definition (Ceder, Pearson, 1967)

X is maximally resolvable iff itis A(X)-resolvable.
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The beginnings

X is k-resolvable iff X contains x disjoint dense subsets.
X is maximally resolvable iff it is A(X)-resolvable .

Theorem

A topological space X is maximally resolvable provided
(1) metric,

(2) ordered,

(3) compact,

(4) pseudo-radial (Pytkeev).

| 5\
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@ Plan:

(1) Dy isirresolvable subspace in X for each n < w
(2) If a space is countable union of irresolvable spaces then it i S
NOT wq-resolvable.
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First results

Does w-resolvable imply maximally resolvable ?

 —

Counterexamples

El'kin, Malykhin, Eckertson, Hu: either not T, or not in ZFC.
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@ there is a disjoint family WV of open sets and for each W € W
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Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.

Need to find a family C = {(C2,C{) : £ € 27} such that

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

o BV — Bl/-‘rl:

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,Bé) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .
(1) thereis € € Fin(2~,2) and D € D with B,[e] "D C F:

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,Bé) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .
(1) thereis € € Fin(2*,2) and D € D with B,[¢] "D C F: Seal B, [¢]!

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,Bé) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .

(1) thereis € € Fin(2*,2) and D € D with B,[¢] "D C F: Seal B, [¢]!
2 If (1) fails,

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,Bé) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .

(1) thereis € € Fin(2*,2) and D € D with B,[¢] "D C F: Seal B, [¢]!
2 If (1) fails, i.e F is potentially “nowhere dense” in  73,):

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 16/ 31



Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,Bé) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .

(1) thereis € € Fin(2*,2) and D € D with B,[¢] "D C F: Seal B, [¢]!
2 If (1) fails, i.e F is potentially “nowhere dense” in  73,):
modify B, such that F is closed discrete in 75, ,,.
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Existence of D-forced spaces

“Proof” of the Main Theorem

Main Theorem : B = {(B?,B%) : & € 2%} is an family of 2-partitions, D is a
non-empty family of x-dense sets in 75.
Need to find a family C = {(C2,C{) : £ € 27} such that

(1) VD € Dis k-dense in 7¢,
(2) ¢ is D-forced

(3) 7¢ is NODEC, (i.e. every t¢c-nowhere dense is closed discrete)

@ B, = B,y1: PickF C .

(1) thereis € € Fin(2*,2) and D € D with B,[¢] "D C F: Seal B, [¢]!
2 If (1) fails, i.e F is potentially “nowhere dense” in  73,):
modify B, such that F is closed discrete in 75, ,,.

Modification instead of creation: no set-theoretical probl ems!
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Applications

Theorem (Alas, Sanchis, Tkacenko, Tkachuk, Wilson)
(1) D(2)° does not have a dense countable maximal subspace,
(2) D(2)° has a dense countable irresolvable subspace,

(3) itis consistent that D(2)¢ has a dense countable submaximal
subspace.
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Applications

Theorem (Alas, Sanchis, Tkacenko, Tkachuk, Wilson)
(1) D(2)° does not have a dense countable maximal subspace,
(2) D(2)° has a dense countable irresolvable subspace,

(3) itis consistent that D(2)¢ has a dense countable submaximal
subspace.

Question : Is it provable in ZFC that the Cantor cube D(2)¢ has a
dense countable submaximal subspace?
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Is it provable in ZFC that the Cantor cube D(2)¢ has a dense countable sub-
maximal subspace? J
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maximal subspace?

|

Corollary 1.
For each x > w
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maximal subspace?
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Corollary 1.

For each x > w there is a submaximal space X of cardinality « which
is dense subspace of D(2)%".
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For each x > w there is a submaximal space X of cardinality « which
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Corollary 1.

For each x > w there is a submaximal space X of cardinality « which
is dense subspace of D(2)%".

B={(B2,B}):¢e27}
D = {k}

(2) 7¢ is D-forced ,
(3) 7c is NODEC,

Let A C X dense.

