On the Border of Finite and Infinite

Lajos Soukup

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

Horizon of Combinatorics, 2006

3 Multiway Cuts

Definition

A family \mathcal{H} of subsets of a set A has **property B** iff there is a partition(X, Y) of A such that $H \cap X \neq \emptyset \neq H \cap Y$ for each $H \in \mathcal{H}$.

 $\begin{array}{l} \mathsf{Q}(\mathcal{H}) = \langle A \cup (\mathcal{H} \times \{0,1\}), \leq \rangle. \\ \langle 0, H \rangle \leq a \leq \langle 1, H \rangle \text{ iff } a \in H. \\ \text{If } \emptyset \notin \mathcal{H} \text{ then } A \text{ is a maximal} \\ \textbf{antichain} \\ A = X \cup^* Y \end{array}$

(X, Y) witnesses that \mathcal{H} has property B iff $Q(\mathcal{H}) = X^{\downarrow} \cup Y^{\uparrow}$

Definition

Let $P = \langle P, \leq \rangle$ be a poset, $A \subset P$ be a **maximal antichain**. $A \subset P$ splits iff *A* has a partition $A = B \cup^* C$ such that $P = B^{\uparrow} \cup C^{\downarrow}$.

Theorem (Lovász, 1979)

If A is a finite set and $\mathcal{H} \subset [A]^{\geq 2}$ such that $|H' \cap H''| \neq 1$ for each $\{H, H'\} \in [\mathcal{H}]^2$ then \mathcal{H} has **property-B**.

Theorem (Lovász, reformulated) Let A be a finite set, $\mathcal{H} \subset \mathcal{P}(A)$, $\emptyset \notin \mathcal{H}$, s. t. if $\langle H', 0 \rangle \leq a \leq \langle H'', 1 \rangle$ then there is $b \neq a$ such that $\langle H', 0 \rangle \leq b \leq \langle H'', 1 \rangle$. Then A splits in Q(\mathcal{H}).

Property B

Theorem (Lovász, reformulated)

Let A be a finite set and $\mathcal{H} \subset \mathcal{P}(A)$, $\emptyset \notin \mathcal{H}$. If A is **cut-free** (in $Q(\mathcal{H})$) then A **splits**.

Theorem (P. L Erdős - Niall Graham (1993))

In a finite Boolean lattice every max. antichain splits.

Theorem

If P is a finite poset and A is a maximal antichain then the question "Does A split?" is NP-complete.

Theorem (Ahlswede, P. L. Erdős, N. Graham(1995))

In a finite poset every cut-free maximal antichain splits.

Theorem (Ahlswede, Khachatrian)

There is a maximal, (infinite) non-splitting antichain A in divisor poset of the square-free positive integers.

divisor poset of the square-free positive integers = $\left< \left[\omega \right]^{<\omega}, \subset \right>$

Definition

A poset \mathcal{P} is **loose** iff for each $x \in P$ and $F \in [P]^{<\omega}$ if $x \notin F^{\uparrow}$ then there is $y \in x^{\uparrow} \setminus \{x\}$ such that $y \notin F^{\uparrow}$.

Fact

$$\left< \left[\omega
ight]^{<\omega}, \subset \right>$$
 is loose.

Theorem (P. L. Erdős, –)

A countable, cut-free, loose poset $\mathcal{P} = \langle \mathbf{P}, \leq \rangle$ contains a maximal infinite non-splitting antichain A.

Theorem (P. L. Erdős)

In a cut-free poset every finite maximal antichains split.

Theorem

If \mathcal{P} is a poset, A is a cut-free maximal antichain such that $|x^{\uparrow} \cap A| < \omega$ for all $x \in P$ then A splits.

No proofs with Gödel Compactness Theorem! If *P* is cut-free, $Q \subset P$ then *Q* is not necessarily cut-free

Theorem (P. L. Erdős, –)

Assume that \mathcal{P} is a countable poset such that both \mathcal{P} and \mathcal{P}^{-1} are loose. Then \mathcal{P} contains a maximal antichain which splits.

Example

There is a "non-trivial" infinite cut-free poset s.t. every maximal antichain splits.

Problem

Is there a countable cut-free poset without splitting maximal antichains?

Uncountable posets

Deep set-theory, independence, ...

Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)

Every finite **digraph** (i.e. directed graph) contains an **independent set** A such that for each point v there is a **path of length at most** 2 from some point of A to v.

In and Out

Definition

Assume that G = (V, E) is a **digraph**, $A \subset V$ and $n \in \mathbb{N}$. Let $ln_n(A) = \{v \in V : \text{ there is a path of length at most } n$ which leads from v to some points of $A\}$, and $Out_n(A) = \{v \in V : \text{ there is a path of length at most } n$ which leads from some points of A to $v\}$.

Definition

Let G = (V, E) be a digraph.

An **independent set** *A* is a **quasi-kernel** if and only if $V = \text{Out}_2(A)$. An **independent set** *B* is a **quasi-sink** if and only if $V = \ln_2(B)$.

Theorem (Chvatal, Lovász)

Every finite digraph G = (V, E) contains a quasi-kernel (quasi-sink).

TagPlaplagemeents ation fails even for infinite tournaments: the tournament $(\mathbb{Z}, <)$ is a counterexample.

The original problem

 $(\mathbb{Z}, <)$ does not have quasi kernel, but $\mathbb{Z} = Out_1(1) \cup In_1(0)$.

Problem

Is it true that for each **directed graph** G = (V, E) there are **disjoint**, **independent subsets** A and B of V such that $V = \text{Out}_2(A) \cup \ln_2(B)$.

Definition

G = (V, E) is a digraph, $n, k \in \mathbb{N}$: $G \in \mathfrak{In}_k \iff \exists$ an independent set $A \subset V$ s. t. $V = \ln_k(A)$, $G \in \mathfrak{Dut}_n \iff \exists$ an independent set $B \subset V$ s.t. $V = \operatorname{Out}_n(B)$. $G \in \mathfrak{In}_k - \mathfrak{Dut}_n \iff \exists$ partition (V_1, V_2) of V s.t $G[V_1] \in \mathfrak{In}_k$ and $G[V_2] \in \mathfrak{Out}_n$.

Theorem (Chvatal, Lovász)

Every finite digraphs is in \mathfrak{Out}_2 .

Theorem

Every tournament is either in \mathfrak{Dut}_2 or in \mathfrak{In}_1 - \mathfrak{Dut}_1 .

Theorem

If G = (V, E) is a digraph and $ln_1(x)$ is finite for each $x \in V$ then $G \in \mathfrak{Dut}_2$.

Theorem

If the **chromatic number** of G is finite then $G \in \mathfrak{Out}_2$.

Definition

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. If $K_n \notin \widetilde{G}$ for some $n \ge 2$ then $G \in \mathfrak{In}_2$ - \mathfrak{Dut}_2 . Especially, if the **chromatic number** of \widetilde{G} is finite then $G \in \mathfrak{In}_2$ - \mathfrak{Dut}_2 .

Theorem

If G = (V, E) is a digraph such that \widetilde{G} is **locally finite** then $G \in \mathfrak{In}_2$ - \mathfrak{Dut}_2 .

Theorem

For each directed graph G = (V, E) there are disjoint, independent subsets A and B of V such that $V = \text{Out}_2(A) \cup \ln_2(B)$.

In the positive theorems we obtained $G \in \mathfrak{In}_2$ - \mathfrak{Dut}_2 !

Conjecture

Every directed graph is in $\Im n_2$ - $\Im ut_2$.

Problem

Find an infi nite digraph *G* s. t. $G \notin \Im_{\mathfrak{N}}$ - \mathfrak{Out}_2 .

Structure theorems for tournaments

PSfrag replacements

PSfrag replacements Let $T_{\infty} = (\mathbb{N}, \mathbb{E})$, where (x, y) is an edge if and only if y = x + 1 or y + 1 < x.

 $T_{\infty} \notin \mathfrak{Sut}_2, \ T_{\infty} \notin \mathfrak{Sut}_n \text{ for } n \in \mathbb{N}$

Estructupatheorems for tournaments

Let $\mathbb{G}_{\infty} = (\mathbb{N}, E)$, as follows: (x, y) is an edge if and only if $x \ge y + 1$.

Theorem

For an infinite tournament T = (V, E) the followings are equivalent:

- (i) $T \notin \mathfrak{Sut}_3$,
- (ii) $T \notin \mathfrak{Out}_n$ for each $n \geq 3$,

(iii) there is a surjective homomorphism $\varphi : T \to \mathbb{G}_{\infty}$.

