CSC 220 Algorithms
Midterm Test B, March 31, 2003

1. Let f(n),g(n) and h(n) be positive functions defined on the set of positive
integers, and assume that f(n) = O(g(n)). Is it true that

(a) h(f(n)) = O(h(g(n));

False, because of the following counterexample: f(n) = n, g(n) = 2n,h(n) = 3

Then f(n) < g(n) for every n, so f(n) = O(g(n)). On the other hand, there exists
no constant C such that h(f(n)) = 5= < Ch(g(n)) = C55 for all sufficiently large n,
because then 2%: < C = 2" < C for all n, which is impossible.

(b) f(2n) = O(g(3n)) 7
False, because of the following counterexample: f(n) = g(n) = 5. Then f(n) =
O(g(n)), but there exists no constant C such that f(2n) = 57 < Cg(3n) = C5; for

22n
all n, because then we would have g%: < C = 2" < C for all n, which is impossible.

2. Using the method of QUICKSORT, find the right (‘splitting’) position of 67
in the unsorted sequence

67,100, 38,79, 58,25, 41, 3, 66.
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Figure 1: Quicksort’s Parition Algorithm



3. MERGESORT the following sequence:

20,93, 19, 75,82, 12, 41, 23.

Show all steps. What is the total number of comparisons?
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Figure 2: Mergesort Algorithm

Merge two sorted lists (of sizes p and q) by noticing that the smallest element in
their union is the smaller of the smallest element on the first list and the smallest
element of the second list. Whichever is smaller, erase it, and repeat the procedure
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for the truncated lists. This takes < p + ¢ — 1 comparisons.

Altogether the number of comparisons used by MERGESORT on n elements is

n[logyn] — 292" + 1 which is 17 for n=8.
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4. Let f(0) =0 and
n—1
f(n) <n—1+3% f(3)
i=0

for every n > 1. Show that f(n) < 2" ! for all n > 1.

f(n) attains its largest value when all inequalities become equations, so it is suffi-
cient to solve the recurrence relation.
(*) £0) 0
fn) =(n—1)+ X" f(i) for every n > 1

For instance, for n=1, f(1) =1—-1+ %Y, f(i) =0
Substituting n-1 for n, we obtain
(**) f(n-1) = (n—1)+ 307" f(i) for every n > 2
Subtracting (**) from (*), we get

fn) —f(n—-1)=1+ f(n—1)

fn) =2f(n—1)+1
Yielding the recurrence

f(1) =0

(%) f(n) =1+2f(n—1)
fn) =2f(n—1)+1
fn) =22f(n—2)+1)+1
fn) =2022f(n—3)+1)+1)+1

n) =2""1f1) 422423 420 420

f(
f(n) =27"242n3 4 421490 f(1) =0
f(n) =2+"1-1 np2i =2t

f(n) < 277! for every n > 2
One can also prove by an easy induction that (¥***) implies f(n) = 2"~! —1 for all
n > 1. This is true for n=1. Let n > 2, and assume that we have already shown that
f(k)=2F1—1forallk <n. Then f(n) =2f(n—1)+1=2(2"2-1)+1=2""1-1
as required, where the second equation follows from the induction hypothesis with k
=n-1.

5. We have 9 coins that look the same. 3 of them have weight 1, 3 others
have weight 0.9, and the remaining 3 have weight 0.95. Prove that any algorithm for
determining the weight of each coin by a two-pan balance uses at least 7 measurements
in the worst case.

According to the Information Theory Bound, any algorithm for determining
the weight of each coin by a two-pan balance requires at least [log/N| measurements
in the worst case, where the number of outcomes of a single measurement k=3 (the
left side can be lighter than, heavier than, or equal to the right side), and the total
number of possible outputs of the algorithm N = C(9,3) * C(6,3) = 253743211 = 1680.
Thus, we have [logyN| = [log31680] = 7.

6. Design an algorithm for simultaneously finding the smallest element, the largest
element, and the median among n distinct §1umbers using fewer than 24n comparisons



in the worst case, provided that n is sufficiently large.

We can find the smallest (resp. largest) element in n-1 steps by using a binary tree
structure of depth [logon]. At the first level we arrange the elements in |n/2] pairs,
compare each element with its pair and discard the larger (resp. the smaller) one.
Proceeding like this, at the bottom of the tree we find the smallest (resp. largest)
element.

Notice that to find the smallest and the largest elements simultaneously, we need
only (n—1)+(n—1) — |n/2] < 2(n—1) comparisons, because at the first level after
comparing each element with its pair, if we know which one is smaller it follows that
the other one is larger. So it is sufficient to do these |n/2] comparisons only once.

We have learned in class that the median of n elements can be determined using
at most 22n comparisons. So, altogether one can simultaneously find the smallest,
the largest elements using at most 3/2(n — 1) + 22n < 23.5n < 24n comparisons in
the worst case.




Addendum
QUICKSORT(A, p, 1)

1. ifp<r

2. then q < PARTITION(A,p,r)
3. QUICKSORT(A,p,q)

4 QUICKSORT(A,q+1,r)

PARTITION(A, p, 1)

=000 N O U W N

pivot < A[p]
14p—1
j—r+1
while TRUE
do repeat j<+ j—1
until Afj] < pivot
repeat 1 <1+ 1
until A[i] > pivot
. ifi<j
0. then exchange A[i] «+ Aj]
1. else return j

MERGE-SORT(A,p,r)
ifp<r
then q < [(p+7)/2]
MERGE( MERGE-SORT(A,p,q) , MERGE-SORT(A,q+1,r) )



