Unsplittable multiple coverings with balls

A system $\underline{B}=\{B_i:i\in I\}$ of balls in \mathbb{R}^d is said to form a k-fold covering if every point $x\in \mathbb{R}^d$ is covered by at least k elements of \underline{B} . A 1-fold covering is simply called a <u>covering</u>. Let $r(B_i)$ and $c(B_i)$ denote the radius and the centre of B_i , respectively. For any two points $x,y\in \mathbb{R}^d$, let d(x,y) stand for their (euclidean) distance.

Theorem 1. For any natural numbers k and d>3, there exists a k-fold covering of \mathbb{R}^d with open unit balls $\{B_1:1\in I\}$, which cannot be decomposed into two coverings. Moreover, we may assume that $\inf_{i\neq j\in I} d(c(B_i),c(B_j)) > 0$.

Theorem 2. For any natural numbers k and $d\ge 3$, there exists a constant $c_d>0$ such that every k-fold covering of \mathbb{R}^d with unit balls $B=\{B_i:i\in I\}$, having the property that no point of \mathbb{R}^d is covered by more than $c_d 2^{k/d}$ members of B, can be decomposed into two coverings.

2. Proof of Theorem 1

The following construction will be basic for our purposes.

Theorem 2.1. For every natural number k there exist a finite point system P_k and a finite system of (not necessarily equal) closed discs \underline{D}_k in the plane with the property that for any 2-colouring of the elements of P_k we can find a disc $D\in\underline{D}_k$ such that

$$|D \cap P_{k}| \geq k.$$

(ii)
$$B \cap P_k$$
 is monochromatic.

<u>Proof.</u> Given any disc D in the plane, let c(D) and r(D) denote the center and the radius of D, respectively.

If k=1 then the statement is trivial. Let k \geq 2 be fixed. We are going to construct $\underline{D}_i = \underline{D}_i^* \cup \underline{D}_i^*$ and P_i (i \leq k) by recursion.

Let $D^{\mathbb{R}}$ be a disc of radius $\delta_2 = 1/10$, and let $\underline{D}_2 = (D^1, D^2, \dots, D^k)$ be a system of unit discs such that $d(c(D^S), c(D^{\mathbb{T}}))$ (i.e., the distance between the centers of D^S and $D^{\mathbb{T}}$ is at most δ_2 and each $D^{\mathbb{T}}$ has exactly one point (say, $p^{\mathbb{T}}$) in common with $D^{\mathbb{R}}$. Set $\underline{D}_2^{\mathbb{R}} = (D^{\mathbb{R}})$, $\underline{D}_2 = \underline{D}_2^{\mathbb{T}} \cup \underline{D}_2^{\mathbb{R}}$ and $P_2 = \{c(D), p^1, p^2, \dots, p^k\}$.

Assume now that $\underline{D}_i = \underline{D}_i^i \cup \underline{D}_i^n$ and P_i have already been defined for some $2 \le i < k$, and

(1) every $D\in \underline{\mathbb{D}}_1^1$ has a boundary point p(D) not contained in any other element of An easy continuity argument shows that there exists a sufficiently small positive number

(2)
$$\delta_{i+1} \leq \frac{1}{10} \min\{\delta_i, \min_{D \in \underline{D}_i^t} d(p(D), \bigcup_{D \nmid \overline{D} \in \underline{D}_i} \widetilde{D})\}$$

such that for any $D\in \underline{D_1^!}$ one can find k distinct unit discs D^1, D^2, \ldots, D^k and a disc D^k of radius δ_{i+1} with $c(D^k)=p(D)$ satisfying

(3)
$$d(c(D^t),c(D)) \leq \delta_{i+1}.$$

(4)
$$D^{t} \cap P_{i} = (intD^{t}) \cap P_{i} = D \cap P_{i},$$

(5) D^t and D^m have exactly one point (say, p^t(D)) in common, for all lstsk. Set

$$\frac{D_{i+1}^{!} = \{D^{1}, D^{2}, \dots, D^{k}; D \in \underline{D_{i}^{!}}\}, \ \underline{D}_{i+1}^{"} = \underline{D}_{i}^{"} \cup \{D^{k}; D \in \underline{D_{i}^{!}}\}, \ \underline{D}_{i+1} = \underline{D}_{i+1}^{!} \cup \underline{D}_{i+1}^{"}}{P_{i+1}^{!} = P_{i}^{!} \cup \{p^{1}(D), p^{2}(D), \dots, p^{k}(D) : D \in \underline{D_{i}^{!}}\},}$$
(6)

