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Abstract

Shannon OR-capacity COR(G) of a graph G, that is the traditionally more often used
Shannon AND-capacity of the complementary graph, is a homomorphism monotone graph
parameter therefore it satisfies COR(F × G) ≤ min{COR(F ), COR(G)} for every pair of
graphs, where F ×G is the categorical product of graphs F and G. Here we initiate the
study of the question when could we expect equality in this inequality. Using a strong
recent result of Zuiddam, we show that if this ”Hedetniemi-type” equality is not satisfied
for some pair of graphs then the analogous equality is also not satisfied for this graph
pair by some other graph invariant that has a much “nicer” behavior concerning some
different graph operations. In particular, unlike Shannon OR-capacity or the chromatic
number, this other invariant is both multiplicative under the OR-product and additive
under the join operation, while it is also nondecreasing along graph homomorphisms. We
also present a natural lower bound on COR(F × G) and elaborate on the question of
how to find graph pairs for which it is known to be strictly less, than the upper bound
min{COR(F ), COR(G)}. We present such graph pairs using the properties of Paley graphs.



1 Introduction

For two graphs F and G, their categorical (also called tensor or weak direct) product
F ×G is defined by

V (F ×G) = V (F )× V (G),

E(F ×G) = {{(x, u), (y, v)} : x, y ∈ V (F ), u, v ∈ V (G), {x, y} ∈ E(F ), {u, v} ∈ E(G)}.

Hedetniemi’s more than half a century old conjecture that has been refuted recently
by Yaroslav Shitov [44] (cf. also [50], [24], [55], and [56] for further developments) stated
that the chromatic number of F × G would be equal to the smaller of the chromatic
numbers of F and G, i.e., that

χ(F ×G) = min{χ(F ), χ(G)}.

It is easy to see that the right hand side above is an upper bound on the left hand side.
If c : V (F )→ {1, 2, . . . , χ(F )} is a proper coloring of F then c′ : (x, u) 7→ c(x) is a proper
coloring of F × G proving χ(F × G) ≤ χ(F ). As the same argument works if we start
with a proper coloring of G, this proves the claimed inequality. Thus the real content of
the conjecture was that the right hand side is also a lower bound on χ(F ×G). Though
not true in general, this holds in several special cases. In particular, it is easy to prove
when min{χ(F ), χ(G)} ≤ 3 and it is also known to hold when this value is 4. The latter,
however, is a highly nontrivial result of El-Zahar and Sauer [15] and the general case was
wide open until the already mentioned recent breakthrough by Shitov [44]. For several
related results, see the survey papers [41, 49, 53].

A map f : V (T ) → V (H) between the vertex sets of graphs T and H is called a graph
homomorphism if it preserves edges, that is, if f satisfies {a, b} ∈ E(T )⇒ {f(a), f(b)} ∈
E(H). The existence of a graph homomorphism from T to H is denoted by T → H.

Behind the validity of the inequality χ(F ×G) ≤ min{χ(F ), χ(G)} is the fact that both
F × G → F and F × G → G hold (just take the projection maps), while it is generally
true, that T → H implies χ(T ) ≤ χ(H).

This suggests that if p(G) is any graph parameter which is monotone nondecreasing
under graph homomorphism, that is for which T → H implies p(T ) ≤ p(H), then an
analogous question to Hedetniemi’s conjecture is meaningful for it: we automatically
have p(F × G) ≤ min{p(F ), p(G)} and one may ask whether equality holds. (If it does,
we will say that p satisfies the Hedetniemi-type equality.) Since Shitov’s result we know
that the most studied parameter from this point of view, the chromatic number, does
not satisfy the Hedetniemi-type equality. But there are parameters that do so. A trivial
example is provided by the clique number. Two famous highly non-trivial cases are proven
by Zhu [54] and Godsil, Roberson, Šamal, and Severini [19].

Zhu’s celebrated result known as the fractional version of Hedetniemi’s conjecture [54]
states that the fractional chromatic number satisfies the Hedetniemi-type equality. (For
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the definition and basic properties of the fractional chromatic number, see e.g. [42].)
The more recent result by Godsil, Roberson, Šamal, and Severini [19] is that the similar
statement is also true for the Lovász theta number of the complementary graph, which is
also known as the strict vector chromatic number. (For the definition and basic properties
of this parameter see Lovász’s original paper [33] or his recent book [35].) In [19] the
authors also investigated the analogous question for a closely related parameter called
vector chromatic number (which differs from the strict vector chromatic number) that
was introduced in [29]. They conjectured that the Hedetniemi-type equality also holds
for this parameter and proved it in special cases. In a follow-up paper by Godsil, Roberson,
Roomey, Šamal, and Varvitsiotis [20] the latter conjecture is proved in general as well.

Both the fractional chromatic number and the Lovász theta number of the complementary
graph are well-known upper bounds on the Shannon OR-capacity of the graph which is the
usual Shannon capacity, or Shannon AND-capacity of the complementary graph. This
is also a homomorphism-monotone parameter (see Proposition 1 in Section 2), so the
Hedetniemi-type question is meaningful for it, too. In this paper we initiate the study of
this question. That is, we are interested in conditions on graphs F and G that make the
equality

COR(F ×G) = min{COR(F ), COR(G)}

true. In particular, we ask whether this Hedetniemi-type equality might hold for all graph
pairs.

Given the very complex behavior of Shannon capacity there seems to be little reason to
believe that the Shannon OR-capacity would also satisfy the Hedetniemi-type equality
as the above mentioned two graph parameters do. However, if one has to argue why it
looks unlikely, then the first argument that comes to mind is that Shannon OR-capacity
famously does not satisfy two other simple equalities, namely it is not multiplicative
under the OR-product and not additive under graph join. (For the definition of these
graph operations see Definition 1 in Section 2 and Definition 3 in Section 3, respectively.)
In both cases, this is a non-trivial result. Whether the first mentioned multiplicativity
relation holds was asked by Lovász in [33] and answered in the negative by Haemers
[22] by introducing a new upper bound on Shannon capacity that sometimes beats the
Lovász theta number. The second mentioned additivity relation was conjectured to hold
by Shannon [43] and this conjecture has been refuted only more than forty years later by
Alon [1].

One has to add that there are graph parameters, that (sometimes trivially) satisfy
the Hedetniemi-type equality, while they do not satisfy (at least one of) the other two
equalities mentioned above (cf. Remarks 2 and 3 in Section 3), yet in those cases we know
about the behaviour of the parameters involved is less complex than that of Shannon
capacity.

