Resolvable spaces

Lajos Soukup

joint work with

lstván Juhász and Zoltán Szentmiklóssy

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences; Eötvos University, Budapest

Advances in Set-Theoretic Topology, Erice 2008

Resolvable spaces

Lajos Soukup

joint work with

István Juhász and Zoltán Szentmiklóssy

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences; Eötvos University, Budapest

Advances in Set-Theoretic Topology, Erice 2008

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

・ 回 ト ・ 三 ト ・

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

・ 回 ト ・ 三 ト ・

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 17 ▶

- **- -** - ►

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 47 ▶

→ ∃ →

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 17 ▶

→ ∃ >

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 17 ▶

- E 🕨

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

→ ∃ →

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 17 ▶

- **- -** - ►

Definition

Let $\kappa > 1$ be a cardinal. A topological space X is κ -resolvable iff X contains κ disjoint dense subsets.

- resolvable iff it is 2-resolvable
- irresolvable iff it is not resolvable

< 17 ▶

- **- -** - ►

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of *X*.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of *X*.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of *X*.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of X.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of X.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

(日)

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the dispersion character of X.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

(日)

If *D* is **dense** and *U* is a non-empty **open** set then $U \cap D \neq \emptyset$.

Fact

If X is κ -resolvable then $\kappa \leq \Delta(X) = \min\{|U| : U \in \tau_X \setminus \{\emptyset\}\}.$

 $\Delta(X)$ is the **dispersion character** of X.

Definition (Ceder, Pearson, 1967)

X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

(日)

X is κ -resolvable iff *X* contains κ disjoint dense subsets. *X* is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

- A topological space X is maximally resolvable provided
- (1) metric,
- (2) ordered,
- (3) compact,
- (4) pseudo-radial (Pytkeev).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

X is κ -resolvable iff *X* contains κ disjoint dense subsets. *X* is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

A topological space X is maximally resolvable provided

- (1) metric,
- (2) ordered,
- (3) compact,
- (4) pseudo-radial (Pytkeev).

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

X is κ -resolvable iff *X* contains κ disjoint dense subsets. *X* is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

A topological space X is maximally resolvable provided

- (1) metric,
- (2) ordered,
- (3) compact,

(4) pseudo-radial (Pytkeev).

X is κ -resolvable iff X contains κ disjoint dense subsets. X is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

A topological space X is maximally resolvable provided

- (1) metric,
- (2) ordered,
- (3) compact,

(4) pseudo-radial (Pytkeev).

X is κ -resolvable iff *X* contains κ disjoint dense subsets. *X* is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

A topological space X is maximally resolvable provided

- (1) metric,
- (2) ordered,
- (3) compact,

(4) pseudo-radial (Pytkeev).

< A > < > > <

X is κ -resolvable iff *X* contains κ disjoint dense subsets. *X* is maximally resolvable iff it is $\Delta(X)$ -resolvable.

Theorem

A topological space X is maximally resolvable provided

- (1) metric,
- (2) ordered,
- (3) compact,
- (4) pseudo-radial (Pytkeev).

< A > < > >

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

< 同 > < 回 > .

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is NODEC if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.

• A maximal space is submaximal.

• A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.
Definition

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

Definition

- A topological space X = (X, τ) is maximal iff it is crowded and no strictly stronger topology on X is crowded.
- A crowded space is **submaximal** iff the dense subsets are **open**.
- A space X is **NODEC** if all nowhere dense subsets of X are closed discrete.
- A maximal space is submaximal.
- A space is submaximal iff it is strongly irresolvable (every open subspace is irresolvable) and NODEC.

Theorem (Hewitt, 1943)

There are maximal, and so strongly irresolvable, T₂ spaces.

Problem (Ceder, Pearson 1967)

Does ω -resolvable imply maximally resolvable?

Theorem (Hewitt, 1943)

There are maximal, and so strongly irresolvable, T₂ spaces.

Problem (Ceder, Pearson 1967)

Does ω-resolvable imply maximally resolvable?

イロト イ理ト イヨト イヨ

Theorem (Hewitt, 1943)

There are maximal, and so strongly irresolvable, T₂ spaces.

Problem (Ceder, Pearson 1967)

Does ω -resolvable imply maximally resolvable?

イロト イポト イヨト イヨ

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω -resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω -resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω -resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

• • • • • • • • • • • •

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω -resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

• • • • • • • • • • • •

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded

(b) every D_n is dense in τ ,

(c) no strictly stronger topology on κ satisfies (a) and (b).

- X is ω -resolvable.
- $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
- Is $X \omega_1$ -irresolvable?
- Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
- (1) is clear. (2) is false

< □ > < 同 > < 回 > < 回 > < 回

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω -resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

• • • • • • • • • • • •

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

< □ > < 同 > < 回 > < 回 > < 回

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

< □ > < 同 > < 回 > < 回 > < 回

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is X ω₁-irresolvable?
 - Plan:
 - 1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is $X \omega_1$ -irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is X ω₁-irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

Does ω -resolvable imply maximally resolvable?

Natural idea: $X_0 = \langle \kappa, \tau_0 \rangle$, $\Delta(X_0) > \omega$, $\{D_n : n < \omega\}$ are pairwise disjoint dense sets.

- Let $\tau \supset \tau_0$ be a topology on κ s.t.
- (a) $X = \langle \kappa, \tau \rangle$ is crowded
- (b) every D_n is dense in τ ,
- (c) no strictly stronger topology on κ satisfies (a) and (b).
 - X is ω-resolvable.
 - $\Delta(X) > \omega$? Yes, if every $A \in [\kappa]^{\omega}$ is discrete in τ_0
 - Is X ω₁-irresolvable?
 - Plan:
 - (1) D_n is irresolvable subspace in X for each $n < \omega$
 - (2) If a space is countable union of irresolvable spaces then it is NOT ω_1 -resolvable.
 - (1) is clear. (2) is false

< □ > < 同 > < 回 > < 回 > < 回

Does ω -resolvable imply maximally resolvable?

Counterexamples

El'kin, Malykhin, Eckertson, Hu: either not T₂ or not in ZFC.