Let D^t be any element of \underline{D}_{i+1}^t ($\underline{D} \in \underline{D}_{i}^t$, $\underline{l} \leq \underline{t} \leq k$), and let \underline{E} be any element of \underline{D}_{i+1} distinct from \underline{D}^t and \underline{D}^k . If $\underline{E} \in \underline{D}_{i}^{t}$ then, by (2),

 $d(p^{t}(D),E)\geq d(p(D),E)-d(p(D),p^{t}(D))\geq l0\delta_{i+1}-\delta_{i+1}>0.$ Similarly, if $E=\widetilde{D}^{s}$ or $E=\widetilde{D}^{s}$ for some $\widetilde{D}\neq D$ ($\widetilde{D}\in \underline{D}_{1}^{s}$, $l\leq s\leq k$), then $d(p^{t}(D),E)\geq d(p(D),\widetilde{D})-d(p(D),p^{t}(D))-d(c(E),c(\widetilde{D}))\geq \delta_{i+1}>0.$

and

 $d(p^{t}(D),E)\geq d(p(D),\widetilde{D})-d(p(D),p^{t}(D))-r(E)\geq 8\delta_{i+1}>0$, respectively. If $E=D^{S}$ for some $s\neq t$, then $d(p^{t}(D),E)$ is clearly positive. This shows that $p^{t}(D)$ is not covered by any element of \underline{D}_{i+1} different from D^{t} and D^{s} , so we can find a boundary point of D^{t} sufficiently close to $p^{t}(D)$ which does not belong to any other element of \underline{D}_{i+1} . Thus, (1) remains valid for i+1, and the algorithm can be repeated.

Let D be any element of \underline{p}_{i}^{t} . By (2)-(6) it follows that $D^{t} \cap P_{i+1} = (D \cap P_{i}) \cup (p^{t}(D)) \qquad (1 \leq t \leq k),$ $D^{k} \cap P_{i+1} = D^{k} \cap P_{k} = (p^{1}(D), p^{2}(D), \dots, p^{k}(D)).$

We will prove by induction on i that \underline{D}_i and \underline{P}_i ($2 \le i \le k$) meet the requirements of the theorem. For i=2 this is obviously true. Let $2 \le i \le k$, and let $f: P_{i+1} \to \{B,W\}$ be any colouring of the elements of P_{i+1} with 2 colours (Black and White). Applying the induction hypothesis to $f|_{P_i}$ (the restriction of f to P_i), we obtain that there exists a $\underline{D} \in \underline{D}_i$ such

that $D \cap P_i$ is monochromatic, i.e., f(x)=f(y) for any $x, y \in D \cap P_i$.

Assume first that $D\in \underline{D}_1^t$ and all elements of $D\cap P_1$ are, say, black. If $f(p^t(D))=B$ for some $l\le t\le k$, then, by (7), $D^t\cap P_{i+1}=(D\cap P_i)\cup \{p^t(D)\}$ is monochromatic. If $f(p^t(D))=W$ for all $l\le t\le k$, then $D^k\cap P_{i+1}$ is coloured completely white. Since $D^t, D^k\in \underline{D}_{i+1}$, $|D^t|=i+1$ and $|D^k|=k\ge i+1$, in both cases there exists a disc in \underline{D}_{i+1} containing at least i+1 points of P_{i+1} , which are coloured the same.

Suppose next that $D \in \underline{D}_{1}^{n}$. Then, by (7), $D \cap P_{i+1} = D \cap P_{i}$ and $|D \cap P_{i+1}| = k \ge i+1$. Thus, in this case $D \in \underline{D}_{1}^{n} = \underline{D}_{i+1}$ satisfies conditions (1) and (ii) of the theorem with i+1 instead of k. This completes the induction, and hence the proof. \square

We will make use of the following special feature of our construction.