On the other hand, both the fractional chromatic number and the Lovász theta num-
ber of the complementary graph are multiplicative with respect to the OR-product and
additive under graph join. They both belong to a family of graph parameters that behave
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particularly ”nicely” and every member of which, as a real valued parameter of a graph
G, provides an upper bound on the Shannon OR-capacity of G. (For the precise definition
of this family of graph parameters, called the asymptotic spectrum of graphs in [57], see
Definition 4 in Section 3.) One may easily have the intuition that perhaps all parame-
ters belonging to this family should satisfy the Hedetniemi-type equality, while Shannon
OR-capacity should not. One of our main observations in this paper is that both of these
intuitions cannot be correct at the same time: either there exists some graph parameter
belonging to the asymptotic spectrum of graphs that does not satisfy the Hedetniemi-type
equality, or the Hedetniemi-type equality should also hold for Shannon OR-capacity. This
will be an almost immediate consequence of a strong recent result by Jeroen Zuiddam
[57].

We will also elaborate on the question of finding graph pairs that provide potential
counterexamples to Shannon OR-capacity satisfying the Hedetniemi-type equality. This
turns out to be challenging as well, largely because of the lack of knowledge about the
general behaviour of Shannon capacity. We will give a natural lower bound on COR(F×G)
in Section 4. If we want to ”test” whether Shannon OR-capacity satisfies the Hedetniemi-
type equality in nontrivial cases, we need some graph pairs (F,G), for which our lower
bound is strictly smaller than the upper bound min{COR(F ), COR(G)}. Since the Shannon
capacity value is known only in very few nontrivial cases, finding such graph pairs is not
entirely trivial. We will present some graph pairs with this property in Subsection 4.3.

2 Shannon OR-capacity

The Shannon capacity of a graph involves a graph product which is different of the
categorical product that appears in Hedetniemi’s conjecture. In fact, traditionally, that
is, in Shannon’s original and in several subsequent other papers, see [43, 33, 22, 1, 9], it
is defined via a product that is often called the AND-product (cf. e.g. [3]). Sometimes
it is more convenient, however, to define graph capacity in a complementary way, cf. e.g.
[12] (see Definition 11.3). The graph product involved then is the OR-product and the
resulting notion is equivalent to the previous one defined for the complementary graph.
To avoid confusion, we will call these two notions Shannon AND-capacity and Shannon
OR-capacity, the latter being the one we will mostly use.

Definition 1. Let F and G be two graphs. Both their AND-product F � G and OR-
product F · G is defined on the Cartesian product V (F ) × V (G) as vertex set. The edge
set of the OR-product is given by

E(F ·G) = {{(f, g), (f ′, g′)} : f, f ′ ∈ V (F ), g, g′ ∈ V (G), {f, f ′} ∈ E(F ) or {g, g′} ∈ E(G)}.

On the other hand, the edge set of the AND-product is given by

E(F �G) = {{(f, g), (f ′, g′)} : f, f ′ ∈ V (F ), g, g′ ∈ V (G),

3



{f, f ′} ∈ E(F ) and {g, g′} ∈ E(G), or f = f ′, {g, g′} ∈ E(G), or {f, f ′} ∈ E(F ), g = g′}.

We denote the t-fold OR-product of a graph G with itself by Gt, while the t-fold AND-
product of G with itself will be denoted by G�t.

Denoting the complementary graph of a graph H by H, note that the above definitions

imply that F ·G = F � G. In particular, ω(Gt) = α(Gt) = α(G
�t

), where ω(H) and
α(H) denote the clique number and the independence number of graph H, respectively.

Definition 2. The Shannon OR-capacity of a graph G is defined as the always existing
limit

COR(G) := lim
t→∞

t
√
ω(Gt).

The Shannon AND-capacity is equal to CAND(G) := limt→∞
t
√
α(G�t) = COR(G).

We remark, that in information theory Shannon capacity is often defined as the log-
arithm of the above values (to emphasize its operational meaning), but we will omit
logarithms as it is more customarily done in combinatorial treatments. We also note,
that all graphs in our discussions are meant to be simple.

The following proposition is quite immediate.

Proposition 1. If G and H are two graphs such that G→ H, then COR(G) ≤ COR(H).

Proof. Let f : V (G) → V (H) be a graph homomorphism and a = a1a2 . . . at, b =
b1b2 . . . bt be two adjacent vertices of Gt. Then for some i we have {ai, bi} ∈ E(G) implying
{f(ai), f(bi)} ∈ E(H) and thus {f(a1)f(a2) . . . f(at), f(b1)f(b2) . . . f(bt)} ∈ E(H t). Since
our graphs are simple (in particular, there are no loops), this implies ω(Gt) ≤ ω(H t) for
every t and thus the statement. �

As already said in the Introduction and also appears explicitly in [19] (as Lemma
2.1) once a graph parameter p is nondecreasing via graph homomorphism then it satisfies
p(G ×H) ≤ min{p(G), p(H)} (since F × G → F and F × G → G both hold). Thus by
Proposition 1 we have this inequality for Shannon OR-capacity that we state for future
reference.

Corollary 2.
COR(F ×G) ≤ min{COR(F ), COR(G)}.

�

Thus the following question is indeed valid: For what graphs F and G do we have
equality in Corollary 2? We elaborate on this question in the next two sections.
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3 On the possibilities of equality

As already mentioned in the Introduction, if one would be asked whether believing in
equality in Corollary 2 sounded plausible, then the most natural reaction seems to be to
say “no” based mainly on the fact that the answer to two somewhat similar questions is
negative, though neither is trivial. Let us repeat these two questions now also giving the
details.

Lovász asked in his celebrated paper [33], whether Shannon OR-capacity is multiplica-
tive with respect to the OR-product. i.e., whether

COR(F ·G) = COR(F )COR(G)

holds for all pairs of graphs F and G. Note that the left hand side above is always
at least as large as the right hand side as a consequence of the easy observation that
ω((F · G)k) ≥ ω(F k)ω(Gk) holds for any positive integer k. (Formally the question was
asked in the complementary language, but its mathematical content was equivalent to
this.) This was answered in the negative by Haemers in [22].

The second question is from Shannon’s paper [43] and to present it in our language
we need the notion of join of two graphs.