Soukup, L (Rényi Institute)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Does ω -resolvable imply maximally resolvable?

Counterexamples

El'kin, Malykhin, Eckertson, Hu: either not T₂ or not in ZFC.

Does ω -resolvable imply maximally resolvable?

Counterexamples

El'kin, Malykhin, Eckertson, Hu: either not T_2 or not in ZFC.

Definition

$\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of dense sets, $A \subset X$ and $U \in \tau$.

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.

• □ ▶ • # # ▶ • = ▶ •

Definition

$\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

 $\mathcal{D} \Vdash_{\tau} \mathbf{A}$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.

Image: Image:

Definition

$\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

$\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.

Definition

 $\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

$\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

Definition

 $\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

$\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

< ∃ ►

Definition

 $\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

Definition

 $\langle X, \tau \rangle$ top. spaces, \mathcal{D} family of **dense** sets, $A \subset X$ and $U \in \tau$.

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U

iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

$\mathcal{D} \Vdash_{\tau} A$ is dense in U iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

- $\mathcal{D} \Vdash_{ au} A$ is dense in U
- there is a disjoint family W of open sets and for each W ∈ W there is D_W ∈ D such that
 (1) ∪W is dense in U
 (2) W(a D = a f (a a a b W a D))
 - (2) $W \cap D_W \subset A$ for each $W \in W$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

• $\mathcal{D} \Vdash_{\tau} A$ is dense in U

there is a disjoint family W of open sets and for each W ∈ W there is D_W ∈ D such that
(1) ∪W is dense in U
(2) W ∩ D_W ⊂ A for each W ∈ W

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- there is a disjoint family 𝔅 of open sets and for each 𝑘 ∈ 𝔅 there is 𝑘𝑘 ∈ 𝔅 such that
 - (1) $\cup W$ is dense in U
 - (2) $W \cap D_W \subset A$ for each $W \in \mathcal{W}$

 $\mathcal{D} \Vdash_{\tau} A$ is dense in U iff $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- there is a disjoint family 𝔅 of open sets and for each 𝑘 ∈ 𝔅 there is 𝑘𝑘 ∈ 𝔅 such that
 - (1) $\cup W$ is dense in U
 - (2) $W \cap D_W \subset A$ for each $W \in \mathcal{W}$

Fact

If $\mathcal{D} \Vdash_{\tau} A$ is dense in U then A is dense in U.

Soukup, L (Rényi Institute)

Resolvable spaces

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.
- there is a disjoint family W of open sets and for each $W \in W$ there is $D_W \in D$ such that

(1) $\cup W$ is dense in *U* (2) $\cup \{W \cap D_W : W \in W\} \subset A$.

Definition

 τ is \mathcal{D} -forced iff for each subset $A \subset X$ and for each non-empty open $U \subset X$

if A is dense in U then $\mathcal{D} \Vdash_{\tau} A$ is dense in U.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))
- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.
- there is a disjoint family W of open sets and for each $W \in W$ there is $D_W \in D$ such that

(1) $\cup W$ is dense in U(2) $\cup \{W \cap D_W : W \in W\} \subset A$.

Definition

 τ is \mathcal{D} -forced iff for each subset $A \subset X$ and for each non-empty open $U \subset X$

if A is dense in U then $\mathcal{D} \Vdash_{\tau} A$ is dense in U.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- $\forall V \subset U$ open $\exists W \subset V$ open and $D \in \mathcal{D}$ such that $D \cap W \subset A$.
- there is a disjoint family W of open sets and for each $W \in W$ there is $D_W \in D$ such that

(1) $\cup W$ is dense in U(2) $\cup \{W \cap D_W : W \in W\} \subset A$.

Definition

 τ is \mathcal{D} -forced iff for each subset $A \subset X$ and for each non-empty open $U \subset X$

if A is dense in U then $\mathcal{D} \Vdash_{\tau} A$ is dense in U.

• • • • • • • • • • • •

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.
- there is a disjoint family W of open sets and for each $W \in W$ there is $D_W \in D$ such that

(1) $\cup W$ is dense in U(2) $\cup \{W \cap D_W : W \in W\} \subset A$.

Definition

 τ is \mathcal{D} -forced iff for each subset $A \subset X$ and for each non-empty open $U \subset X$

if A is dense in U then $\mathcal{D} \Vdash_{\tau} A$ is dense in U.

• • • • • • • • • • • •

- $\mathcal{D} \Vdash_{\tau} A$ is dense in U
- $\forall V \subset U$ open $\exists W \subset V$ open and $D \in D$ such that $D \cap W \subset A$.
- there is a disjoint family W of open sets and for each $W \in W$ there is $D_W \in D$ such that

(1) $\cup W$ is dense in U(2) $\cup \{ W \cap D_W : W \in W \} \subset A$.

Definition

 τ is \mathcal{D} -forced iff for each subset $A \subset X$ and for each non-empty open $U \subset X$

if A is dense in U then $\mathcal{D} \Vdash_{\tau} A$ is dense in U.

Image: A matrix and a matrix

An easy application

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U \text{ is irresolvable for each } U \in \tau)$.

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

An easy application

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Lemma

If \mathcal{D} is disjoint family of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

An easy application

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Lemma

If \mathcal{D} is disjoint family of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$)

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

イロト イポト イヨト イヨト

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

イロト イポト イヨト イヨト

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

```
Proof: Assume S, T \subset D \cap U are dense. We show S \cap T \neq \emptyset.

S is dense in U and \tau is \mathcal{D}-forced \Longrightarrow \exists V \subset U open \exists D_S \in \mathcal{D} s. t.

V \cap D_S \subset S \subset D.

D_S = D.

T is dense in V and \tau is \mathcal{D}-forced \Longrightarrow \exists W \subset V open \exists D_T \in \mathcal{D} s.t.

W \cap D_T \subset T \subset D.

D_T = D.

D \cap W \subset S \cap T.
```

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is \mathcal{D} -forced $\Longrightarrow \exists V \subset U$ open $\exists D_S \in \mathcal{D}$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is \mathcal{D} -forced $\Longrightarrow \exists W \subset V$ open $\exists D_T \in \mathcal{D}$ s.t. $W \cap D_T \subset T \subset D$.

