Note

The Radon Transform on Abelian Groups

P. Frankl

CNRS, Paris, France

AND

R. L. Graham

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Communicated by Managing Editors

Received July 15, 1986

The Radon transform on a group A is a linear operator on the space of functions $f: A \rightarrow \mathbb{C}$. It is shown that if $A = \mathbb{Z}_p^n$ then the Radon transform with respect to a subset $B \subset A$ is not invertible if and only if B has the same number of elements in every coset of some maximal subgroup of A. The same does not hold in general for arbitrary finite abelian groups.

INTRODUCTION

Let A be a finite group and $B \subset A$, a subset. For every function $f: A \rightarrow \mathbb{C}$ one defines the function $F_B: A \rightarrow \mathbb{C}$, the Radon transform of f with respect to B by

$$F_B(a) = \sum_{b \in B} f(ab). \quad (1)$$

The principal problem we address here is: for which subsets B is the Radon transform invertible, i.e., knowledge of the function F_B determines f uniquely. Such sets are called unique inversion sets. Unique inversion sets were investigated in Diaconis and Graham [1], where particular attention is given to the case $A = \mathbb{Z}_2^n$.

The main result of this note gives a combinatorial description of unique inversion sets in \mathbb{Z}_p^N when p is a prime.

Let us say that B is uniformly distributed modulo the subgroup $A_0 < A$ if $|B \cap aA_0|$ is the same for all $a \in A$. Note that this implies $|A:A_0|$ divides $|B|$.
THEOREM 1.1. A subset \(B \subseteq A = \mathbb{Z}_p^n \) is not a unique inversion set if and only if \(B \) is uniformly distributed modulo some maximal subgroup \(A_0 < A \).

Remark. Most subsets \(B \) of \(\mathbb{Z}_p^n \) have size close to \(p^n/2 \). Since \(\mathbb{Z}_p^n \) has \((p^n-1)/(p-1)\) maximal subgroups, for such \(B \), the problem whether \(B \) is a unique inversion set can be decided in time polynomial in \(|B| \). On the other hand, in [1] it is shown that the existence of a polynomial time algorithm for general \(B \subseteq \mathbb{Z}_2^n \) implies \(P = NP \).

Proof of Theorem 1.1. One can look at (1) as a system of \(|A| \) linear equations in the \(|A| \) unknowns \(\{f(a) : a \in A\} \). Therefore \(B \) is a unique inversion set if and only if the coefficient matrix \(M(B) \) of (1) is nonsingular.

If \(A \) is abelian and \(K(A) \) denotes the character matrix of \(A \), then it is easy to check that the Hermitian matrix \(K(A)/\sqrt{|A|} \) can be used to bring \(M(B) \) into diagonal form, i.e., the matrix \(K(A)M(B)K(A)^*\) is diagonal. This leads to the following.

PROPOSITION 2.1 (Frobenius, cf. [2]). Let \(\{\psi_d : d \in A\} \) be the set of irreducible characters of the abelian group \(A \). Then the eigenvalues of \(M(B) \) are the numbers \(\psi_d(B) = \sum_{a \in B} \psi_d(a) \).

Let us now use this formula to prove Theorem 1.1. Suppose that \(B \subseteq \mathbb{Z}_p^n \) is not a unique inversion set. Then there exists an element \(d \in A \) so that \(\sum_{a \in B} \psi_d(a) = 0 \). Since the statement is trivially true for \(B = \emptyset \), we may assume that \(B \) is non-empty. Consequently, \(d \neq 1 \) and thus \(A_0 = \{a \in A : \psi_d(a) = 0\} \) is a maximal subgroup. For \(0 < j < p \), let us define \(A_j = \{a \in A : \psi_d(a) = e^{2\pi i j/p}\} \). Then \(A = A_0 \cup A_1 \cup \cdots \cup A_{p-1} \) is the decomposition of \(A \) into cosets of \(A_0 \).

Setting \(b_j = |B \cap A_j| \) for \(0 \leq j < p \), and \(x = e^{2\pi i/p} \) we obtain

\[
0 = \psi_d(B) = \sum_{j=0}^{p-1} b_j x^j.
\]

Therefore the minimal polynomial \(1 + x + \cdots + x^{p-1} \) of \(e^{2\pi i/p} \) must divide \(b(x) = \sum_{j=0}^{p-1} b_j x^j \). Since \(\deg b(x) \leq p-1 \), \(b(x) = c(1 + x + \cdots + x^{p-1}) \) follows for some constant \(c \). This proves \(b_0 - b_1 - \cdots - b_{p-1} = c \), as desired.