Definition 3. The join F ⊕ G of graphs F and G has the disjoint union of V (F ) and
V (G) as vertex set and its edge set is given by

E(F ⊕G) = E(F ) ∪ E(G) ∪ {{a, b} : a ∈ V (F ), b ∈ V (G)},

that is, F ⊕G is the disjoint union of graphs F and G with all edges added that has one
endpoint in V (F ) and the other in V (G).

Shannon [43] proved that COR(F ⊕ G) ≥ COR(F ) + COR(G) for all pairs of graphs
F and G and formulated the conjecture that equality always holds. This was refuted by
Alon [1] only four decades after the question had been posed.

Two of the graph parameters, the fractional chromatic number χf (G) and the Lovász
theta number of the complementary graph (or strict vector chromatic number) ϑ̄(G) =
ϑ(Ḡ) that we mentioned in the Introduction as examples for graph parameters satisfying
the Hedetniemi-type equality, i.e., for which we have

χf (F ×G) = min{χf (F ), χf (G)}

and
ϑ̄(F ×G) = min{ϑ̄(F ), ϑ̄(G)},

respectively, also satisfy

χf (F ·G) = χf (F )χf (G), ϑ̄(F ·G) = ϑ̄(F )ϑ̄(G),
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and
χf (F ⊕G) = χf (F ) + χf (G), ϑ̄(F ⊕G) = ϑ̄(F ) + ϑ̄(G).

As we have also mentioned in the Introduction, both of the above parameters bound
Shannon OR-capacity from above, that is, for all graphs G we have

COR(G) ≤ χf (G) and COR(G) ≤ ϑ̄(G). (1)

The first of these two inequalities follows from results in Shannon’s paper [43], while the
second is due to Lovász [33]. We remark that the second inequality implies the first one
as Lovász also proved that ϑ̄(G) ≤ χf (G) holds for every graph G.

The following notion (adapted again for our complementary language) is from Zuiddam’s
recent paper [57] that borrows the terminology from Strassen’s work [47] which it is based
on.

Definition 4. Let S be a collection of graphs closed under the join and the OR-product
operations and containing the single vertex graph K1. The asymptotic spectrum Y (S) of
S is the set of all maps ϕ : S → R≥0 which satisfy for all G,H ∈ S the following four
properties:

1. ϕ(K1) = 1

2. ϕ(G⊕H) = ϕ(G) + ϕ(H)

3. ϕ(G ·H) = ϕ(G) · ϕ(H)

4. if G→ H, then ϕ(G) ≤ ϕ(H).

Note that every ϕ ∈ Y (S) provides an upper bound for the Shannon OR-capacity of
graphs in S. Indeed, the first two properties imply ϕ(Kn) = n for every n, which together
with the fourth property imply ω(G) ≤ ϕ(G) for every G ∈ S and ϕ ∈ Y (S). Using also
the third property we obtain

COR(G) = lim
t→∞

t
√
ω(Gt) ≤ lim

t→∞
t
√
ϕ(Gt) = lim

t→∞
t
√

[ϕ(G)]t = ϕ(G).

The two inequalities in (1) are special cases of this fact since both χf (G) and ϑ̄(G) satisfy
the conditions in Definition 4 and thus belong to Y (S).

Note also that COR(G) itself does not belong to Y (S) by the above mentioned results
of Haemers [22] and Alon [1].

Building on Strassen’s theory of asymptotic spectra, Zuiddam proved the following
surprising result (cf. also [18] for an independently found weaker version).

Theorem 3. (Zuiddam’s theorem [57]) Let S be a collection of graphs closed under the
join and the OR-product operations and containing the single vertex graph K1. Let Y (S)
be the asymptotic spectrum of S. Then for all graphs G ∈ S we have

COR(G) = min
ϕ∈Y (S)

ϕ(G).
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That is, Zuiddam’s theorem states that the value of COR(G) is always equal to the value
of one of its “nicely behaving” upper bound functions. Note that this would be trivial
if COR(G) itself would be a member of Y (S), but we have already seen that this is not
the case. Zuiddam [57] gives a list of known elements of Y (S). This list (translated
to our complementary language) includes the fractional chromatic number, the Lovász
theta number of the complementary graph, the so-called fractional Haemers bound (of
the complementary graph) defined in [7] and further investigated in [10, 28], and another
parameter called fractional orthogonal rank introduced in [13]. The fractional Haemers’
bound also depends on a field and as Zuiddam also remarks, a separation result by Bukh
and Cox [10] implies that this family of graph invariants has infinitely many different
elements.

Now we are ready to prove our main result.

Theorem 4. Either
COR(F ×G) = min{COR(F ), COR(G)}

holds for graphs F and G or there exists some function ϕ satisfying the properties given
in Definition 4 for which we have

ϕ(F ×G) < min{ϕ(F ), ϕ(G)}.

In short, Theorem 4 states that either Shannon OR-capacity satisfies the Hedetniemi-type
equality, or if not, then there is some much “nicer behaving” graph invariant, which also
violates it.

Proof. Consider two graphs F and G and let S be a class of graphs satisfying the condi-
tions in Zuiddam’s theorem and containing all of F , G and F × G. Then by Zuiddam’s
theorem there exists some ϕ0 ∈ Y (S) for which

COR(F ×G) = ϕ0(F ×G).

Assume that
ϕ0(F ×G) = min{ϕ0(F ), ϕ0(G)}

holds. Then w.l.o.g. we may assume ϕ0(F ) ≤ ϕ0(G) and thus ϕ0(F ×G) = ϕ0(F ).

Since all elements in Y (S) are upper bounds on Shannon OR-capacity, we also have that

min{COR(F ), COR(G)} ≤ min{ϕ0(F ), ϕ0(G)} = ϕ0(F ).

But
ϕ0(F ) = ϕ0(F ×G) = COR(F ×G),

so we have obtained
min{COR(F ), COR(G)} ≤ COR(F ×G).
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Since the opposite inequality is always true (by Corollary 2) this implies

min{COR(F ), COR(G)} = COR(F ×G).