 $\overset{'}{D}\cap W\subset S\cap T.$

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is *D*-forced $\implies \exists V \subset U$ open $\exists D_S \in \mathcal{D}$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is *D*-forced $\implies \exists W \subset V$ open $\exists D_T \in \mathcal{D}$ s.t. $W \cap D_T \subset T \subset D$. $D_T = D$. $D \cap W \subset S \cap T$.

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is *D*-forced $\implies \exists V \subset U$ open $\exists D_S \in \mathcal{D}$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is *D*-forced $\implies \exists W \subset V$ open $\exists D_T \in \mathcal{D}$ s.t. $W \cap D_T \subset T \subset D$. $D_T = D$. $D \cap W \subset S \cap T$.

(日)

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is \mathcal{D} -forced $\Longrightarrow \exists V \subset U$ open $\exists D_S \in \mathcal{D}$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is \mathcal{D} -forced $\Longrightarrow \exists W \subset V$ open $\exists D_T \in \mathcal{D}$ s.t. $W \cap D_T \subset T \subset D$. $D_T = D$. $D \cap W \subset S \cap T$.

(日)

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is *D*-forced $\implies \exists V \subset U$ open $\exists D_S \in D$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is *D*-forced $\implies \exists W \subset V$ open $\exists D_T \in D$ s.t. $W \cap D_T \subset T \subset D$. $D_T = D$. $D \cap W \subset S \cap T$.

Lemma

If \mathcal{D} is **disjoint family** of dense sets, and τ is \mathcal{D} -forced then every $D \in \mathcal{D}$ is strongly irresolvable, $(D \cap U$ is irresolvable for each $U \in \tau$).

Proof: Assume $S, T \subset D \cap U$ are dense. We show $S \cap T \neq \emptyset$. *S* is dense in *U* and τ is *D*-forced $\implies \exists V \subset U$ open $\exists D_S \in D$ s. t. $V \cap D_S \subset S \subset D$. $D_S = D$. *T* is dense in *V* and τ is *D*-forced $\implies \exists W \subset V$ open $\exists D_T \in D$ s.t. $W \cap D_T \subset T \subset D$. $D_T = D$. $D \cap W \subset S \cap T$.

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

Are there *D*-forced space?

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

イロト イヨト イヨト イヨト

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

イロト イヨト イヨト イヨト

Are there *D*-forced space?

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

イロト イヨト イヨト イヨト

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in U

every open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is nowhere dense \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is nowhere dense \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

・ロト ・ 四ト ・ ヨト ・ ヨト

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

・ロト ・ 四ト ・ ヨト ・ ヨト

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e. $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

・ロト ・ 四ト ・ ヨト ・ ヨト

Fact

If $\langle X, \tau \rangle$ is strongly irresolvable then τ is $\{X\}$ -forced.

Proof:

 τ is \mathcal{D} -forced iff *A* is dense in *U* implies $\mathcal{D} \Vdash_{\tau} A$ is dense in *U*, (i.e. $\forall V \subset U$ open $\exists W \subset V$ open $\exists D \in \mathcal{D} D \cap W \subset A$).

Assume $A \subset X$, $U \in \tau$, A is dense in Uevery open $V \subset U$ is irresolvable so $U \setminus A$ is **nowhere dense** \forall open $V \subset U$ (\exists open $W \subset V$) s.t. $W \cap (U \setminus A) = \emptyset$, i.e. $W \subset A$ $\{X\} \Vdash_{\tau} A$ is dense in U

Existence of \mathcal{D} -forced spaces

 \mathcal{D} -forced spaces: **dense subspaces of the Cantor cube** $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = {f_{\alpha} : \alpha < \kappa} \subset D(2)^{\lambda}$ be dense.

For $\xi < \lambda$ and i < 2 let $m{B}^i_{\xi} = \{ lpha < \kappa : f_{lpha}(\xi) = i \}.$

 $\langle B^0_{\mathcal{E}}, B^1_{\mathcal{E}} \rangle$ is a partition of κ .

 $\mathcal{B}=\{\langle \pmb{B}^0_{\!\mathcal{E}},\pmb{B}^1_{\!\mathcal{E}}
angle: \xi<\lambda\}$ is a family of partition which is

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$

• separating ($\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\varepsilon} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, $(\varepsilon, \varepsilon)$.

\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense.

For $\xi < \lambda$ and i < 2 let $m{B}^i_{\xi} = \{lpha < \kappa : f_lpha(\xi) = i\}.$

 $\langle B^0_{\mathcal{E}}, B^1_{\mathcal{E}} \rangle$ is a partition of κ .

 $\mathcal{B}=\{\langle B^0_{\xi},B^1_{\xi}
angle:\xi<\lambda\}$ is a family of partition which is

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$)

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, $(\varepsilon, \varepsilon)$.

Existence of \mathcal{D} -forced spaces

\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = {f_{\alpha} : \alpha < \kappa} \subset D(2)^{\lambda}$ be dense.

- For $\xi < \lambda$ and i < 2 let $m{B}^i_{m{\xi}} = \{lpha < \kappa : f_lpha(m{\xi}) = i\}$
- $\langle B^0_{\varepsilon}, B^1_{\varepsilon} \rangle$ is a partition of κ .
- $\mathcal{B}=\{\langle \pmb{B}^0_{\!\mathcal{E}},\pmb{B}^1_{\!\mathcal{E}}
 angle: \xi<\lambda\}$ is a family of partition which is
 - independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
 - separating ($\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\varepsilon} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, $\{\sigma, \tau_{\mathcal{B}}, \tau_{\mathcal{B}}\}$.

Existence of \mathcal{D} -forced spaces

\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

• dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ

• independent families of 2-partitions of κ indexed by λ . Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense. • independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$) • separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\varepsilon} | = 1)$

X' is dense, and X' and X_{β} are homeomorphic, A_{β} , A

Soukup, L (Rényi Institute)
\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which is

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$)

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, $(\varepsilon, \varepsilon)$.

Soukup, L (Rényi Institute)

\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_lpha: lpha < \kappa\} \subset D(2)^\lambda$ be dense.