Lemma 2.2. Let \underline{D}_k and \underline{P}_k denote the same as above. For any $\underline{D}_1 \in \underline{D}_k^m$, set $\underline{X}(\underline{D}_1) = (bd \ \underline{D}_1) \cap (\bigcup_{\underline{D}_1 \neq \underline{E} \in \underline{D}_k} \underline{E}).$

Then $X(D_1)$ can be covered by an angular region of size at most $2\pi/3$, whose apex is at the centre of D_1 .

<u>Proof.</u> Let i+1 be the smallest integer such that $D_1 \in \underline{D}_{i+1}^n$. Then $D_1 = D^k$ for some $D \in \underline{D}_i^n$ ($1 \le i \le k$), $r(D^k) = \delta_{i+1}$ and, by (2), D^k is obviously disjoint from all other elements of \underline{D}_{i+1}^n . Similarly, no element of \underline{D}_j^n (j > i+1) intersects D^k .

By the first part of (6), for any $\mathbb{E}\{\underline{D}_k^i\}$ there exist a sequence of unit discs $(\mathbb{E}_i,\mathbb{E}_{i+1},\dots,\mathbb{E}_k=E)$ and a sequence of integers $(t_i,t_{i+1},\dots,t_{k-1})$ such that $\mathbb{E}_j\{\underline{D}_j^i,\ 1\leq t_j\leq k \text{ and } \}$

(8)
$$E_{j+1} = (E_j)^{t_j} \qquad (i \le j < k).$$

If $E_1 \neq D$ then, by (2), (3) and (8),

$$\begin{split} d(c(D^{\mathbf{X}}),E) &= d(p(D),E_{\underline{k}}) \geq d(p(D),E_{\underline{j}}) - \sum_{\substack{i \leq j < k}} d(c(E_{\underline{j}}),c(E_{\underline{j+1}})) \\ & \leq 10\delta_{\underline{i+1}} - \sum_{\substack{i \leq j < k}} \delta_{\underline{j+1}} > \delta_{\underline{i+1}} = r(D^{\mathbf{X}}), \end{split}$$

so E is disjoint from D.

Assume next that $E_i=D$, and let x denote the intersection point of bd $D^{\mathbf{X}}$ and the segment $[c(D),c(D^{\mathbf{X}})]=[c(D),p(D)]$. By (3),

$$d(x,p^{t}(D)) \leq 2\delta_{i+1} \frac{\delta_{i+1}}{\delta_{i+1}+1} \qquad (1 \leq t \leq k)$$

On the other hand.

 $d(c(E_{j+1}),c(E)) \leq \sum_{i < j < k}^{\Sigma} d(c(E_j),c(E_{j+1})) \leq \sum_{i < j < k}^{\Sigma} \delta_{j+1} < \delta_{i+1}/8.$ Easy trigonometric calculations show that for any $y \in (bd \ D^{\mathbb{R}}) \cap E$

$$d(x,y) \le d(x,p^{t_{i}}(D)) + d(p^{t_{i}}(D),y) \le \frac{\delta_{i+1}}{5} + (2d(c(E_{i+1}),c(E))\delta_{i+1})^{1/2}$$

$$\le \frac{3}{4}\delta_{i+1}$$

and the result follows.

In what follows, we will turn the above planar construction into a 3-dimensional arrangement of balls.

We will think of \mathbb{R}^2 as of a horizontal plane in \mathbb{R}^3 . The terms 'above' and 'below' will be used in this sense.

Lemma 2.3. Let \underline{D}_k and $P_k = \mathbb{R}^2$ be the same as above, \mathbb{R}^2 . For every $D \in \underline{D}_k$, let $B(D) = \mathbb{R}^3$ be a closed ball of radius R, whose centre is above \mathbb{R}^2 and $B(D) \cap \mathbb{R}^2 = D$. If B is any closed ball of radius R such that

$$B \subseteq \bigcup_{D \in \underline{D}_k} B(D).$$

then B = B(D) for some $D \in \underline{D}_{t_0}$.