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 18/31



Applications

Is it provable in ZFC that the Cantor cube D(2)¢ has a dense countable sub-
maximal subspace?

| N\

Corollary 1.

For each x > w there is a submaximal space X of cardinality « which
is dense subspace of D(2)%".

B={(B2,B}):¢e27}
D = {k}

(2) 7¢ is D-forced ,
(3) 7c is NODEC,

Let A C X dense.

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 18/31



Applications

Is it provable in ZFC that the Cantor cube D(2)¢ has a dense countable sub-
maximal subspace?

| N\

Corollary 1.

For each x > w there is a submaximal space X of cardinality « which
is dense subspace of D(2)%".

B={(B2,B}):¢e27}
D = {k}

(2) 7¢ is D-forced ,
(3) 7c is NODEC,

Let A C X dense.

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 18/31



Applications

Is it provable in ZFC that the Cantor cube D(2)¢ has a dense countable sub-
maximal subspace?

| N\

Corollary 1.

For each x > w there is a submaximal space X of cardinality « which
is dense subspace of D(2)%".

B={(B2,B}):¢e27}
D = {k}

(2) 7¢ is D-forced ,
(3) 7c is NODEC,

Let A C X dense.

So Ais open.
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For each w < X\ < « there is a O=dimensional T, space X = (k, 1),
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Corollary 2.

For each w < A < « there is a O=dimensional T, space X = (k, ), S.t.
A(X) = &, X is A-resolvable ,

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 19/31



Applications

Corollary 2.

For each w < A < « there is a O=dimensional T, space X = (k, ), S.t.
A(X) = &, X is A\-resolvable , but not A\*-resolvable ,
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For each w < A < « there is a O=dimensional T, space X = (k, ), S.t.
A(X) = k, X is A-resolvable , but not A\*-resolvable , moreover if

{E¢ : £ < XT} are dense sets then there are ¢ # n such that E¢ N E,, is
dense somewhere.
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dense somewhere.
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For each w < A < « there is a O=dimensional T, space X = (k, ), S.t.
A(X) = k, X is A-resolvable , but not A\*-resolvable , moreover if

{E¢ : £ < XT} are dense sets then there are ¢ # n such that E¢ N E,, is
dense somewhere.

Bz{(BS,B%) e 2ry
D={D,:v <A}

Assume {E¢:¢ < At} are dense sets.
Dk, E¢is densein X Clee] N Dy, C E¢.
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If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (
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Applications

Theorem (lllanes)

If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.
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Theorem (lllanes)

If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3
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Theorem (lllanes)

If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3
Forw < u < A < k there is a 0-dimensional T, space X = (k,T)
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If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3

Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,
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If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3

Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,
@ X =U*{D, : a < u}, D, hereditarily irresolvable dense,
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Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,
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@ X =U*{Eg : # < A}, Es hereditarily irresolvable dense.
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subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3

Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,

@ X =U*{D, : a < u}, D, hereditarily irresolvable dense,

@ X =U*{Eg : # < A}, Es hereditarily irresolvable dense.

Theorem

fw<p<o<,

V.
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subspaces (=every crowded subspace is irresolvable ) then X is not
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Corollary 3

Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,

@ X =U*{D, : a < u}, D, hereditarily irresolvable dense,
@ X =U*{Eg : # < A}, Es hereditarily irresolvable dense.

Theorem
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partitions into hereditarily irresolvable sets, then

V.
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Applications

Theorem (lllanes)

If X = U{X; : i <n}, n<w, and X; are hereditarily irresolvable
subspaces (=every crowded subspace is irresolvable ) then X is not
n + 1-resolvable.

Corollary 3

Forw < u < A < k there is a 0-dimensional T, space X = (k, 7) such
that A(X) = &,

@ X =U*{D, : a < u}, D, hereditarily irresolvable dense,

@ X =U*{Eg : # < A}, Es hereditarily irresolvable dense.

Theorem

Ifw<p<o<AcX)<oc,and{D,:a<p}and{Esz: [ < \}are
partitions into hereditarily irresolvable sets, then there is a partition
{F, : v < o} into hereditarily irresolvable sets.