Consequently, if the last equality does not hold, then we must have ϕ0(F × G) 6=
min{ϕ0(F ), ϕ0(G)} implying

ϕ0(F ×G) < min{ϕ0(F ), ϕ0(G)} = ϕ0(F )

by ϕ0 satisfying the fourth property in Definition 4 and the fact that F ×G→ F . �

Remark 1. While the proof of Theorem 4 is rather simple it may be worth noting how
strong Zuiddam’s theorem is which it is based on. An illustration of this is given in the
last fifteen minutes of Zuiddam’s lecture [58], where he shows, referring to Ron Holzman
[27], an equally simple proof of the statement (translated to the language and notation
we use here), that

COR(F ·G) = COR(F )COR(G)⇔ COR(F ⊕G) = COR(F ) + COR(G)

using his theorem. In other words, in posession of Zuiddam’s theorem Haemers’ 1979
result [22] about the non-multiplicativity of COR(G) with respect to the OR-product
already implies Alon’s breakthrough result refuting Shannon’s conjecture that appeared
only almost two decades later. ♦

Remark 2. As already mentioned in the Introduction, graph parameters that satisfy
the Hedetniemi-type equality, but violate the conditions in Definition 4 exist. A simple
example is the clique number that is not multiplicative with respect to the OR-product.
(If it was, then the Shannon-capacity problem would be trivial.) A perhaps more artificial
example is the reciprocal of the odd girth (taken to be 0 when the graph is bipartite) which
also satisfies the Hedetniemi-type equality but fails to do so with all but the last one of
the four conditions in Definition 4. ♦

Remark 3. A more sophisticated such variable as the ones mentioned in Remark 2 is
a topological relaxation of the chromatic number in the sense of [45]. There are several
closely related lower bounds on the chromatic number based on algebraic topology that all
grew out from the pioneering work of Lovász in [32]. In [45] the topological lower bound
involving the so-called co-index of the box complex of the graph at hand is considered as a
graph parameter itself and it is shown that it also satisfies the Hedetniemi-type equality.
(See also [14] and [25] for related results.) This topological lower bound, however, is
also not multiplicative under the OR-product. This follows from the fact, that it is a
sharp lower bound on the chromatic number of several such graphs (Kneser graphs are
a primary example) for which the fractional chromatic number is strictly smaller than
the chromatic number. On the other hand it is a well-known theorem by McEliece and
Posner [36] (cf. also Berge and Simonovits [6] and see it as Corollary 3.4.3 in [42]) that
limt→∞

t
√
χ(Gt) = χf (G). If the above mentioned lower bound on the chromatic number
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(that we will simply denote by top(G) now) was multiplicative under the OR-product,
then it would imply by the McEliece-Posner theorem, that χf (G) = limt→∞

t
√
χ(Gt) ≥

limt→∞
t
√

top(Gt) = limt→∞
t
√

top(G)t = top(G) holds for any graph G. In particular, by
the above mentioned sharpness of top(G) for, say, Kneser graphs, this would imply that
the fractional chromatic number of Kneser graphs equals to their chromatic number, that
is far from being true (see more on this in the next remark or in [42]). ♦

Remark 4. Since the appearance of Shitov’s paper [44] the primary example for a homo-
morphism monotone graph parameter that does not satisfy the Hedetniemi-type equality
is of course the chromatic number. To see that it does not belong to the asymptotic spec-
trum one can refer again to the McEliece-Posner theorem [36] mentioned in the previous
remark: χ(G) is not multiplicative under the OR-product, because if it was, then we
would have χ(G) = limt→∞

t
√

[χ(G)]t = limt→∞
t
√
χ(Gt) = χf (G), but there are several

graphs G for which χ(G) > χf (G), cf. [42].
Another homomorphism monotone graph parameter that does not satisfy the Hedetniemi-
type equality is provided by the circular chromatic number χc(G). As χ(G)−1 < χc(G) ≤
χ(G) holds for any graph G, Shitov’s result immediately implies that χc(G) also does not
satisfy the Hedetniemi-type equality, although earlier this was also conjectured to be so
by Zhu [52] as a generalization of Hedetniemi’s conjecture and it is actually true for graph
pairs (G,H) satisfying χc(G×H) < 4 according to a result of Tardif [48] that generalizes
the celebrated theorem of El-Zahar and Sauer [15].
To give a simpler example that does not rely on Shitov’s highly nontrivial construction
one can consider convex combinations of the chromatic number and the clique number.
Define, for example

a(G) =
ω(G) + χ(G)

2
.

It is obvious that G → H implies a(G) ≤ a(H) as a consequence of ω(G) ≤ ω(H)
and χ(G) ≤ χ(H). On the other hand if ω(H) < ω(G), while χ(G) < χ(H), then we
have a(G) < min{a(G), a(H)}. Such graph pairs are easy to find, the simplest example
is perhaps the pair formed by G = K3 and H being the 4-chromatic Mycielski graph
(also called Grötzsch graph), which is known to be the smallest triangle-free graph with

chromatic number 4, see [11]. Indeed, for these two graphs we get a(G×H) ≤ χ(G)+ω(H)
2

=
5
2
< 3 = min{a(G), a(H)}. (In fact, we have equality in the first inequality as Hedetniemi’s

conjecture is known to hold when one of the graphs is complete, see e.g. [34], Problem
9.7.c.) An easy way to see that the parameter a(G) does not belong to the asymptotic
spectrum, in particular, that it is not multiplicative under the OR-product is the following.

Since χ(Gt)
2
≤ χ(Gt)+ω(Gt)

2
≤ χ(Gt) holds, we also have limt→∞

t
√
a(Gt) = limt→∞

t
√
χ(Gt) =

χf (G), where the last equality is again by the McEliece-Posner theorem. If a(G) was

multiplicative under the OR-product, then we would have limt→∞
t
√
a(Gt) = a(G) and

thus a(G) = χ(G)+ω(G)
2

= χf (G). This last equality is false, however, for any graph with
χ(G)−χf (G) 6= χf (G)−ω(G). Such graphs are abound, one particular type of example is
provided by Kneser graphs KG(n, k) defined in Definition 6 of the next section for which
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the fractional chromatic number is n
k

(cf. [42]) that one can fix to be, say, 2.1, while their
chromatic number n− 2k + 2 (see Theorem 7) can get arbitrarily large as n grows.
Similar examples can be obtained even by taking linear combinations of two invariants
that individually belong to the asymptotic spectrum. Let β, γ ∈ Y (S) (we may consider
S to be the collection of all finite simple graphs) be two elements of the asymptotic
spectrum for which there exists a pair of graphs G,H ∈ S such that β(G) < β(H) and