For $\xi < \lambda$ and i < 2 let $m{B}^i_{m{\xi}} = \{lpha < \kappa : f_lpha(\xi) = i\}.$

 $\langle B_{\varepsilon}^{0}, B_{\varepsilon}^{1} \rangle$ is a partition of κ .

 $\mathcal{B}=\{\langle \pmb{B}^0_{\!\mathcal{E}},\pmb{B}^1_{\!\mathcal{E}}
angle: \xi<\lambda\}$ is a family of partition which is

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$)

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, where $f_{\alpha}(\xi) = f_{\alpha}(\xi)$ is dense, and *X'* and *X* are homeomorphic.

\mathcal{D} -forced spaces: dense subspaces of the Cantor cube $D(2)^{\lambda}$ Natural one-to-one correspondence between

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense.

For $\xi < \lambda$ and i < 2 let $\mathbf{B}_{\boldsymbol{\xi}}^{i} = \{\alpha < \kappa : f_{\alpha}(\boldsymbol{\xi}) = i\}$.

 $\langle B^0_{\mathcal{E}}, B^1_{\mathcal{E}}
angle$ is a partition of κ .

 $\mathcal{B}=\{\langle B^0_{\xi},B^1_{\xi}
angle:\xi<\lambda\}$ is a family of partition which is

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$)

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, where $f_{\alpha}(\xi) = f_{\alpha}(\xi)$ is dense, and *X'* and *X* are homeomorphic.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon)\} \neq \emptyset.$)

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, where $\xi \in \mathbb{R}$.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{I_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. (B^{0}, B^{1}) is a partition of κ .

- $\mathcal{B} = \{\langle B_{\mathcal{E}}^0, B_{\mathcal{E}}^1 \rangle : \xi < \lambda\}$ is a family of partition which is
 - independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, where $\xi \in \mathbb{R}$.

Soukup, L (Rényi Institute)

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic, where $f_{\alpha}(\xi) = f_{\alpha}(\xi)$ is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$

• separating ($\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\xi} | = 1$) Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ X and $X_{\mathcal{B}}$ are homeomorphic

Given ${\mathcal B}$ define ${old X}'_{=}=\{f'_lpha:lpha<\kappa\}\subset {\mathcal D}({\mathbf 2})^\lambda$ as follows:

X' is dense, and X' and $X_{\mathcal{B}}$ are homeomorphic,

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

• independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$

• separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\xi} | = 1)$ Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for τ

Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follow

X' is dense, and X' and $X_{\mathcal{B}}$ are homeomorphic,

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating $(\forall \alpha \neq \beta \in \kappa \exists \xi < \lambda | \{\alpha, \beta\} \cap B^0_{\varepsilon} | = 1)$

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ X and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. X' is dense, and X' and $X_{\mathcal{B}}$ are homeomorphic, where $f_{\alpha}(\xi) = f(\xi)$.

Soukup, L (Rényi Institute)

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ X and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. X' is dense, and X' and $X_{\mathcal{B}}$ are homeomorphic, $\{\varphi, \varphi\} \in \mathbb{R}$

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ \mathcal{B}_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ X and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. X' is dense, and X' and $X_{\mathcal{B}}$ are homeomorphic.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ \mathcal{B}_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ X and $X_{\mathcal{B}}$ are homeomorphic

Given \mathcal{B} define $\mathbf{X}' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. X' is dense, and X' and X_{β} are homeomorphic,

Soukup, L (Rényi Institute)

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B^{i}_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ B_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B'_{\xi}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic.

- dense subspaces of the Cantor cube $D(2)^{\lambda}$ of size κ
- independent families of 2-partitions of κ indexed by λ .

Let $X = \{f_{\alpha} : \alpha < \kappa\} \subset D(2)^{\wedge}$ be dense. For $\xi < \lambda$ and i < 2 let $B_{\xi}^{i} = \{\alpha < \kappa : f_{\alpha}(\xi) = i\}$. $\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle$ is a partition of κ . $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi < \lambda\}$ is a family of partition which

- independent ($\forall \varepsilon \in Fin(\lambda, 2) \ \mathcal{B}[\varepsilon] = \cap \{ \mathcal{B}_{\varepsilon}^{\varepsilon(\xi)} : \xi \in dom(\varepsilon) \} \neq \emptyset. \}$
- separating ($\forall \alpha \neq \beta \in \kappa \; \exists \xi < \lambda \; | \{\alpha, \beta\} \cap B_{\xi}^{0} | = 1$)

Let $X_{\mathcal{B}} = \langle \kappa, \tau_{\mathcal{B}} \rangle$, where $\{\mathcal{B}[\varepsilon] : \varepsilon \in Fin(\lambda, 2)\}$ is a base for $\tau_{\mathcal{B}}$ *X* and $X_{\mathcal{B}}$ are homeomorphic Given \mathcal{B} define $X' = \{f'_{\alpha} : \alpha < \kappa\} \subset D(2)^{\lambda}$ as follows: $f'_{\alpha}(\xi) = i$ iff $\alpha \in B'_{\varepsilon}$. *X'* is dense, and *X'* and $X_{\mathcal{B}}$ are homeomorphic,

Soukup, L (Rényi Institute)

Main theorem

Let

- B = {⟨B_ξ⁰, B_ξ¹⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^0, C_{\varepsilon}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

(5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

Let

B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,

- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^0, C_{\varepsilon}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- $(5) \quad \forall \xi \notin I \ C^i_{\xi} = B^i_{\xi},$

Main theorem

Let

B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,

• \mathcal{D} be a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$,

i.e. $|D \cap \mathcal{B}[\varepsilon]| \ge \kappa$ for each $\varepsilon \in Fin(2^{\kappa}, 2))$,

Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^{0}, C_{\varepsilon}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in \mathcal{D} \text{ is } \kappa\text{-dense in } \tau_{\mathcal{C}},$
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

(5) $\forall \xi \notin I C_{\xi}^{i} = B_{\xi}^{i}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\mathcal{E}}^{0}, C_{\mathcal{E}}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- $(5) \quad \forall \xi \notin I \ C^i_{\xi} = B^i_{\xi},$

Main theorem

Let

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\!\mathcal{E}}^0, C_{\!\mathcal{E}}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

(5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^{0}, C_{\varepsilon}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- (5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^0, C_{\varepsilon}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) *τ*_C is **NODEC**, (i.e. every *τ*_C-nowhere dense set is closed discrete)
 (4) Every *A* ∈ [κ]^{<κ} is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- (5) $\forall \xi \notin I \ C^i_{\xi} = B^i_{\xi}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^{0}, C_{\varepsilon}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- (5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^0, C_{\varepsilon}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that
- (5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

Let

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^0, C_{\varepsilon}^1 \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.

Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

(5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

Main theorem

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^{0}, C_{\varepsilon}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

Main theorem

Let

- B = {⟨B⁰_ξ, B¹_ξ⟩ : ξ ∈ 2^κ} be an independent and separating family of 2-partitions of κ,
- D be a non-empty family of κ-dense sets in τ_B,
 (i.e. |D ∩ B[ε]| ≥ κ for each ε ∈ Fin(2^κ, 2)),
- Then there is an independent and separating family $C = \{ \langle C_{\varepsilon}^{0}, C_{\varepsilon}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that
- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense set is closed discrete)
- (4) Every $A \in [\kappa]^{<\kappa}$ is closed discrete.
- Moreover, if $I \subset 2^{\kappa}$ with $|I| = 2^{\kappa}$ then we can assume that

(5) $\forall \xi \notin I C^i_{\xi} = B^i_{\xi}$,

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$.

- Need to find a family $\mathcal{C}=\{\langle C^0_{\mathcal{E}}, C^1_{\mathcal{E}}
 angle: \xi\in 2^\kappa\}$ such that
- (1) $\forall D \in \mathcal{D}$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle B_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $B_0 = B$, $C = B_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

(1) $\forall D \in D$ is κ -dense in τ_C ,

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle B_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $B_0 = B$, $C = B_{2^{\kappa}}$,

• $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.

(1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!

2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in D$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{
u}:
u \leq 2^{\kappa}
angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in D$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in D$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in τ_C ,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{
u}:
u \leq 2^{\kappa}
angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

• $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.

there is ε ∈ Fin(2^κ, 2) and D ∈ D with B_ν[ε] ∩ D ⊂ F: Seal B_ν[ε]!
 If (1) fails, i.e F is potentially "nowhere dense" in τ_{B_ν}): modify B_ν such that F is closed discrete in τ_{B_{ν+1}}.

Modification instead of creation: no set-theoretical problems!

・ロト ・ 四ト ・ ヨト ・ ヨト ・

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

• $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.

there is ε ∈ Fin(2^κ, 2) and D ∈ D with B_ν[ε] ∩ D ⊂ F: Seal B_ν[ε]!
 If (1) fails, i.e F is potentially "nowhere dense" in τ_{B_ν}): modify B_ν such that F is closed discrete in τ_{B_{ν+1}}.

Modification instead of creation: no set-theoretical problems!

・ロト ・ 四ト ・ ヨト ・ ヨト ・

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu}: \nu \leq 2^{\kappa}
angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

• $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.

there is ε ∈ Fin(2^κ, 2) and D ∈ D with B_ν[ε] ∩ D ⊂ F: Seal B_ν[ε]!
 If (1) fails, i.e F is potentially "nowhere dense" in τ_{B_ν}): modify B_ν such that F is closed discrete in τ_{B_ν+1}.

Modification instead of creation: no set-theoretical problems!

・ロト ・ 四ト ・ ヨト ・ ヨト ・
Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^0, C_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

• $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.

(1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$! 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{\mathcal{B}_{\nu}}$):

modify \mathcal{B}_{ν} such that *F* is closed discrete in $\tau_{\mathcal{B}_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

Existence of \mathcal{D} -forced spaces

"Proof" of the Main Theorem

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^0, C_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu} : \nu \leq 2^{\kappa} \rangle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e F is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that F is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^0, C_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu}: \nu \leq 2^{\kappa} angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$):

modify \mathcal{B}_{ν} such that *F* is closed discrete in $\tau_{\mathcal{B}_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^{0}, C_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu}: \nu \leq 2^{\kappa} angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify B_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

Main Theorem: $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ is an family of 2-partitions, \mathcal{D} is a non-empty family of κ -dense sets in $\tau_{\mathcal{B}}$. Need to find a family $\mathcal{C} = \{ \langle C_{\xi}^0, C_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ such that

- (1) $\forall D \in D$ is κ -dense in $\tau_{\mathcal{C}}$,
- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**, (i.e. every $\tau_{\mathcal{C}}$ -nowhere dense is closed discrete)

Construct families of partition, $\langle \mathcal{B}_{\nu}: \nu \leq 2^{\kappa} angle$, s.t. $\mathcal{B}_0 = \mathcal{B}, \mathcal{C} = \mathcal{B}_{2^{\kappa}}$,

- $\mathcal{B}_{\nu} \Longrightarrow \mathcal{B}_{\nu+1}$: Pick $F \subset \kappa$.
 - (1) there is $\varepsilon \in Fin(2^{\kappa}, 2)$ and $D \in \mathcal{D}$ with $\mathcal{B}_{\nu}[\varepsilon] \cap D \subset F$: Seal $\mathcal{B}_{\nu}[\varepsilon]$!
 - 2 If (1) fails, i.e *F* is potentially "nowhere dense" in $\tau_{B_{\nu}}$): modify \mathcal{B}_{ν} such that *F* is closed discrete in $\tau_{B_{\nu+1}}$.

Modification instead of creation: no set-theoretical problems!

- (1) $D(2)^{c}$ does not have a dense countable maximal subspace,
- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

- (1) D(2)^c does not have a dense countable maximal subspace,
- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

(1) $D(2)^{c}$ does not have a dense countable maximal subspace,

- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

- (1) $D(2)^{c}$ does not have a dense countable maximal subspace,
- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

- (1) $D(2)^{c}$ does not have a dense countable maximal subspace,
- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

- (1) $D(2)^{c}$ does not have a dense countable maximal subspace,
- (2) $D(2)^{c}$ has a dense countable irresolvable subspace,
- (3) it is consistent that D(2)^c has a dense countable submaximal subspace.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space X of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

イロト イポト イヨト イヨ

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So A is open.