4
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Theorem (lllanes)

If X is not n-resolvable for some n < w
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Theorem (lllanes)

If X is not n-resolvable for some n < w then there is a hereditarily
irresolvable open subspace U in X.
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Theorem (lllanes)

If X is not n-resolvable for some n < w then there is a hereditarily
irresolvable open subspace U in X.

Corollary 4.

Foreachw < A =cf(\) <k
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Theorem (lllanes)

If X is not n-resolvable for some n < w then there is a hereditarily
irresolvable open subspace U in X.

Corollary 4.

For each w < A = cf(\) < & there is a 0-dimensional T, space
X = (k, 1), S.t.
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irresolvable open subspace U in X.
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For each w < A = cf(\) < & there is a 0-dimensional T, space
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Applications

Theorem (lllanes)

If X is not n-resolvable for some n < w then there is a hereditarily
irresolvable open subspace U in X.

Corollary 4.

For each w < A = cf(\) < & there is a 0-dimensional T, space
X = (k,7), s.t. X is c.c.c., A(X) = &, X is not A-resolvable , but
hereditarily p-resolvable for each pu < .
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Positive results
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Theorem (lllanes) J

If X is k-resolvable for each k < w
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Theorem (lllanes)
If X is k-resolvable for each k < w then X is w-resolvable .
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If cf(\) = w and X is p-resolvable for each p < A
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Compactness

Positive results

Theorem (lllanes)
If X is k-resolvable for each k < w then X is w-resolvable .

Theorem (Bashkara-Rao)

If cf(\) = w and X is p-resolvable for each p < A then X is
A-resolvable .

Problem
What happens if w < cf(A) < A\?

Soukup, L (Rényi Institute) Resolvable spaces Erice 2008 22/31



Compactness

A weak positive result
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Compactness
A weak positive result

If E(X) <cf(A\) < A < A(X), and
(*)
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Extraresolvability

Definition (Malykhin, 1998)

X is extraresolvable iff there are dense sets {D, : « < A(X)*} such
that D, N Dg is nowhere dense for a # 3.

v

Problem (Comfort — Hu)

. . ?
X is countable and maximally resolvable — extraresolvable?

For each k > w there is 0-dim. T, ccc X = (k,7) s.t. A(X) =k, X is
hereditarily maximally resolvable , but not extraresolvable .
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Application

Definition

A space X is almost x-resolvable there are dense sets {D,, : « < k}
such that D, N Dg is nowhere dense for o # (.

extraresolvable  almost A(X)"-resolvable
almost k-resolvable K < 28(X)

almost w-resolvable w-resolvable

Problem

Let X be an extraresolvable space with A(X) > w;. Is X then
w1 -resolvable ?
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Some notions and notations

Theorem (Pavlov, 2000)
If A(X) > s(X)™T then X is maximally resolvable .

If x = cf(k), A(X) = k > §(X) then X is maximally resolvable .

Problem
What if A(X) = §(X) is singular?
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Monotonically normal spaces

M(X) ={(x,U) e X x 7(X):x € U}.

marked open sets.
monotonically normal
monotone normality operator H: M(X) — 7(X)

(1) x € H(x,U) C U for each (x,U) € M(X),

(2) if (x,U),(y,V) e M(X),x ¢ Vandy ¢ U then
H(x,U) N H(y,V) = 0.
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If X is crowded, monotonically normal then
() X is w-resolvable ,
(b) X is almost min(2“,w,)-resolvable .

A ? q

X crowded, monotonically normal = X maximally resolvable ?
. ?

X crowded, monotonically normal = X almost 2“-resolvable ?
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If x is @ measurable cardinal , then there is a monotonically normal
space X with |[X| = A(X) = x which is not w;-resolvable .

A crowded monotonically normal space X is maximally resolvable
provided |X| < N,,.

Theorem

It is consistent (modulo a supercompact cardinals ) that there is a
monotonically normal space X with |X| = A(X) = X, which is not
wp-resolvable .
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