The second implication of the theorem holds even for general groups. Let \(A_0, A_1, \ldots, A_{m-1} \) be the left cosets of \(A_0 \) in \(A \) in some order and suppose that for some \(b \), \(|B \cap A_j| = b \) holds for \(0 \leq j < m \). Consider the function \(f(a) \) defined by

\[
f(a) = \begin{cases}
1 & a \in A_0, \\
-1 & a \in A_1, \\
0 & \text{otherwise}.
\end{cases}
\]
It is easily checked that $F_B(a) = \sum_{ab \in A} h \cdot c \cdot b \cdot b = b - B = 0$.

Let us now investigate in more detail the case of general (abelian) groups. The simplest example of a nonunique inversion set is probably an arbitrary subgroup. Indeed, if $B < A$ then the Radon transform F_B is constant on each left coset of B. Thus the space of the functions F_B has dimension at most $n/|B|$.

The same also holds if B is the disjoint union of right cosets of B.

Proposition 2.2. Suppose that D_1, \ldots, D_r are subgroups of A satisfying $\sum_{i=1}^r 1/|D_i| < 1$ and B is the disjoint union of some right cosets of D_1, \ldots, D_r. Then B is not a unique inversion set.

Proof. Let B_r be the subset of B which is the union of the right cosets of D_i. Let V_i denote the vector space of functions F_{B_r}. As we showed before $\dim V_i \leq n/|D_i|$. Consequently V_1, V_2, \ldots, V_r generate a subspace, say W, of dimension less than n. Since F_B is contained in W, the statement follows.

Remark. If $r \geq 2$, then the preceding conclusion holds even if $\sum_{i=1}^r 1/|D_i| = 1$, since the constant function is contained in each of the V_i. Thus, the simplest group for which Theorem 1.1 fails is \mathbb{Z}_p^*, taking as B the cyclic subgroup of order p in it.

For abelian groups one can actually compute $\dim V_i$ as follows.

Proposition 2.3. Suppose that B is a coset of a subgroup D of the abelian group A. Then the dimension of the vector space of the functions $F_B(a)$ is $n/|D|$.

Proof. In view of Proposition 2.1 the dimension in question is simply the number of characters ψ_D with $\psi_D(B) \neq 0$. Now $|\psi_D(B)| = |B| \neq 0$ if $D \leq \text{Ker} \psi_D$, i.e., for all $n/|D|$ characters of A/D. Otherwise $\psi = \psi_{D,D}$ is a non-trivial irreducible character of D, and consequently $(\psi, 1_D) = 0$, which implies $\psi_D(B) = 0$.

Using Proposition 2.2 we can get examples of groups of square-free order for which Theorem 1.1 fails. For example, in \mathbb{Z}_{30} the group of integers (mod 30) take $B = \{0, 1, 11, 15, 21\} = \{0, 15\} \cup \{1, 11, 21\}$. Then the corresponding Radon transform has only dimension 20.

However, by the Chinese remainder theorem, this approach cannot work for cyclic groups of order pq, p and q being distinct primes. Nevertheless, if A is slightly larger, e.g., if A has a non-trivial subgroup A_0 with $A/A_0 \cong \mathbb{Z}_{pq}$, then we do not have to worry about disjointness. Suppose that $B < A$ is such that the elements of B considered modulo A_0 form the union of one coset of \mathbb{Z}_p and one of \mathbb{Z}_q. In particular, $|B| = p + q$. Then B is not a unique
inversion set in view of Proposition 2.2, and in most cases it is not uniformly distributed modulo any maximal subgroup of \(A \) (a simple sufficient condition is \((p + q, |A|) = 1\)). In this way we can show that Theorem 1.1 fails for all abelian groups except \(\mathbb{Z}_p^n \) and \(\mathbb{Z}_{pq} \).

Problem 2.4. Does Theorem 1.1 hold for \(A = \mathbb{Z}_{pq} \)? One can easily check that the answer is "yes" for \(\mathbb{Z}_{pq} \). In general, a positive answer to the problem is equivalent to a negative one to the following.

Problem 2.5. Let \(\phi(x) \) be the \(pq \)th cyclotomic polynomial, i.e., \(\phi(x) = (x - 1)(x^{pq} - 1)/(x^p - 1)(x^q - 1) \). Is there a polynomial \(g(x) = \sum_{i=0}^{pq-1} \varepsilon_i x^i \) with \(\varepsilon_i = 0, 1 \) so that \(\phi(x) \) divides \(g(x) \) but neither \(x^{p-1} + \cdots + x + 1 \) nor \(x^{q-1} + \cdots + x + 1 \) divides \(g(x) \).

Note added in proof. Peter Cameron has just shown that Theorem 1.1 does indeed hold for \(A = \mathbb{Z}_{pq} \).

REFERENCES