ヘロト 人間 ト 人 ヨ ト 人 ヨ

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So A is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So A is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

- (2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,
- (3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So A is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

Is it provable in ZFC that the Cantor cube $D(2)^{c}$ has a dense countable submaximal subspace?

Corollary 1.

For each $\kappa \ge \omega$ there is a **submaximal** space *X* of cardinality κ which is dense subspace of $D(2)^{2^{\kappa}}$.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa} \}$ be a independent, separating family of 2-partitions of κ , let $\mathcal{D} = \{\kappa\}$.

By main theorem we obtain C s.t.

(2) $\tau_{\mathcal{C}}$ is \mathcal{D} -forced,

(3) $\tau_{\mathcal{C}}$ is **NODEC**,

By Lemma, $\langle \kappa, \tau_{\kappa} \rangle$ is strongly irresolvable.

Let $A \subset X$ dense.

strongly irresolvable: $X \setminus A$ is nowhere dense NODEC: $X \setminus A$ is closed

So *A* is open.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa$, X is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{oldsymbol{\mathcal{E}}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\iota] \cap D_{\iota_{\xi}} \subset E_{\xi}$.

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa$, X is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{oldsymbol{\mathcal{E}}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[c] \cap D_{\varepsilon} \subset F_{\varepsilon} \cap F$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{\!\mathcal{E}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\iota] \circ D = \mathcal{C}$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{\!\mathcal{E}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\varepsilon_{\xi}] \cap D_{\varepsilon_{\xi}} \subset E_{\xi}.$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{oldsymbol{\mathcal{E}}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\varepsilon_{\xi}] \cap D_{\varepsilon_{\xi}} \subset E_{\xi}.$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ oldsymbol{E}_{\!\mathcal{E}}: \xi < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\varepsilon_{\xi}] \cap D_{\varepsilon_{\xi}} \subset E_{\xi}.$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{ \langle B_{\xi}^0, B_{\xi}^1 \rangle : \xi \in 2^{\kappa} \}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{ D_{\nu} : \nu < \lambda \}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets.

By main theorem we obtain C such that τ_C is D-forced.

Assume $\{ extsf{E}_{arepsilon}: arepsilon < \lambda^+ \}$ are dense sets.

 $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi} \text{ is dense in } X. \text{ So } \exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \ \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} = \nu.$ Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset F_{\varepsilon} \cap F_{\varepsilon}.$

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ **are dense sets.** $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ **is dense in** *X*. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}.$ $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ **are dense sets.** $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ **is dense in** *X*. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ **are dense sets.** $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in *X*. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in *X*. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda \mathcal{C}[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$.

 $\exists \xi \neq \eta < \lambda^+ \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2) \text{ and } \nu_{\xi} = \nu_{\eta} =$

Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.
For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

(日)

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

(日)

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq \mathcal{C}[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

• □ ▶ • @ ▶ • E ▶ • E ▶

For each $\omega \leq \lambda < \kappa$ there is a 0=dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. $\Delta(X) = \kappa, X$ is λ -resolvable, but not λ^+ -resolvable, moreover if $\{E_{\xi} : \xi < \lambda^+\}$ are dense sets then there are $\xi \neq \eta$ such that $E_{\xi} \cap E_{\eta}$ is dense somewhere.

Proof: Let $\mathcal{B} = \{\langle B_{\xi}^{0}, B_{\xi}^{1} \rangle : \xi \in 2^{\kappa}\}$ be an independent, separating family of 2-partitions such that κ has a partition $\mathcal{D} = \{D_{\nu} : \nu < \lambda\}$ into disjoint $\tau_{\mathcal{B}}$ -dense sets. By main theorem we obtain \mathcal{C} such that $\tau_{\mathcal{C}}$ is \mathcal{D} -forced. **Assume** $\{E_{\xi} : \xi < \lambda^{+}\}$ are dense sets. $\mathcal{D} \Vdash_{\tau_{\mathcal{C}}} E_{\xi}$ is dense in X. So $\exists \varepsilon_{\xi} \in Fin(2^{\kappa}, 2) \exists \nu_{\xi} < \lambda C[\varepsilon_{\xi}] \cap D_{\nu_{\xi}} \subset E_{\xi}$. $\exists \xi \neq \eta < \lambda^{+} \varepsilon = \varepsilon_{\xi} \cup \varepsilon_{\eta} \in Fin(2^{\kappa}, 2)$ and $\nu_{\xi} = \nu_{\eta} = \nu$. Then $\emptyset \neq C[\varepsilon] \cap D_{\nu} \subset E_{\xi} \cap E_{\eta}$.

• □ ▶ • @ ▶ • E ▶ • E ▶

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are hereditarily irresolvable subspaces (=every crowded subspace is irresolvable) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are hereditarily irresolvable subspaces (=every crowded subspace is irresolvable) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

• $X = \cup^{*} \{ D_{\alpha} : \alpha < \mu \}, D_{\alpha}$ hereditarily irresolvable dense,

• $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are hereditarily irresolvable subspaces (=every crowded subspace is irresolvable) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

• $X = \cup^{*} \{ D_{\alpha} : \alpha < \mu \}, D_{\alpha}$ hereditarily irresolvable dense,

• $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^{*} \{ D_{\alpha} : \alpha < \mu \}$, D_{α} hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

• $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,

• $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

• $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,

• $X = \bigcup^{*} \{ E_{\beta} : \beta < \lambda \}$, E_{β} hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}, E_\beta$ hereditarily irresolvable dense.

Theorem

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}$, D_α hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}, E_\beta$ hereditarily irresolvable dense.

Theorem

If $\omega \leq \mu < \sigma < \lambda$, $c(X) \leq \sigma$, and $\{D_{\alpha} : \alpha < \mu\}$ and $\{E_{\beta} : \beta < \lambda\}$ are partitions into hereditarily irresolvable sets, then there is a partition $\{F_{\gamma} : \gamma < \sigma\}$ into hereditarily irresolvable sets.

Soukup, L (Rényi Institute)

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}, E_\beta$ hereditarily irresolvable dense.