γ(H) < γ(G). Then defining b(F ) := β(F )+γ(F )
2

for every graph F we obviously have that
b(F ) is homomorphism monotone, but b(G×H) < min{b(G), b(H)}. The parameter b is
not multiplicative under the OR-product, otherwise we would have limt→∞

t
√
b(F t) = b(F )

for every graph F . However, we must have limt→∞
t
√
b(F t) = max{β(F ), γ(F )}, which

can be equal to b(F ) only if β(F ) = γ(F ). But our conditions imply that this cannot be
the case for every graph: if we have β(G) = γ(G), then we must have γ(H) < γ(G) =
β(G) < β(H).
Taking, for example, β = χf and γ = ϑ̄ such a required graph pair exists: it is given, for
example, by G = K3 and H being the so-called 5-regular Clebsch graph. (The simpler
term “Clebsch graph” is sometimes used for its complement, which is also called the
10-regular Clebsch graph. The 5-regular Clebsch graph appears, for example, in [21]
as a 16 vertex graph whose three isomorphic copies partition the edge set of K16 thus
establishing the sharp lower bound on the Ramsey number R(3, 3, 3) = 17. It is an
edge-transitive graph with eigenvalues 5, 1, and −3, from which the Lovász theta number
of its complementary graph can be calculated using results from [33].) Then we have
χf (H) = 16

5
> 3 and ϑ̄(H) = 8

3
< 3, while obviously χf (K3) = ϑ̄(K3) = 3, so the claimed

inequalities hold. ♦

4 A lower bound and identifying test cases

Due to the lack of knowledge of the Shannon capacity value for many graphs (note that
even that is not known whether the computational problem given by it is decidable, see
[2]), it is not entirely trivial how to find a pair of graphs on which one could at least try
checking whether there is equality in Corollary 2 in any nontrivial way. In this section
we establish a general lower bound for COR(F × G) and present some graph pairs for
which this lower bound is strictly smaller than the upper bound min{COR(F ), COR(G)}.
Whether either of the two bounds is sharp in these cases remains an open problem.

4.1 Lower bound

For two graphs X and Y we denote by X ⊆ Y if X is a (not necessarily induced) subgraph
of Y . The following proposition gives our lower bound.

Proposition 5.

COR(F ×G) ≥ max{COR(F ′), COR(G′) : F ′ ⊆ F, F ′ → G,G′ ⊆ G,G′ → F}.

10



Proof. Let F0 denote the subgraph F ′ of F that admits a homomorphism to G with largest
value of COR(F ′). Let G0 be the analogous subgraph of G obtained when we exchange the
letters F and G in the previous sentence. The statement is equivalent to the inequality
COR(F ×G) ≥ max{COR(F0), COR(G0)}.

Thus it is enough to show COR(F × G) ≥ COR(F0), the same argument will prove
COR(F ×G) ≥ COR(G0) when exchanging the role of F and G.

This readily follows from Proposition 1 and the well-known fact (see for example [26],
Proposition 2.1 on page 37), that X → F and X → G implies X → F × G. Putting
F0 in the role of X here, we have F0 → F and F0 → G by the assumptions and thus
COR(F0) ≤ COR(F ×G) follows by F0 → F ×G. �

Corollary 6. If F → G then COR(F ×G) = COR(F ).

Proof. This is an immediate consequence of Proposition 5 and Corollary 2. �

Naturally, if we would like to “test” whether the inequality in Corollary 2 can be strict
then we need a pair of graphs F and G for which the upper bound on COR(F×G) provided
by Corollary 2 is strictly larger than the lower bound given in Proposition 5. As the exact
value of Shannon capacity is known only in a few nontrivial cases, finding such a pair is
not a completely trivial matter. We discuss this problem in the following two subsections.

To make it easier to refer to the lower and upper bounds proven in Proposition 5 and
Corollary 2, respectively, we introduce for them the following notations.

Definition 5. For two graphs F and G we define

LB(F,G) := max{COR(F ′), COR(G′) : F ′ ⊆ F, F ′ → G,G′ ⊆ G,G′ → F}

and
UB(F,G) := min{COR(F ), COR(G)}.

A pair of graphs (F,G) will be called a trivial pair if

LB(F,G) = UB(F,G).

Correspondingly, a nontrivial pair will refer to a pair of graphs (F,G) for which
LB(F,G) < UB(F,G).

4.2 Trivial pairs

Although determining the value of Shannon capacity is a notoriously hard problem in
general, there are several cases when it is almost trivial. Most notably, it is well-known
that ω(G) ≤ COR(G) ≤ χ(G) holds for all graphs G, thus whenever χ(G) = ω(G), then
we automatically have COR(G) = ω(G). In particular, this holds for all perfect graphs,
whose definition was actually inspired by the above fact, cf. [5]. There are other cases

11



when COR(G) = ω(G) holds for less trivial reasons. First of all, as already mentioned,
the fractional chromatic number χf (G) also bounds Shannon OR-capacity from above,
thus already ω(G) = χf (G) implies COR(G) = ω(G). Since χf (G) ≤ χ(G) holds for all
graphs G (see [42] for more details), the criterion ω(G) = χf (G) is less restrictive than
ω(G) = χ(G). Famous examples of graphs for which ω(G) = χf (G) < χ(G) are provided
by certain Kneser graphs.

Definition 6. Let n, k be positive integers satisfying n ≥ 2k. The Kneser graph KG(n, k)
is defined as

V (KG(n, k)) =

(
[n]

k

)
,

where [n] = {1, 2, . . . , n} and
(
[n]
k

)
stands for all k-element subsets of [n], while

E(KG(n, k)) = {AB : A,B ∈
(

[n]

k

)
, A ∩B = ∅}.

It is trivial from the definition that ω(KG(n, k)) =
⌊
n
k

⌋
, while it is well-known (see e.g.

[42]) that χf (KG(n, k)) = n
k

holds for all n ≥ 2k. We also mention that

α(KG(n, k)) =

(
n− 1

k − 1

)
follows from the famous Erdős-Ko-Rado theorem [16] and quote the following celebrated
result of Lovász verifying a conjecture of Kneser [31] which implies χf (KG(n, k)) <
χ(KG(n, k)) whenever k > 1 and n/k > 2. (For k = 1 KG(n, k) = Kn and for n/k = 2
KG(n, k) is bipartite, that is, in these cases the Kneser graph is perfect.)

Theorem 7. (Lovász-Kneser theorem [32]) For all n ≥ 2k

χ(KG(n, k)) = n− 2k + 2.

Thus we have COR(KG(n, k)) = ω(KG(n, k)) < χ(KG(n, k)) whenever k > 1 and 2 < n/k
is integral.
An even more general case when COR(G) = ω(G) is provided by the condition ϑ̄(G) =
ω(G) since in general the chain of inequalities

ω(G) ≤ COR(G) ≤ ϑ̄(G) ≤ χf (G)

holds. In [33] Lovász proved the following generalization of the Erdős-Ko-Rado theorem.

