Unsplittable multiple coverings with balls

A system B=(B,1i€I} of balls in & is said to form a k-fold dovering if

evary point xeﬂd is covered by at least k elements of B. A l=fold covering
is simply called a govering. let r(Bi) and o(B,) denote the radins ami the
centre of B, respectively. For any two points x,yﬁﬂg. lot d(x,y) stand

for their (euclidean) distanca.

Theorem 1. For any natural numbers k and d»3, there exists a k-fold
covering of md with open unit balls {Biziéll. which cannot be decomposed

into two coverings. Moveover, we may assume that i;.nf d(e(By),e(By)) > 0s
Jel

Theorem 2, For any natural numbers k and d»3, there exists a constant

>0 such thet every k«fold covering oflﬁd with unit balls g*{Biziellu

c
d
k/d

having the property that ne point of l}?.d is covered by more than = ¢,2

members of B, can be decompesed into twe coverings.




2+ Proof of Theorém 1

The following construction will be basic for our purposes.

Theorem 2.1, For every natural number k there exist a -finite point system
Pk and 2 finite system of (not necessarily equal) closed discs gk in the
plane with the property that for any 2-colouring of the elements of Pk we
can find a disc DE_Qk such that

(1) IDnPkl > k,

(i1) DnPk is monochromatic.

Proof. Given any disc D in the plane, let ¢(D) and r{(D) denote the center
and the radius of f, respactively.

If k=1 then the statement is trivial. Let k»2 be fixed. We are going
to construct Dy = Div D} and Py (igk) by recursion.

Lot 0¥ be a disc of radius 6,51/10, and let Di=(D"D%ees,5") be a

system of unit dises such that d(c(DS),c(D‘t)) (i.2¢, the distance betwsen <
the centers of D° and D\S is at most 5, and each Dt has exactly one point
(say, p°) in common with D*. Set D4=(0*}, D,=DSUDY and p2={c(D).pl.p2....,p“}.

Assume now that D;=D!v D! and P; have already been defined for some
2gi<k, and
(1) every DEQ_;. has a boundary point p(D) not contained in any other element of

An easy continuity argument shows that there exists a sufficiently small

positive number

. re
(2) 8. 2= min{6,, min d{p(D), LH D)}
il 310 19 pep} D,

. 1.2 k
such that for any DEQ:{ one can find k distinet unit dises D ,D yess,0 and

a dise D* of radius Iﬁia-l wlth C(Dx)r-p(D) satizfying



(3) d(c(D )ie(D)) s +l ¥
(&) p NPy = (mtn )nP = DnPy
(5) Dt and D* have exactly one point (say, pt(D)) in common,

for all lgt<k. Set
| 2 k |
p!, =04 0% .e,D :DEDY), DY 1=Diw(D*:D€D!}, Dy 1=BY, DL .,

6
(6) Py 1=Pyv{p (D),p (D)g...;p (D) : DEDY Yo

t
Let D be any element of Qi+l (Degiy lgt<k) and let E be any element

of D, ; distinct from D® and D%, If EED! then, by (2),
£
d(p (D).E)_zd(p(D).'E)-d(p(D).pt(D))alO51+l-5j_+1>0
Similarly, if B> or B=5* for some BED (ﬁEQ{. 1<s<k), then

4(p"(0),8)24(p(D), B)=d(p(D), (D)) =d(c(E) s (5) 1285, , 120

d(P (D);E)2d(p(D); D)~d(p(D},p (D))-I‘(E)ﬁﬁ 41705
respectively. If B=D° for some s$t, then d(p (D},E) is clearly positive.
This shows that pt(D} 18 not covered by any element of Dia different
trom D® and 0%, so we can find a boundary point of D° sufficiently close
to p¥(D) which does not belong to any other element of Dy, 1~ Thus, (1)
remains valid for i+l, and the algorithm can be repeated.

Let D be any element of gi. By (2)~(6) it follows that
" ntn Py = (Pn Pi)u{pt(D)} (Lgtek) s
D*a Py = D0 P = (07(3),PA(D)eene B(D) 1

We will prove by induction on i that D, and P; (2gick) meet the
requirements of the theorem. For i=2 this is obviously true. let 2<iclk,
and let f; PL+1'*'{B'W] be any colouring of the elements of Pi+l with

2 colours (Black and White). Applying the induction hypothesis to f|P
i

(the restriction of £ to Pi). we obtain that there exiois a DCD, such



that DNP, 15 monochromatic, i.e., £(x)=£(y) for any X;y€EDNP,s
Assume first that Dégi and all elements of DnPi are, say, black.
Ir f(p (D))=B for some lstsk then, by (7}, D r\Pi+1 =(Dr1Pi)u{p (D)} is
monochromatic. If f(p (D))=W for all lctek, then D“r\Pi+l,is coloured complete=
1y white., Since D° D%, 1. |0%|=is1 and |0%|=kei+1, in both cases there:exists
a8 disc in D;,; containing at least i+l points of Pi+l?which are coloured the same.
Suppose next that DEDY. Then, by (7), DnP, ,=DnP, and IDnPi+l|=kZi-|-1.

i+l

Thus, in this case DED'cD 1 Satisfies conditions (1) and (i1) of the theorem

1==i4
with +1 instead of k. This completes the induction, and hence the proof. D

We will make use of the following special feature of our construction.