Theorem

If $\omega \leq \mu < \sigma < \lambda$, $c(X) \leq \sigma$, and $\{D_{\alpha} : \alpha < \mu\}$ and $\{E_{\beta} : \beta < \lambda\}$ are partitions into hereditarily irresolvable sets, then there is a partition $\{F_{\gamma} : \gamma < \sigma\}$ into hereditarily irresolvable sets.

Soukup, L (Rényi Institute)

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^{*} \{ E_{\beta} : \beta < \lambda \}, E_{\beta}$ hereditarily irresolvable dense.

Theorem

If $\omega \leq \mu < \sigma < \lambda$, $c(X) \leq \sigma$, and $\{D_{\alpha} : \alpha < \mu\}$ and $\{E_{\beta} : \beta < \lambda\}$ are partitions into hereditarily irresolvable sets, then there is a partition

Soukup, L (Rényi Institute)

Resolvable spaces

If $X = \bigcup \{X_i : i < n\}$, $n < \omega$, and X_i are **hereditarily irresolvable** subspaces (**=every crowded subspace is irresolvable**) then X is not n + 1-resolvable.

Corollary 3

For $\omega \leq \mu < \lambda < \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$ such that $\Delta(X) = \kappa$,

- $X = \cup^* \{ D_\alpha : \alpha < \mu \}, D_\alpha$ hereditarily irresolvable dense,
- $X = \cup^* \{ E_\beta : \beta < \lambda \}$, E_β hereditarily irresolvable dense.

Theorem

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

イロト イポト イヨト イヨ

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

(日)

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

イロト イポト イヨト イヨト

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

・ロン ・聞と ・ 聞と ・ 聞と

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

イロト イ理ト イヨト イヨト

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

If X is not n-resolvable for some $n < \omega$ then there is a hereditarily irresolvable open subspace U in X.

Corollary 4.

For each $\omega \leq \lambda = cf(\lambda) \leq \kappa$ there is a 0-dimensional T_2 space $X = \langle \kappa, \tau \rangle$, s.t. X is c.c.c., $\Delta(X) = \kappa$, X is not λ -resolvable, but hereditarily μ -resolvable for each $\mu < \lambda$.

・ロン ・聞と ・ 聞と ・ 聞と

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

イロト イポト イヨト イヨト

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

・ロト・(部・・モト・モ・・モ

If X is k-resolvable for each $k < \omega$ then X is ω -resolvable.

Theorem (Bashkara-Rao)

If $cf(\lambda) = \omega$ and X is μ -resolvable for each $\mu < \lambda$ then X is λ -resolvable.

Problem

What happens if $\omega < cf(\lambda) < \lambda$?

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(*) for each dense subspace Y if $\Delta(Y) \ge \lambda$ then Y is μ -resolvable for each $\mu < \lambda$,

then X is λ -resolvable.

< □ > < □ > < □ > < □ > < □ > <

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(★) for each dense subspace Y if Δ(Y) ≥ λ then Y is μ-resolvable for each μ < λ,

then X is λ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(*) for each dense subspace Y if Δ(Y) ≥ λ then Y is μ-resolvable for each μ < λ,

then X is λ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(*) for each dense subspace Y if $\Delta(Y) \ge \lambda$ then Y is μ -resolvable for each $\mu < \lambda$,

then X is λ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))
Theorem

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(*) for each dense subspace Y if $\Delta(Y) \ge \lambda$ then Y is μ -resolvable for each $\mu < \lambda$,

then X is λ -resolvable.

Theorem

If $\hat{c}(X) \leq cf(\lambda) < \lambda \leq \Delta(X)$, and

(*) for each dense subspace Y if $\Delta(Y) \ge \lambda$ then Y is μ -resolvable for each $\mu < \lambda$,

then X is λ -resolvable.

.

Image: A matrix and a matrix

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

X is extraresolvable iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is nowhere dense for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

< 日 > < 同 > < 回 > < 回 > < 回 > <

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

・ロト・(部・・モト・モ・・モ

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa, X$ is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $\mathfrak{i} = \mathfrak{c} \Longrightarrow \mathbf{NO}$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa, X$ is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $\mathfrak{i} = \mathfrak{c} \Longrightarrow \mathbf{NO}$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa, X$ is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

X is **extraresolvable** iff there are dense sets $\{D_{\alpha} : \alpha < \Delta(X)^+\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

Problem (Comfort – Hu)

X is countable and maximally resolvable $\stackrel{?}{\Longrightarrow}$ extraresolvable?

M. Hrušak: $i = c \Longrightarrow NO$

Corollary 5

For each $\kappa \ge \omega$ there is 0-dim. T_2 , ccc $X = \langle \kappa, \tau \rangle$ s.t. $\Delta(X) = \kappa$, X is hereditarily maximally resolvable, but not extraresolvable.

・ロト・(部・・モト・モ・・モ

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is nowhere dense for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is almost κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is nowhere dense for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is almost κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is nowhere dense for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable

If *X* is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

• □ ▶ • @ ▶ • E ▶ • E ▶

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

イロト イ理ト イヨト イヨト 三支

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

A space X is **almost** κ -resolvable there are dense sets $\{D_{\alpha} : \alpha < \kappa\}$ such that $D_{\alpha} \cap D_{\beta}$ is **nowhere dense** for $\alpha \neq \beta$.

extraresolvable = almost $\Delta(X)^+$ -resolvable If X is almost κ -resolvable then $\kappa \leq 2^{\Delta(X)}$

almost ω -resolvable $\Longrightarrow \omega$ -resolvable

If $\{D_n : n < \omega\}$ dense, $D_n \cap D_m$ is nowhere dense, then D_0 , $D_1 \setminus D_0$, $D_2 \setminus D_0 \cup D_1, \ldots$ are pairwise disjoint dense sets.

Problem

Let X be an **extraresolvable** space with $\Delta(X) \ge \omega_1$. Is X then ω_1 -resolvable?

Soukup, L (Rényi Institute)

• □ ▶ • @ ▶ • E ▶ • E ▶

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH **first fails at** κ then there is a 0-dimensional T₂ space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

・ロン ・四 ・ ・ ヨン

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

イロン イロン イヨン イヨン 二日

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is almost $2^{\Delta(X)}$ -resolvable (so extraresolvable) but not ω_1 -resolvable.