Theorem 8. (Lovász [33]) For all n ≥ 2k we have

ϑ̄(KG(n, k)) =

(
n− 1

k − 1

)
= ω(KG(n, k))

for the complementary graph of the Kneser graph KG(n, k), where the last equality is
simply the Erdős-Ko-Rado theorem.

12



This implies that the Shannon OR-capacity of the complementary graph of the Kneser
graph also equals its clique number. Consequences of the foregoing can be summarized
in the following statement.

Proposition 9. The graph pair (A,B) forms a trivial pair whenever

COR(A) = ω(A) and COR(B) = ω(B)

both hold. This happens in particular, when both of the graphs A and B are one of
the following types: a perfect graph, a Kneser graph KG(n, k) where k divides n, or the
complementary graph of a Kneser graph.

Proof. Let (A,B) be a graph pair satisfying the condition and without loss of generality
assume, that ω(A) ≤ ω(B). Then we have Kω(A) → B and therefore LB(A,B) ≥
COR(Kω(A)) = ω(A). On the other hand, UB(A,B) = min{COR(A), COR(B)} =
min{ω(A), ω(B)} = ω(A) holds by the conditions. Thus

ω(A) ≤ LB(A,B) ≤ UB(A,B) = ω(A),

so we must have equality.

The second part of the statement claiming that the types of graphs listed satisfy the
condition follows from the discussion preceding the proposition. �

Remark 5. The proof of Proposition 9 shows that it is enough to have COR(A) =
ω(A) ≤ ω(B) for the conclusion. That is (A,B) is a trivial pair whenever the Shannon
OR-capacity of that one of them which has the smaller clique number is equal to this clique
number, we do not need the similar equality for the other graph. I stated the proposition
in the above less general form, because this way it sounds perhaps less technical. ♦

Proposition 9 lists graph pairs that form trivial pairs and this is known because we know
the value of their Shannon OR-capacity. It can also happen that we do not really know
the actual value of the Shannon OR-capacities of the graphs involved, yet by Corollary 6
we know the equality of our two bounds.
The primary example for a graph with larger Shannon OR-capacity than clique number
is the cycle of length five C5 for which we know COR(C5) =

√
5 > 2 = ω(C5) by Shannon

[43] and Lovász [33]. Shannon’s observation about COR(C5) > ω(C5) was generalized by
Bohman and Holzman [9], who proved that for any odd cycle C2k+1 one has COR(C2k+1) >
2, therefore for any odd cycle of length at least 5, the value of its Shannon OR-capacity
is strictly larger than its clique number. (The actual value of COR(C2k+1) is famously
unknown for any k > 2.) Since a longer odd cycle always admits a homomorphism to a
shorter one (but not vice versa) for arbitrary integers 1 ≤ k ≤ ` we have COR(C2k+1 ×
C2`+1) = COR(C2`+1). In particular, we can state the following consequence of Corollary 6.

Claim 10. The graph pair (C2k+1, C2`+1) is a trivial pair for any two positive integers k
and `. �
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Other types of trivial pairs can be given by taking any graph G of possibly un-
known Shannon OR-capacity value and known chromatic number χ(G) and consid-
ering the graph pair (G,Kχ(G)). Obviously, this is a trivial pair by Corollary 6.
In particular, (KG(n, k), Kn−2k+2) is such a pair by the Lovász-Kneser theorem with
LB(KG(n, k), Kn−2k+2) = UB(KG(n, k), Kn−2k+2) = COR(KG(n, k)), and we know this
in spite of not knowing the exact value of the right hand side unless k is a divisor of n.
(How little is known about COR(KG(n, k)) = CAND(KG(n, k)) when k does not divide
n is indicated by the discussion in the paper [30].) If we change the complete graph in
this pair to a slightly smaller one, for example, we consider the pair (KG(n, k), Kn−2k+1)
then we get a pair that may easily be a nontrivial pair but proving this seems to be
problematic. We may assume that n/k ≤ n− 2k + 1 and thus UB(KG(n, k), Kn−2k+1) =
min{COR(KG(n, k)), COR(Kn−2k+1) = min{COR(KG(n, k)), n− 2k+ 1} = COR(KG(n, k))
since COR(KG(n, k)) ≤ χf (KG(n, k)) = n/k ≤ n − 2k + 1, but it is still problematic
to decide how this COR(KG(n, k)) value relates to LB(KG(n, k), Kn−2k+1) that will be
the largest Shannon OR-capacity attained by an (n− 2k + 1)-chromatic subgraph of the
Kneser graph. This is mentioned only to emphasize the difficulty of coming up with a
graph pair for which its nontriviality can be proven, the problem we consider in the next
subsection.

4.3 Nontrivial pairs

The nontriviality of graph pairs we present in this subsection will be based on properties
of Paley graphs and their variants.

Definition 7. Let q be an odd prime power satisfying q ≡ 1(mod 4). The Paley graph Pq
is defined on the elements of the finite field Fq as vertices. Two vertices form an edge if
and only if their difference in Fq is a square in Fq.

Note that the condition on q ensures that −1 has a square root in Fq and thus a− b is a
square in Fq if and only if b − a is. Thus the definition is indeed meaningful and results
in a(n undirected) graph. In the special case when q itself is a prime number p, edges of
Pp are between vertices whose difference is a quadratic residue modulo p.

We also remark that P5 is just the five-cycle C5 and the graph P17 is well-known to be
the unique graph on 17 vertices not having either a clique or an independent set of size 4,
thus establishing the sharp lower bound on the largest known diagonal Ramsey number
R(4, 4) = 18, see [21]. (In fact, P5

∼= C5 is the unique graph establishing R(3, 3) ≥ 6. For
more on the connection between Ramsey numbers and Shannon capacity, cf. [3, 17, 37].)

Paley graphs are well-known to be self-complementary, vertex-transitive, and edge-
transitive, cf. e.g. [51, 39]. The first two of these properties make them particularly
useful for us by the following theorem of Lovász.
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Theorem 11. (Lovász [33]) If G is a vertex-transitive self-complementary graph on n
vertices, then

COR(G) =
√
n.

Thus we have COR(Pq) =
√
q for all prime powers q ≡ 1(mod 4).

