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Abstract

Given a finite point set P in the plane, let b(P )
be the smallest number of points q1, q2, . . . not belong-
ing to P which together block all visibilities between
elements of P , that is, every open segment whose end-
points belong to P contains at least one point qi. Let
b(n) denote the minimum of b(P ) over all n-element
point sets P , with no three points on the same line. It
is known that 2n − 3 ≤ b(n) ≤ n2c

√
log n, where c is

an absolute constant. Here we raise the lower bound
to

(

25
8
− o(1)

)

n. A better upper bound is obtained
for blocking all edges in simple complete topological
graphs.
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1 Introduction

Let P be a set of n points in the plane, no three of which are
collinear. We want to find a small point-set Q, disjoint from
P , which blocks all visibilities between pairs of points in P .
In other words, every open segment whose endpoints belong
to P must contain at least one element of Q. Let b(P ) denote
the smallest size of such a “blocking” set Q, and let b(n) be
the minimum of b(P ), over all n-element point sets P , with
no three collinear points. Recently, there has been renewed
interest in the subject; see, e.g., [5]. However, it is still not
known whether b(n) is superlinear in n.

Since each segment connecting a fixed element of P to the
other elements must contain a distinct blocking point, we have
b(n) ≥ n− 1. Moreover, all edges of a triangulation of P must
be blocked by distinct points. Since every triangulation has at
least 2n− 3 edges, it follows that b(n) ≥ 2n− 3. According to
Matoušek [5], no better lower bound was known for b(n).

On the other hand, we trivially have b(n) ≤
(

n

2

)

. For a
finite point set P in the plane, let µ(P ) be the size of the set
of midpoints of all

(

n

2

)

segments determined by P . Let µ(n)
stand for the minimum of µ(P ), over all n-element point sets
P , with no three points collinear. According to a result of
Pach [6], µ(n) ≤ n2c

√
log n, where c is an absolute constant. In

other words, for any n, there exists a set of n points in the
plane, with no three points collinear, whose set of midpoints
is bounded by the above function. This shows that, if µ(n) is
not O(n), it can be only slightly superlinear. Obviously, for
any P , the set of midpoints of all segments determined by P
blocks all visibilities between point pairs of P , so that

b(n) ≤ µ(n) ≤ n2c
√

log n,

where c is an absolute constant.
For points in convex position, that is, for the vertex set P

of a convex polygon, it is known that b(P ) = Ω(n log n); see
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[5]. Indeed, assigning weight 1/i to each point pair separated
by i − 1 other vertices of P , it is easy to check that the total
weight of all point pairs blocked by a single point is at most 1.
Therefore, we have

b(P ) ≥ n

⌊n−1

2
⌋

∑

i=1

1

i
≥

n log n

2
. (1)

This argument that goes back to [4] was implicit in [1], and
has been rediscovered by A. Holmsen, R. Pinchasi, G. Tardos,
and others. For the regular n-gon Pn, it is known [7] that
b(Pn) = Ω(n2). It is perfectly possible that the same is true
for all convex n-gons.

Throughout this note, we always assume that our point sets
are in general position, that is, no three points are collinear.
In Section 2, we raise the lower bound on b(n) from 2n − 3 to
(

25
8
− o(1)

)

n.

Theorem 1. b(n) ≥
(

25

8
− o(1)

)

n.

A geometric graph is a graph drawn by straight-line edges
on a set of vertices in the plane in general position. If the edges
of G are drawn by continuous arcs connecting the correspond-
ing pair of vertices but not passing through any third vertex,
then G is called a topological graph. A topological graph is
said to be simple if any pair of its edges meet at most once,
which may be a common endpoint or a common interior point
at which the two edges properly cross, but not both. Tangen-
cies between the edges of G are not allowed. If it leads to no
confusion the topological graph G and its underlying abstract
graph will be denoted by the same letter; see [2, p. 396].

In Section 3, we discuss what happens under a natural re-
laxation of straight-line visibility. Suppose that we want to
block all edges of a simple complete topological graph on n ver-
tices in the plane. Is it possible that for some of these graphs
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O(n) blocking points suffice? More precisely, let b̃(n) denote
the smallest number b̃ for which there exists a simple complete
topological graph G on n vertices, and a set of b̃ points dif-
ferent from the vertices of G such that every edge of G passes
through at least one of these points.

As in the geometric case, we trivially have b̃(n) ≥ n − 1.
Perhaps b̃(n) ≥ 2n − 3 also holds. From the other direction,
we prove the following.

Theorem 2. b̃(n) = O(n logn).