<u>Proof.</u> Let B be a closed ball of radius R, which is completely covered by B(D)'s, and set $D_0 = B \cap \mathbb{R}^2$. Obviously, the centre of B must be above \mathbb{R}^2 , and $r(D_0) \leq \max_{D \in \underline{D}_K} r(D) = 1$, otherwise the south pole of B cannot be covered by any B(D).

Pick a disc $D_1 \in \underline{D}_k$ such that $B(D_1)$ covers the north pole of B. Then $r(D_0) \ge r(D_1)$ with equality if and only if $D_0 = D_1$ and hence $B = B(D_1)$.

Thus, we may assume that $r(D_1) < r(D_0) \le 1$, which implies that $D_1 \in \underline{D}_K^n$. From the fact that $B(D_1)$ covers the north pole of B it follows that B covers the south pole of $B(D_1)$. Consequently, $D_0 = B \cap \mathbb{R}^2$ contains $c(D_1)$ in its interior. This implies that D_0 covers a circular arc of bd D_1 whose angle is larger than $2\pi/3$, which contradicts Lemma 2.2, because

$$(\operatorname{bd} D_1) \cap D_0 \subseteq (\operatorname{bd} D_1) \cap (\bigcup_{D_1 \neq E \in \underline{D}_k} E) = X(D_1). \quad \Box$$

Remark 2.4. Enlarging some circles in \underline{D}_k a little bit, we can obviously attain that $D \cap P_k = (\text{int } D) \cap P_k$ and all other properties remain valid. It is also clear that in this case Lemma 2.3 can be stated in the following 'quantitative' form. There exists a small constant $\mathcal{E}_k > 0$ with the property that, for any ball B of radius R, we can either find a disc $D \in \underline{D}_k$ such that

$$B \cap P_k = D \cap P_k = (int D) \cap P_k$$

or $B \setminus (\bigcup_{D \in \underline{D}_k} B(D))$ contains a ball of radius ϵ_k .

Theorem 2.5. Let $k \ge 2$ be a natural number, $k \ge 1$. Then there exists a subset $Q_k = \mathbb{R}^3$ with the property that any closed ball of radius R contains at least k elements of Q_k , and for any 2-colouring of Q_k there exists a ball B of radius R such that $B \cap Q_k$ is monochromatic.

Proof. Let D and P be the same as above, and set

$$Q_k = P_k \cup (\mathbb{R}^3 \setminus \bigcup_{D \in \underline{D}_k} B(D)).$$

If B is any closed ball of radius R such that B \in (B(D):D \in D_k), then, by Lemma 2.3. B contains at least one and hence infinitely many points of $\mathbb{R}^3 \setminus \bigcup_{D \in D_k} B(D) = \mathbb{Q}_k$. If B=B(D) for some $D \in D_k$, then $|B \cap \mathbb{Q}_k| = |B \cap P_k| = |D \cap P_k| = k$.

Let f be any coloring of Q_k by 2 colours. This induces a 2-colouring

of P_k , so, according to the definition of \underline{p}_k (part (ii) of Theorem 2.1); there exists a $\underline{D}\in\underline{D}_k$ such that $\underline{B}(\underline{D})\cap Q_k=\underline{D}\cap P_k$ is monochromatic. \Box

A point set $S \subseteq \mathbb{R}^n$ is called ε -discrete if $d(x,y) \ge \varepsilon$ for any two distinct elements $x,y \in S$.

Theorem 2.5. For any natural number k, there exist $\epsilon_k^n>0$ and an ϵ_k^n -discrete subset $\mathbb{Q}_k^1\subseteq\mathbb{R}^3$ with the property that any open unit ball contains at least k elements of \mathbb{Q}_k^1 , and for any 2-colouring of \mathbb{Q}_k^1 one can find a closed unit ball B such that $\mathbb{B}\cap\mathbb{Q}_k^1$ is monochromatic.