Let p ≡ 1(mod 4) be a prime number. The value of the clique number (or equivalently,
the independence number) of Pp is not known and determining it is a well-known unsolved
problem in number theory, the conjectured value being O((log p)2), cf. [35]. It is not hard
to see (and also follows from Theorem 11 above) that ω(Pp) ≤

√
p. Improving this bound

just by 1 for infinitely many primes p was already a nontrivial task that was achieved by
Bachoc, Matolcsi, and Ruzsa [4] only a few years ago. Recently Hanson and Petridis [23]
managed to improve this substantially by proving the general upper bound

ω(Pp) ≤
√

2p− 1 + 1

2
<

√
2p+ 1

2
.

Notice that this upper bound immediately implies

χ(Pp) >
2p√

2p+ 1
>
√

2p− 1

by χ(Pp) ≥ |V (Pp)|
α(Pp)

= |V (Pp)|
ω(Pp)

. This in turn gives χ(Pp) >
√
p + 1 ≥ d√pe, whenever

√
2p− 1 >

√
p + 1 that is,

√
p > 2√

2−1 , which is true whenever p ≥ 23. This means that

for primes at least 23 the largest subgraph of Pp that can be colored with d√pe colors has
strictly fewer vertices than Pp itself. There are only three primes of the form 4k+1 below
23: 5, 13, 17. As already mentioned above, P17 is well-known from [21] to be the graph
establishing the largest known diagonal Ramsey number R(4, 4) = 18, that is, it has no
clique or independent set on more than 3 vertices. In fact, this also follows from the

Hanson-Petridis bound as well as α(P13) ≤ 3. Therefore we have χ(P17) ≥
⌈
|V (P17)|
α(P17)

⌉
≥⌈

17
3

⌉
= 6 > d

√
17e = 5 as well as χ(P13) ≥

⌈
13
3

⌉
= 5 > d

√
13e = 4. (Obviously, the

analogous strict inequality does not hold for P5
∼= C5.) We summarize these facts as a

consequence of the Hanson-Petridis upper bound.

Corollary HP. If p > 5 is a prime number satisfying p ≡ 1(mod 4), then

χ(Pp) > d
√
pe .

In particular, the largest subgraph of Pp that can be colored with
⌈√

p
⌉

colors has fewer
than p vertices.

Our goal is to present graph pairs (A,B) for which the lower bound LB(A,B) of Proposi-
tion 5 is strictly smaller than the upper bound UB(A,B) = min{COR(A), COR(B)} given
by Corollary 2. The following conjecture, if true, gives infinitely many such pairs. A few
special cases we are going to verify using the computability of the Lovász theta number
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and a program available for its calculation. Afterwards we also give some other graph
pairs that are candidates for the above strict inequality and are variants of those in the
conjecture.

Conjecture 1. Let p > 5 be a prime number satisfying p ≡ 1(mod 4) and set m :=
⌈√

p
⌉
.

Then the graph pair consisting of the Paley graph Pp and the complete graph Km has the
property

LB(Pp, Km) <
√
p = UB(Pp, Km).

Note that the equality UB(Pp, Km) =
√
p above is a fact that follows from Lovász’s

Theorem 11 quoted above, the trivial equality COR(Km) = m and our choice of m =
⌈√

p
⌉
.

Thus the conjecture concerns LB(Pp, Km) being strictly less than
√
p. To present our

argument supporting this conjecture and its variants we introduce some more notation.

Definition 8. For a prime number p satisfying p ≡ 1(mod 4) let Qp−1 be the graph
obtained by deleting a vertex of the Paley graph Pp. Note that since Pp is vertex-transitive
(the isomorphy class of) Qp−1 does not depend on which vertex is deleted.

Furthermore, let Z
(a)
p−2 denote the graph obtained by deleting two adjacent vertices of Pp,

while Z
(n)
p−2 denote the graph obtained by deleting two nonadjacent vertices of Pp. As the

Paley graph Pp is edge-transitive and self-complementary, (the isomorphy class of) neither

Z
(a)
p−2 nor Z

(n)
p−2 depends on which two adjacent or nonadjacent vertices are deleted.

Below we state another conjecture and then show that it would imply Conjecture 1.

Conjecture 2. For every prime number p satisfying p ≡ 1(mod 4)

COR(Qp−1) < COR(Pp).

Proposition 12. Conjecture 2 implies Conjecture 1.

Proof. Let p > 5 be a prime number satisfying p ≡ 1(mod 4) and set m :=
⌈√

p
⌉
.

We already noted (right after stating Conjecture 1) that under these assumptions
UB(Pp, Km) =

√
p, thus Conjecture 1 essentially means LB(Pp, Km) <

√
p.

The upper bound of Hanson and Petridis on ω(Pp) implies that Km does not admit a
homomorphism to Pp, therefore

max{COR(H) : H ⊆ Km, H → Pp} ≤ m− 1 <
√
p. (2)

On the other hand, we know from Corollary HP that any subgraph Q of Pp admitting
a homomorphism to Km has strictly fewer vertices than Pp itself and thus must be a
subgraph of Qp−1, too. Thus by the monotonicity of Shannon OR-capacity, we must have
COR(Q) ≤ COR(Qp−1). Assuming that Conjecture 2 is true, this implies

max{COR(Q) : Q ⊆ Pp, Q→ Km} ≤ COR(Qp−1) < COR(Pp) =
√
p. (3)

The inequalities (2) and (3) imply LB(Pp, Km) <
√
p as needed. �
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Remark 6. It feels unfortunate that we do not have a proof of Conjecture 2. Though
we believe it is true for any prime p (of the form 4k + 1) it is clear that this will not
follow just from the symmetry properties of Pp (that one might believe at first sight), as
the analogous statement is not true for all prime powers q. Indeed, if q = pk for k even,
then it is known that ω(Pq) =

√
q, see [8] (cf. also [4]), and by vertex-transitivity this

immediately implies ω(Qq−1) =
√
q as well, that further implies COR(Qq−1) =

√
q (where

analogously to Qp−1, Qq−1 denotes the graph obtained by deleting a vertex of Pq). ♦

Although we do not have a general proof for COR(Qp−1) < COR(Pp), using the computabil-
ity of the upper bound provided by the Lovász theta number on Shannon OR-capacity we
can decide in several cases that this indeed happens. With the help of the online available
Python code [46] to compute the Lovász theta number for specific graphs1, we can obtain
for example the following values for the first five relevant numbers:

ϑ̄(Q12) ≈ 3.4927 <
√

13, ϑ̄(Q16) ≈ 4.0035 <
√

17,

ϑ̄(Q28) ≈ 5.3069 <
√

29, ϑ̄(Q36) ≈ 6.0025 <
√

37, ϑ̄(Q40) ≈ 6.3493 <
√

41.