Lemma 2,2. let _]gk and P denote the same as above. For any Dlég";, set

£(p)) = (e DN LJ E).
D,$E€D,
1T =k

Then K(Dl) can be covered by an angular region of size at mest 2x/3, whose

apex is at the centre of Dl‘

Proof., Let i+l be the smallest integer such that DlEDi 1’ Then Dl'"D for
some Dv’:_g_{ {1cick), r(Di)=51+1 and, by (2), p* is obvicusly disjoint from all
other slements of _Q%‘_+l. Similarly, no element of -gl,'j { j>i+1) intersects p~.
By the first part of (6}, for any EGQ"( there exist a sequence of unit
discs (Ei,E.+l....,Ek=E) and a sequence of integsrs (t'i'ti+l""’tk-1) such

that E.€DY, ls_tj_‘_:k and

3=

i
- J

184 Ei+D then; by (2), (3) and (8),

d(c(D®), E)=d(p(D), E, )>d( (D)sE) = 2 d(c(E- Yrc(By 4))
) ; P /2P igj<k Bl

5106, 4 = B 6y 436, = (D%),
sl icid LI i)



so0 E is disjoint from o,
Assume next that E,=D, and let x denote the intersection point of

bd D* and the segment [c(D)-;c(Dx)]r—'[c(D).p(D)]. By (3),

6
Ap"(0)) £ 26, 5Ly (1gt<)

On the other hand,

d(C(Ei+l),C(E)) = k?d‘i d(c(EJ)rc(E.}’_l)) 5 i<},];<k 63'.‘_'1 = 51+1£’8° .

Easy trigonometric calculations show that for any yeé(bd D™NE

t t 8.
A(xy) 5 dxp T+ dlp H(D)ey) s L +(2ae(zy, )re(E))E, )R

s 79

and the result follows. O

i+1°

In what follows; we will turn the above planar construction into a
J-dimensional ‘arrangement of balls.
We will think of RZ as of a horizental plans in R°. The terms 'above!

and "below! will be used in this sense,

>
Lemma 2.3. Let B and Pde bo _the same as above, R>l. For every DE_Dk, let
B(D) = &> be a closed ball of radius R, whose centre is above *% and B(D)anz=D.

If B 1s any closed »all of radius R such that

B = L_) B(D)!
0,
then 3= #(n) {or some :]Q_D_k.

Proof. let B be a closed ball of radius R, which is completely covered by

2

B(D)'s, and set D =807 Obviously, the centre of B mist be above R°, and

1‘(Do) < max r(D) = 1, otherwise the south pole of B cannot be covered by any B(D).
DEQI(

Pick a dise D€DQ, such that B(Dl) covers the north pole of B. Then

r(D,)ar(D;) with equality if and only if D =D; and hence B<B(D;)»



Thus, we may assume that r(Dl)ét‘(Do)Sl.- which implies that D, €DM.
From the fact that B(Dl) covers the north pole of B it follows that B
covers the south pole of B(Dl) Consequently, D -BmR contains c(Dl) in
its interior. This implies that D, covers a circular arc of 'bd D, -
whose angle is larger than 2n/3 , which contrsdicts Lemma 2.2, because
(W p)np, g (o L) ®=x). @
1Tk ¢
Remark 2.4, Enlarging some clrcles in gk a little bit, we can obviously
attain that DnPk=(int D) n P, and all other properties remain valid. It is
also clear that in this case Lemmz 2.3 can be stated in the following
'quantitative! form. There exists a small constant £k>0 with the proverty
that, for any ball B of radius R, we can either find a dise IJEQ_k such that
BAP = DnP = (int D) P,
or Bn(l_JB(D)) contains a ball of radius €y
DED,
Theorem 2,5. Let k>2 be a natural number, R>1l. Then there exists a subset
Q < @ with the property that any closed ball of radius R contains at least
k elements of Qe and for any 2~colouring of Q there exists a ball B of

radius R such that Bﬂqk is monochromatic.