2 Proof of Theorem 1

We can assume that n ≥ 10. Recall that if P ′ is a set of n
points in (strictly) convex position, then b(P ′) ≥ |P ′| log |P ′|/2.
Consider an n-element point set P , and let P ′ = conv(P ), and
h = |P ′| be the number of vertices on the convex hull of P .
Since every edge of a fixed triangulation must contain at least
one blocking point, we have

b(P ) ≥ 3n − h − 3. (2)

We distinguish two cases depending on whether h is large or
respectively, small, with respect to n. Assume first that h ≥
25

2

n
log n

. Note that log h ≥ (log n)/2. Obviously, b(P ) ≥ b(P ′),
and the lower bound for the convex case yields:

b(P ) ≥ b(P ′) ≥
1

2
·
25

2
·

n

log n
·
log n

2
=

25

8
n,

as required. Therefore, we can assume for the rest of the proof
that h ≤ 25

2

n
log n

. Under this assumption, (2) already gives a

better lower bound: b(P ) ≥ 3n − h − 3 = 3n − o(n).
To further improve this bound, we select a suitable trian-

gulation ∆ of the point set, and argue that in addition to the
blocking points required by the edges of ∆, a constant fraction
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of n further blocking points are required. Assume for simplic-
ity that n = 8k + 2, for some positive integer k. Pick a point
p0 ∈ conv(P ), and label the remaining n−1 points in clockwise
order of visibility from p, as p1, p2, . . . , pn−1.

Define k 10-element subsets of P as follows. Let

Pi := {p0, p8i−7, p8i−6, . . . , p8i+1}, i = 1, 2, . . . , k.

Note that any two consecutive groups, Pi and Pi+1 share two
points.

Consider any group Pi. By an old result of Harboth [3],
there exists a 5-element subset Qi ⊂ Pi which spans (the vertex
set of) an empty convex pentagon conv(Qi). For each i, take
the 5 edges of conv(Qi), and extend the set of these 5k edges to
a triangulation ∆ of P . Since no three diagonals of conv(Qi) are
concurrent, blocking the 5 diagonals of conv(Qi) requires (at
least) 3 blocking points. That is, in addition to the two points
blocking the two edges of ∆ inside conv(Qi), an extra blocking
point is needed for each i = 1, . . . , k. Since the interiors of the
k pentagons conv(Qi) are pairwise disjoint, it follows that the
number of extra blocking points, in addition to the 3n− h− 3
points required by the edges of the triangulation ∆ is at least
k = ⌊n/8⌋. Overall, P requires at least 3n − h − 3 + k =
(

25

8
− o(1)

)

n blocking points, as claimed.

3 Proof of Theorem 2

We recursively construct a sequence of simple complete topo-
logical graphs Gi, i = 0, 1, . . . , with the following properties:

(1) Gi has 2i vertices.
(2) The vertices of Gi have x-coordinates 0, 1, . . . 2i−1, respec-
tively.
(3) The edges of Gi are drawn as x- and y-monotone curves.
(4) There is a set of at most i2i points that block all edges of
Gi.
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Let G0 be a topological graph with one vertex at (0, 0)
and no edges. Suppose that we have already constructed Gi,
and we are about to construct Gi+1. Apply an affine transfor-
mation on Gi such that the x-coordinates of the vertices are
0, 2, 4, . . . 2i+1 − 2, while the y-coordinates are all very close to
0. Take two copies of this drawing, one translated by (0, 1)
and one by (1,−1). The union is a simple but not complete
topological graph with 2i+1 vertices. The edges are drawn as
x- and y-monotone curves. Let u0, . . . u2i−1 (resp. v0, . . . v2i−1)
be the vertices of the upper (resp. lower) copy from left to
right. Connect each vertex in the upper copy with each vertex
in the lower copy by a straight line segment. Now we have a
complete simple topological graph. We “bend” the new edges
a little bit so that they can be blocked by few points. Ob-
serve that for any j, k, 0 ≤ j, k ≤ 2i − 1, the segment ujvk

passes very close to the point (j + k + 1/2, 0). For every j, k,
0 ≤ j, k ≤ 2i − 1, substitute the segment ujvk by the 2-edge
polygonal path uj, (j + k + 1/2, 0), vk. Let Gi+1 be the re-
sulting complete topological graph. It is easy to see that the
drawing is simple, we have 2i+1 vertices with x-coordinates
0, 1, . . . 2i+1 − 1, and the edges are x- and y-monotone curves.
By induction, we know that the edges in the upper (resp.
lower) copy can be blocked by i2i points, and that the points
(m + 1/2, 0), m = 0, . . . , 2i+1 − 2 block all edges between the
two parts. Therefore, i2i + i2i + 2i+1 − 1 < (i + 1)2i+1 points
block all edges of Gi+1.

This concludes the proof when the number of vertices n is a
power of 2. For other values of n, take Gi where 2i−1 < n ≤ 2i,
and remove 2i − n vertices.
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