Note

On Set Intersections

LÁSZLÓ BABAI

Department of Algebra, Eötvös University, H-1088 Budapest, Muzeum krt. 6-8, Hungary

AND

PÉTER FRANKL

Mathematical Institute of the Hungarian Academy of Science, H-1053 Budapest, Realtanoda u. 13-15, Hungary

Communicated by the Managing Editors

Received February 18, 1978

Let L be a finite set of nonnegative integers. Let k and n be natural numbers satisfying $n \geq k > \max L$. We call a family \mathcal{F} of k-subsets of an n-set X an (n, k, L)-system if $|F \cap F'| \in L$ for any $F, F' \in \mathcal{F}$, $F \neq F'$. We are interested in the maximum cardinality an (n, k, L)-system can have. We denote it by $f(n, k, L)$.

Ryser [4] proved that $f(n, k, \{1\}) \leq n$. This result has been generalized by Ray-Chaudhuri and Wilson [3] to

$$f(n, k, L) \leq \binom{n}{|L|}.$$

Deza, Erdös and Frankl [1] obtained that for $n > n_0(k)$,

$$f(n, k, L) \leq \prod_{l \in L} \frac{n - l}{k - l}.$$

Deza, Erdös and Singhi [2] proved that

$$f(n, k, \{0, 1\}) \leq n \quad \text{whenever} \quad l \neq k.$$

In the present note we are discussing the possible generalizations of this last result.

Theorem 1. Suppose that the greatest common divisor of the members of L does not divide k. Then $f(n, k, L) \leq n$.

103
Proof. Let p' be a prime power which divides each $i \in L$ but does not divide k.

Let $\mathcal{F} = \{F_1, \ldots, F_m\}$ be an (n, k, L)-system consisting of subsets of $X = \{1, \ldots, n\}$. Let $a_i = (a_{i1}, \ldots, a_{in})$ be the characteristic vector of F_i, i.e., $a_{ij} = 1$ if $i \in F_j$ and $a_{ij} = 0$ otherwise. We assert that the vectors a_1, \ldots, a_m are linearly independent over the rationals. This implies the inequality $m \leq n$, hence the theorem.

Assume, to the contrary, that $\sum_{i} \gamma_i a_i = 0$, where we may suppose the γ_i's to be integers with g.c.d. $(\gamma_1, \ldots, \gamma_m) = 1$. For $1 \leq q \leq m$, consider the inner product $0 = (a_q, \sum \gamma_i a_i) = \sum \gamma_i(a_q, a_i) - \sum \gamma_i |F_q \cap F_i| = \gamma_q |F_q|$ (mod p'). As $|F_q| = k \equiv 0$ (mod p'), we infer $p | \gamma_q$. This holds for $q = 1, \ldots, m$, a contradiction.

Theorem 2. Let $L = \{l_0, \ldots, l_{s-1}\}$ with $l_0 = 0$. Suppose we can choose l_1, \ldots, l_t not necessarily different members of $L - \{0\}$ such that \(\sum_{q=1}^{t} l_{q} = k \). Then for $n \geq 2k^2$ we have $f(n, k, L) \geq n^2/4k^2$.

Proof. Let p be the greatest prime not exceeding n/k. Then of course $p \geq n/2k$. Let us choose k pairwise disjoint p-subsets X_r of the n-set X; $X_r = \{x_r^1, \ldots, x_r^n\}$ ($r = 1, \ldots, k$). For $1 \leq i, j \leq p$ set

$$F_{i,j} = \{x_r^{h(r,i,j)}: r = 1, \ldots, k\},$$

where

$$h(r, i, j) = i + (q - 1)j \pmod{p},$$

for

$$\sum_{v=1}^{q} l_{v} < r \leq \sum_{v=1}^{q+1} l_{v}, \quad (0 \leq q < t).$$

Let $\mathcal{F} = \{F_{i,j}: 1 \leq i, j \leq p\}$.

We have $t \leq p$ since $t \leq k \leq n/2k \leq p$. Using this, one readily verifies that \mathcal{F} is an (n, k, L)-system. We conclude that

$$f(n, k, L) \geq p^2 \geq n^2/4k^2.$$

Corollary. Let n, k be positive integers and $L = \{l_0, l_1, \ldots, l_{s-1}\}$, where $0 = l_0 < l_1 < \cdots < l_{s-1}$, and $s \geq 3$. Assume that $n \geq 2k^2$ and $k \geq (s - 2) l_{s-1}/s - 2$. Then $f(n, k, L) \geq n^2/4k^2$ or $f(n, k, L) \leq n$ according to whether g.c.d.(l_1, \ldots, l_{s-1}) divides k or not.

Proof. By Theorem 1 we may suppose that g.c.d.(l_1, \ldots, l_{s-1}) divides k. This implies that $\sum_{i=1}^{s-1} \gamma_i l_i = k$ for some integers $\gamma_1, \ldots, \gamma_s$. Let us choose the γ_i's such that the sum of the negative γ_i's is maximal. We assert that none of the γ_i's is negative.
For, assume \(\gamma_j < 0 \). Then

\[
\sum_{i \neq j} \gamma_i l_i > k \geq (s - 2) l_{s-1} l_{s-2}.
\]

This implies that \(\gamma_q l_q > l_{s-1} l_{s-2} \) for some \(q \neq j \), hence \((\gamma_q - l_j) l_q > l_{s-1} l_{s-2} - l_l q \geq 0 \). Now, setting \(\delta_j = \gamma_j + l_j \), \(\delta_q = \gamma_q - l_q \) and \(\delta_i = \gamma_i \) for \(i \neq j, q \), we arrive at a contradiction since \(\sum_{i=1}^{s-2} \delta_i l_i = k \) but the sum of the negative \(\gamma_i \)'s is strictly less than the sum of the negative \(\delta_i \)'s.

This proves that \(k \) can be written as a nonnegative integer linear combination of the \(l_i \)'s and \(f(n, k, L) \geq n^a/4k^a \) follows by Theorem 2.

REFERENCES