Theorem

There is a tournament $T \in \mathfrak{Sut}_3 \setminus \mathfrak{Sut}_2$.

Soukup, L (Rényi Institute)

Multiway Cut Problem

Fix a graph G = (V, E) and a subset S of vertices called **terminals**. A **multiway cut** is a **set of edges** whose removal disconnects each terminal from the others. The **multiway cut problem** is to find the **minimal size** of a multiway cut denoted by $\pi_{G,S}$.

Defi nition

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let $\nu_{\vec{G},S} = \sum_{s \in S} \lambda(\vec{G}, S - s, s)$ $\lambda(\vec{G}, S - s_3, s_3) = 1, \lambda(\vec{G}, S - s_2, s_2) = 1,$ $\lambda(\vec{G}, S - s_1, s_1) = 0, \nu_{\vec{G},S} = 2$ $\pi_{G,S} = 2$ $\pi_{G,S} = 2$ s_3

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then $\nu_{\vec{G},S} \leq \pi_{G,S}$.

Proof.

Fix a multiway cut $F \subset \mathbf{PS}$ frag feptacements \mathcal{P}_s be a family of edge-disjoint directed paths from some element of S - s into s. For each $P \in \mathcal{P}_s$ let e_p be the last element of $P \cap F$ in P. Then $e_P \neq e_{P'}$ provided $P \neq P'$. P

Theorem (E. Dahjhaus, D. S. Johson, C. H. Papadimitriou, P.D. Seymout, M Yannakakis)

The multiway cut problem is NP-complete.

Special case:

G - S is a **tree**.

Theorem (P. L. Erdős, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then

 $\max_{\vec{\mathsf{G}}} \nu_{\vec{\mathsf{G}},\mathsf{S}} = \pi_{\mathbf{G},\mathsf{S}}.$

where the maximum is taken over all orientations \vec{G} of G.

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$ such that

$$\{ e_{P} : P \in \mathcal{P}_{s} \text{ for some } s \in S \}$$

is a *multiway cut* (in G for S).

Theorem (–)

If G = (V, E) is a graph, $S \subset V$ such that G - S is tree **without** infinite paths, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$ such that

$$\{e_{\mathcal{P}}: \mathcal{P} \in \mathcal{P}_s \text{ for some } s \in S\}$$

is a multiway cut (in G for S).

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

(1)
$$in(a) = 0$$
 and $out(a) = 1$ for each $a \in A$,

(2)
$$in(b) = 1$$
 and $out(b) = 0$ for each $b \in B$,

(3)
$$in(x) \leq out(x)$$
 for each $x \in V \setminus (A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

Theorem

Let G = (V, E) be a directed graph which does not contain infinite directed path, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A-B-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if *P* is an *A*-*B*-path then G - P satisfi es (1)–(3) *G* is uncountable may got stuck at some point

Inductive construction, but using the right enumeration **Elementary submodels**

From Infinite to Finite

Unfriendly Partitions

Definition

Let G = (V, E) be a graph. A partition (A, B) of V is called **unfriendly** iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Theorem (Shelah)

There is an uncountable graph without an unfriendly partition.

Unfriendly Partition Conjecture

Every countable graph has an unfriendly partition.

Soukup, L (Rényi Institute)

On the Border of Finite and Infinite

Unfriendly Partitions

Fact

Every locally finite graph has an unfriendly partition.

Fact

If G = (V, E) is countable and every $v \in V$ has infinite degree then G has an unfriendly partition.

Unfriendly Partitions

Question

Let *G* be a finite graph, and *a* and *b* are vertices such that $d_G(a, b) \ge 10^{10^{10}}$. Is there an unfriendly partition of (A, B) of *G* such that $a \in A$ and $b \in B$?

Answer

No, V. Bonifaci gave counterexample.

Question

Is it true that for each $n \in \mathbb{N}$ there is $f(n) \in \mathbb{N}$ such that for each finite graph *G* if $deg(x) \le n$ for each vertices, and *a* and *b* are vertices such that $d_G(a, b) \ge f(n)$. then there is an unfriendly partition of (A, B) of *G* such that $a \in A$ and $b \in B$?

Many fi nite problems have infi nite counterparts. Similar, but not the same. Deep set-theory is not a must.