CSC 220 Algorithms
Midterm Test A, March 31, 2003

1. Design an algorithm for simultaneously finding the second smallest and the
second largest elements among n distinct numbers using at most 3n/2 + o(n) com-
parisons.

We can find the smallest (resp. largest) element in n-1 steps by using a binary tree
structure of depth [logsn]. At the first level we arrange the elements in |n/2] pairs,
compare each element with its pair and discard the larger (resp. the smaller) one.
Proceeding like this, at the bottom of the tree we find the smallest (resp. largest)
element.

Notice that to find the smallest and the largest elements simultaneously, we need
only (n—1)+4 (n—1) — [n/2] < 3(n—1) comparisons, because at the first level after
comparing each element with its pair, if we know which one is smaller it follows that
the other one is larger. So it is sufficient to do these |n/2] comparisons only once.

To find the second smallest (resp. second largest) element, it is sufficient to de-
termine the smallest (resp. largest) element among those numbers that have been
compared with the smallest (resp. largest) element during the above procedure. This
can be done using [logan| — 1 comparisons, because there is at most one such element
at each level.

So altogether the number of comparisons needed is at most 2(n—1) +2([logsn] —
2[logan]—3.5 _ 0
TR = .

1) = 2n + o(n), because lim,,_,

10
-

N
10 2 4 8 Input
Y Y g
\ /

2

Figure 1: Min-Max Algorithm

2. Using the method of QUICKSORT, find the right (‘splitting’) position of 25
in the unsorted sequence

25,20, 93,19, 75,82, 12, 41, 23.

A Tae

l@ 20 93 (4 75 82 12 HI 23
F

23| 20743 14 75 82 12 41 @

23 20093 10 1 22 12§

23 20 |@)W v 82 iz wl|as
23 20 | @ [q 75 42 12)W 9
2 2 2|6 o @ 6
23 20 12 14 {1 82 @4 9
23 20 |2 14 @HSJ.|‘?5 Yl 93
23 20 12 19 [€9]%2 75 Ml 93

Figure 2: Quicksort’s Parition Algorithm

3. MERGESORT the following sequence:
20,93,19, 75, 82, 12, 41, 23.
Show all steps. What is the total number of comparisons?

U SEqUENCE

inial Sequence
|

Figure 3: Mergesort Algorithm

Merge two sorted lists (of sizes p and q) by noticing that the smallest element in
their union is the smaller of the smallest element on the first list and the smallest
element of the second list. Whichever is smaller, erase it, and repeat the procedure
for the truncated lists. This takes < p + ¢ — 1 comparisons.

Altogether the number of comparisons used by MERGESORT on n elements is
n[logan] — 2M*°%2"1 4 1 which is 17 for n=8.

4. Let f(0) =0 and f(n) < 2f(|n/3]|)+n for every n > 1. Prove that f(n) < 5n
for every n.

We prove f(n) < 5n by induction on n. For n=0 it is true. Assume that n > 0
and that we have already proved that f(k) < 5k for every k < n. Then we have
f(n) <2f(|n/3])+n <2x5[n/3]+n < 10n/3+n < bn, as required. (At the second
inequality, we applied the induction hypothesis f(k) < 5k with £ = |n/3]| < n).

5. Suppose that there exists an algorithm for finding the second smallest element
among n distinct numbers, using at most f(n) comparisons in the worst case.

Show that then one can also identify simultaneously the smallest and the second
smallest elements, using at most f(n) comparisons in the worst case.

Suppose we have an algorithm A for finding the second smallest among n distinct
numbers using at most f(n) comparisons. Denote the ouput of A by x. Clearly, A
must have compared x to atleast one other element, otherwise it would be impossible
to come to any conclusion about its position.

Suppose that A compared x to the elements y1, y2, ¥s3, .., Y. We claim that x must
turn out to be larger than precisely one of these elements. Indeed, if x was smaller
than all y’s, then we could not have ruled out the possibility that x is the smallest
element. If x was larger than two y’s, then it could not be the second smallest.

Consequently, x turned out to be larger than one element, say, y;, and then this
element must be the smallest element, since it is smaller than the second smallest.
Moreover, we established this fact without any extra comparison.

6. Let f(n) and g(n) be positive functions defined on the set of positive integers,
and assume that f(n) = o(g(n)). Is it true that

(a) f(n?*) +1 = o(g(n®) + 1); False, because of the following counterexample:

f(n) = £, g(n) = 1. Then we have f(n) = o(g(n)) because limy, % = lim,_,0(1/n) =

0. On the other hand, lim, e 205HE = Tim, o0 4 = £ # 0, 50 f(n?) + 1 #
o(g(n?) + 1).

(b) f2(n+1) = o(g2(n+1)) ? True. Since f(n) = o(g(n)), we have lim,, o, {% =

g(n)
f(n+1) 2 (n+1) f(n+1)

lim,, o0 s = 0- Therefore, lim,,_, T = lirnn_,oo(g(nH))2 = 0, which means

that f2(n+ 1) = o(g*(n + 1)), by definition.

Addendum
QUICKSORT(A, p, 1)

1. ifp<r

2. then q < PARTITION(A,p,r)
3. QUICKSORT(A,p,q)

4 QUICKSORT(A,q+1,r)

PARTITION(A, p, 1)

H =000 N OO W N

pivot < A[p]
14 p—1
j—r+1
while TRUE
do repeat j<+ j—1
until Afj] < pivot
repeat 1 <1+ 1
until Afi] > pivot
. ifi<j
0. then exchange A[i] «» Aj]
1. else return j

MERGE-SORT(A,p,r)
ifp<r
then q < [(p+7)/2]
MERGE(MERGE-SORT(A,p,q) , MERGE-SORT(A,q+1,r))