Proof, Let g‘ and P be the same as above, and set

Q. = Py (R~ LJ B(D))»
DEDy

If B is any closed ball of radius R such that B ¢ {B(D):D€D, }s then, by
Lemma 2.3; B contains at lsast one and hence infinitely many points of

~ UJ B(D) = Q. If B=B(D) for some DED, . then 8nq | = [BnP | = IDn P, {=ke
DED,

Let £ be any coloring of Q by 2 colours, This induces a 2~colouring



— -?-

of Pk." s0; according to the definition of D (part (ii) of Theorem 2.1);
there exists a DED, such that B(D)n Q = DnP, is monochromatic. O

A point set Sg R is called g~discrete if d(x;¥)>¢ for any two

distinet elements x,y€S.,

Theorem Z2¢5'« For any natural number Xk, there exist EI::’O and an el"c-discrete

subset ch < [R3 with the property that any open unit vall contains at least

k elements of Q!, and for any 2ecolouring of Q! one can find a closed unit

ball B such that BnQi'{ is monochromatic.

Proof., Let Qk and Pk satisfy the slightly stronger properties stated in

Jemark 2.4, and let Sk be an £ Vfwdiserete subset of 11{3 L B(D) = Tk

k DED,

such that every ball B'cI whose radius is at least £, contains at least

k elements of S, « Set Qf{ = P v §;« Then any open ball of radius R covers

k
at least k elements of Ql‘c" and for any 2ecolouring of QL‘: there exist a DED,

such that all elements of B(D)NQ}=Dn P, have the same colour. Changing the

scale S50 that R becomes the unit distance, we obtain the result. [l

Theorem 2,5". For any natural numbers k and d»3,; there exist an E, 0 and
 J
an Ek d-discrete subset Q 4 S LRd with the property that any open unit ball
' v
containg at least k elements of Qk g and for any 2colouring of Qk q one
' )

can find a closed unit ball B such that Ban d is monochromatic.
]

Proof. We will prove by induction on d the following little sitronger
statement, There exist a Qk 3 isd with the required properties and a
¥
finite system B ., of closed unit halls such that for any 2=00louring of
fi : i ts ha 2]
Qk,‘d one can find a Iae_}gk'_d for which all elements of B(O Q‘k.‘d ve th

same colour .




For d=3; this follows from tﬂa proof of Theorem 2,5%.

Assume now that q:'_ d amd 5(’_ d have already been defined for some
d>3. Given any Be_gﬁ 4 le;t B! denote a unit ball in IRd":l whose intersection
with the hyperplane & is B Let £>0; and let S, 4 ) demote a maximal

¢-discrote subset of WL (_J B's It i easy to See that; if £ is
XBc.q
]

sufficlently small, then
Q;arl * %id Vi
Be,ap1 = (B ¢+ B 4 )

satisfy all the conditions. OO

Replacing each element qeqk .4 by a unit ball centered at q; we
¥
obtain a kefold covering of B%; which meets the requirements of Theorem l.

In this sense; Theorems 1 and 2.5" are 'dual' statements.



3« Proof of Theorem 2

It B=(B,:1€I) be a k-fold covering of R® with unit balls such that no

d .
point of R~ 18 contained in more tham t members of B. Assume without loss
of generality that the balls are in general position. For any B,, let bd B‘a
denote the surface of Bye Let C j (JeJ) be the connected components of

d
R \j%bd B; » and define a hypergraph H(B)=H in the following way. Set

V(H) = (B, : i€I1},

E(H) {Ej : jeJ} where Ej={Bi : jSfaﬁﬁ}-

(V(H) and E(H) denote the vertex set and the edge set of H, as usual.)

The faet that B is a k-fold covering implies that

(9} lEjl >k for every j€J.
Fix now a j €J, and let. E; be any edge of H such that E;NE, $##. Then
o
all elements (balls) belonging to E j are contained in a ball B of radius &

(around any point of C4 )+ Since no point of B is covered by more than t
o]
membars of B, we obtain

|UtE, - Eanjo%eﬁ}I < 1%31—33% od,
On the other hand, it is easy to see that t4° balls out the space into at
most (tl.td)d different pieces, hence -
(20) ‘ I{EJ t Eyn Ejo#;é}l < tdudz for any J €Js
The following result is an sasy consequence of the LovAsz local Lemma

(efe [1]s[6])e

Theorem 3.1+ ([2];[3]) let H be a hypergraph whose every edge has at least
k elements. If everj' edge of H meets at most ZR"B other edges, then there



exists a 2.colouring of V(H) such that no edge 18 monochromatic. Ol

By (9) and (10), we.can apply this result to our hypergraph H; provided
that t g 2(/21 g oo e obtain a colouring £ 1 V(H) = (R,G) with
2 colours (say;red and green) such that every cj is covered by both red and
green balls. GonSaquen‘b::Ly.; B= _BRUJ_BG,-
By = (By€B ¢ £(B;)=R),
B, = {B;€B ¢ £(B;)=C)
is a decomposition of B into two coverings. 0O

Remark 3.2. The same proof shows that Theorem 2 remains valid (apart from
the value of the constant) for every kefold covering B_:{BiziéI} with balls

(8,)
gatisfying

>£ for some £50.
SuPy T (B
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