In the light of Proposition 12 this leads to the following.

Claim 13. The pairs of graphs (P13, K4), (P17, K5), (P29, K6), (P37, K7), (P41, K7) satisfy
Conjecture 1, that is they form nontrivial pairs. �

Further examples of graph pairs for which our lower and upper bounds do not coincide
can be obtained by using the graphs Qp−1 in place of the Payley graphs Pp. What makes
these examples interesting is the fact that p can be chosen so in several cases that our
lower bound LB(A,B) obtained when considering A = Qp−1 and B an appropriately
chosen complete graph as our graph pair (A,B) is an integer. (Although the relevance of
this is questionable, one might believe that it may be easier to decide whether an integral
lower bound is sharp or not.)

Let us start this part of our discussion by stating the following well-known and easy fact.

Fact 14. Let p be a prime number satisfying p ≡ 1(mod 4). Then the graph Qp−1 is
self-complementary and therefore

COR(Qp−1) ≥
√
p− 1.

The above claimed self-complementarity of Qp−1 is a well-known consequence of the struc-
tural description of self-complementary graphs [40]. (It follows easily from the observation
that each cycle in the cycle decomposition of a complementing permutation of the vertices
of a self-complementary graph should have even length with the possible exception of one
cycle of length 1 that necessarily appears when the number of vertices is odd.) The second

1I am grateful to Anna Gujgiczer for showing me how this code can be used and also for providing
several of the required calculations.
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part of the above Fact is also easy and well-known: if G is a self-complementary graph
on vertex set [n] = {1, . . . , n} and σ is a complementing permutation of [n], then the set
of n sequences {(i, σ(i)) : i ∈ [n]} gives a clique of size n in the second OR-power of G
implying COR(G) ≥

√
n.

The main difference in using COR(Qp−1) ≥
√
p− 1 compared to COR(Pp) =

√
p is that if

p is a prime number then
√
p can never be integral, but

√
p− 1 can be. This happens

in several cases, starting (disregarding p = 2, 5 that are not relevant for us) with p =
17, 37, 101 (cf. sequence A002496 of The Online Encyclopedia of Integer Sequences [38]).
Whether this sequence (that is the sequence of primes that are 1 larger than the square of
an integer) is infinite (as it is believed to be) is a famous open problem in number theory
(one of the four problems called Landau’s problems along with Goldbach’s conjecture, the
twin-prime conjecture, and Legendre’s conjecture).

Based on the above remarks the following conjecture, parallel to Conjecture 1, can be
formulated.

Conjecture 3. Let p > 5 be a prime number for which p − 1 = s2 for some positive
integer s. Then

LB(Qp−1, Ks) < s = UB(Qp−1, Ks).

Here again, s = min{COR(Qp−1), COR(Ks)} is a fact that follows from our discussion
above, so the real content of the conjecture is that LB(Qp−1, Ks) < s holds. This would
follow from the following conjecture that is the analog of Conjecture 2 in this setting.

Conjecture 4. For every prime number p > 5 satisfying p = s2 + 1 for some positive
integer s

max{COR(Z
(a)
p−2), COR(Z

(n)
p−2)} < s.

Proposition 15. Conjecture 4 implies Conjecture 3.

Proof. The upper bound of Hanson and Petridis on ω(Pp) implies that Ks does not admit
a homomorphism to Pp, therefore it also does not admit a homomorphism into Qp−1 ⊆ Pp.
(In fact, vertex-transitivity of Pp implies that ω(Qp−1) = ω(Pp).) Thus we have

max{COR(H) : H ⊆ Ks, H → Qp−1} ≤ s− 1. (4)

On the other hand, the Hanson-Petridis upper bound on ω(Pp) = α(Pp) = α(Qp−1)

implies that χ(Qp−1) ≥
⌈

p−1
α(Qp−1)

⌉
> s whenever s ≥ 4 (which is always the case for us

as p > 5). Therefore any subgraph Z of Qp−1 admitting a homomorphism to Ks has

strictly fewer vertices than p − 1 and thus must be a subgraph of at least one of Z
(a)
p−2

and Z
(n)
p−2. By the monotonicity of Shannon OR-capacity this implies that COR(Z) ≤

max{COR(Z
(a)
p−2), COR(Z

(n)
p−2)}. Assuming the validity of Conjecture 4 this implies

max{COR(Z) : Z ⊆ Qp−1, Z → Ks} ≤ max{COR(Z
(a)
p−2), COR(Z

(n)
p−2)} < s. (5)

The inequalities (4) and (5) imply LB(Qp−1, Ks) < s as needed. �
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As it is the case with Conjecture 2 we also do not have a proof of Conjecture 4. But
using again the Python code [46] we can obtain some values that support its validity and
provide us some particular pairs of graphs for which our two bounds differ.

In particular, we obtain that

max{ϑ̄(Z
(a)
15 ), ϑ̄(Z

(n)
15 )} = max{3.8726, 3.8849} < 4,

max{ϑ̄(Z
(a)
35 ), ϑ̄(Z

(n)
35 )} = max{5.9128, 5.9251} < 6,

and
max{ϑ̄(Z

(a)
99 ), ϑ̄(Z

(n)
99 )} = max{9.9496, 9.9574} < 10.

Thus we have the following.

Claim 16. Each of the graph pairs (Q16, K4), (Q36, K6), and (Q100, K10) satisfy Conjec-
ture 3, that is they form nontrivial pairs. �

Remark 7. Concerning the pair (Q16, K4) it is perhaps interesting to remark that while
LB(Q16, K4) < 4 we also have LB(Q16, K4) ≥ 1+

√
5 > 3. This follows from the fact that

P17 and thus Q16, too, contains as a subgraph the 6-vertex wheel graph W6 = C5 ⊕K1,
whose Shannon OR-capacity is known to be 1 + COR(C5) = 1 +

√
5, cf. [43, 1]. ♦

Thus the graph pairs listed in Claims 13 and 16 provide “test cases” for investigating the
possibility of equality in Corollary 2. Let us stress again, that in the light of Theorem 4
any proof showing for example COR(Q16 ×K4) < 4 would imply the existence of a graph
parameter that satisfies all the four conditions in Definition 4 and yet fails to satisfy the
Hedetniemi-type equality.
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