イロン イロン イヨン イヨン 二日

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but not ω_1 -resolvable.

Theorem (Comfort, Hu)

If κ is an infinite cardinal such that GCH first fails at κ then there is a 0-dimensional T_2 space X with $|X| = \Delta(X) = \kappa^+$ such that X is κ -resolvable, extraresolvable but not κ^+ -resolvable.

Theorem (Juhász, Shelah, Soukup, Szentmiklóssy)

For every cardinal κ there is a 0-dimensional T_2 space X with $\Delta(X) = \kappa$ that is **almost** $2^{\Delta(X)}$ -resolvable (so extraresolvable) but **not** ω_1 -resolvable.

イロン イロン イヨン イヨン 二日

Theorem (Pavlov, 2000)

If $\Delta(X) > s(X)^+$ then X is **maximally resolvable**.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is **maximally resolvable**.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

Theorem (Pavlov, 2000)

If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is **maximally resolvable**.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

Theorem (Pavlov, 2000)

If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is **maximally resolvable**.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

イロト イヨト イヨト イヨト
If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is maximally resolvable.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is maximally resolvable.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is maximally resolvable.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

<ロト < 回 > < 回 > < 回 > < 回 > … 回

If $\Delta(X) > s(X)^+$ then X is maximally resolvable.

Theorem

If $\kappa = cf(\kappa)$, $\Delta(X) = \kappa \ge \hat{s}(X)$ then X is maximally resolvable.

Problem

What if $\Delta(X) = \hat{s}(X)$ is singular?

・ロト・(部・・モト・モ・・モ

$$\mathcal{M}(X) = \{ \langle x, U \rangle \in X \times \tau(X) : x \in U \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets.** The space X is **monotonically normal** iff it is T_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

(1) *x* ∈ H(*x*, *U*) ⊂ *U* for each ⟨*x*, *U*⟩ ∈ *M*(*X*),
(2) if (*x*, *U*), (*y*, *V*) ∈ *M*(*X*), *x* ∉ *V* and *y* ∉ *U* the H(*x*, *U*) ⊂ H(*x*, *V*) = Ø

A (10) F (10)

$\mathcal{M}(\mathbf{X}) = \{ \langle \mathbf{x}, \mathbf{U} \rangle \in \mathbf{X} \times \tau(\mathbf{X}) : \mathbf{x} \in \mathbf{U} \}.$

The elements of $\mathcal{M}(X)$ are the **marked open sets.** The space X is **monotonically normal** iff it is T_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $\mathbf{x} \in \mathbf{H}(\mathbf{x}, U) \subset U$ for each $\langle \mathbf{x}, U \rangle \in \mathcal{M}(X)$, (2) if $(\mathbf{x}, U) \in \mathcal{M}(X)$ $\mathbf{x} \notin V$ and $\mathbf{y} \notin U$ th
- $H(x, U) \cap H(y, V) = \emptyset.$

• • • • • • • • • • • •

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets**. The space X is **monotonically normal** iff it is T_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X), x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

A (10) > A (10) > A

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets.** The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X)$, $x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

A (10) × A (10) × A (10)

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets.** The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X)$, $x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets**. The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X), x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

・ 同 ト ・ ヨ ト ・ ヨ

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets**. The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X), x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets**. The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X), x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

$$\mathcal{M}(\boldsymbol{X}) = \{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \}.$$

The elements of $\mathcal{M}(X)$ are the **marked open sets**. The space X is **monotonically normal** iff it is \mathcal{T}_1 and it admits a **monotone normality operator**, that is a function $H : \mathcal{M}(X) \to \tau(X)$ such that

- (1) $x \in H(x, U) \subset U$ for each $\langle x, U \rangle \in \mathcal{M}(X)$,
- (2) if $(x, U), (y, V) \in \mathcal{M}(X)$, $x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.

- If X is crowded, monotonically normal then
- (a) X is ω -resolvable,
- (b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* maximally resolvable ? *X* crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* almost 2^{ω}-resolvable?

If X is crowded, monotonically normal then

- (a) X is ω -resolvable,
- (b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* maximally resolvable ? *X* crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* almost 2^{ω}-resolvable?

• • • • • • • • • • • •

If X is crowded, monotonically normal then

(a) X is ω -resolvable,

(b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ X maximally resolvable ? X crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ X almost 2^{ω}-resolvable?

- If X is crowded, monotonically normal then
- (a) X is ω -resolvable,
- (b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* maximally resolvable ? *X* crowded, monotonically normal $\stackrel{?}{\longrightarrow}$ *X* almost 2^{ω}-resolvable?

イロト イポト イヨト イヨ

- If X is crowded, monotonically normal then
- (a) X is ω -resolvable,
- (b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable ?

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X almost 2^{ω}-resolvable?

- If X is crowded, monotonically normal then
- (a) X is ω -resolvable,
- (b) X is almost $min(2^{\omega}, \omega_2)$ -resolvable.

Problem

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable ? X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X almost 2^{ω}-resolvable?

A B F A B F

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -**resolvable**.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space X with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space X with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

イロン イ理 とく ヨン イヨン

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a **supercompact cardinals**) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -**resolvable**.

イロン イ理 とく ヨン イヨン

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a supercompact cardinals) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -resolvable.

・ロト ・ 四ト ・ ヨト ・ ヨト

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a supercompact cardinals) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is not ω_2 -resolvable.

・ロト ・ 四ト ・ ヨト ・ ヨト

X crowded, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Theorem

If κ is a **measurable cardinal**, then there is a monotonically normal space *X* with $|X| = \Delta(X) = \kappa$ which is **not** ω_1 -resolvable.

Theorem

A crowded monotonically normal space X is maximally resolvable provided $|X| < \aleph_{\omega}$.

Theorem

It is consistent (modulo a supercompact cardinals) that there is a monotonically normal space X with $|X| = \Delta(X) = \aleph_{\omega}$ which is **not** ω_2 -resolvable.

The pdf file of my talk can be downloaded from my homepage.

<ロト < 回 > < 回 > < 回 > < 回