<u>Proof.</u> Let \underline{D}_k and \underline{P}_k satisfy the slightly stronger properties stated in Remark 2.4, and let S_k be an ε_k -discrete subset of \mathbb{R}^3 , $\bigcup_{D\in \underline{D}_k} B(D) = T_k$

such that every ball $B^i \subseteq T$ whose radius is at least \mathfrak{t}_k contains at least k elements of S_k . Set $Q_k^i = P_k \cup S_k$. Then any open ball of radius R covers at least k elements of Q_k^i , and for any 2-colouring of Q_k^i there exist a $D \in \underline{D}_k$ such that all elements of $B(D) \cap Q_k^i = D \cap P_k$ have the same colour. Changing the scale so that R becomes the unit distance; we obtain the result. \square

Theorem 2.5". For any natural numbers k and d \geq 3, there exist an $\epsilon_{k,d}>0$ and an $\epsilon_{k,d}$ -discrete subset $Q_{k,d} \subseteq \mathbb{R}^d$ with the property that any open unit ball contains at least k elements of $Q_{k,d}$, and for any 2-colouring of $Q_{k,d}$ one can find a closed unit ball B such that $B \cap Q_{k,d}$ is monochromatic.

<u>Proof.</u> We will prove by induction on d the following little stronger statement. There exist a $Q_{k,d} \subseteq \mathbb{R}^d$ with the required properties and a <u>finite</u> system $\underline{B}_{k,d}$ of closed unit balls such that for any 2-colouring of $Q_{k,d}$ one can find a $\underline{\mathbb{R}}_{k,d}$ for which all elements of $\underline{B} \cap Q_{k,d}$ have the same colour.

For d=3; this follows from the proof of Theorem 2.51.

Assume now that $Q_{k,id}$ and $\underline{B}_{k,id}$ have already been defined for some $d \ge 3$. Given any $E \in \underline{B}_{k,id}$; let B^i denote a unit ball in \mathbb{R}^{d+1} whose intersection with the hyperplane \mathbb{R}^d is B. Let E > 0; and let $S_{k,id+1}$ denote a maximal E-discrete subset of $\mathbb{R}^{d+1} \setminus \bigcup_{E \in B} B^i$. It is easy to see that, if E is $E \subseteq B$, id

$$Q_{k,d+1} = Q_{k,d} \cup S_{k,d+1}$$

$$\underline{B}_{k,d+1} = \{B^{i} : E \in \underline{B}_{k,d}\}$$

satisfy all the conditions. D

Replacing each element $q \in Q_{k,id}$ by a unit ball centered at q_i we obtain a k-fold covering of \mathbb{R}^d , which meets the requirements of Theorem 1. In this sense, Theorems 1 and 2.5° are 'dual' statements.

3. Proof of Theorem 2

Let $\underline{B}=(B_i:i\in I)$ be a k-fold covering of \mathbb{R}^d with unit balls such that no point of \mathbb{R}^d is contained in more than t members of \underline{B} . Assume without loss of generality that the balls are in general position. For any B_i , let bd B_i denote the surface of B_i . Let C_j ($j\in J$) be the connected components of $\mathbb{R}^d \cup bd$ B_i , and define a hypergraph $H(\underline{B})=H$ in the following way. Set

$$V(H) = \{B_{\underline{i}} : \underline{i} \in I\},$$

$$E(H) = \{E_{\underline{j}} : \underline{j} \in J\} \text{ where } E_{\underline{j}} = \{B_{\underline{i}} : C_{\underline{j}} \in B_{\underline{i}} \in \underline{B}\}.$$

(V(H) and E(H) denote the vertex set and the edge set of H, as usual.)

The fact that B is a k-fold covering implies that

(9)
$$|E_j| \ge k$$
 for every $j \in J$.

Fix now a $j_0 \in J$, and let E_j be any edge of H such that $E_j \cap E_j \neq \emptyset$. Then all elements (balls) belonging to E_j are contained in a ball B of radius 4 (around any point of C_j). Since no point of B is covered by more than t members of B, we obtain

$$|\bigcup \{E_j : E_j \cap E_j \neq \emptyset\}| \leq \frac{t \text{ Vol } B}{\text{Vol } B_4} = t \downarrow^d.$$

On the other hand, it is easy to see that $t4^d$ balls cut the space into at most $(t4^d)^d$ different pieces, hence

(10)
$$|\{E_j : E_j \cap E_{j_0} \neq \emptyset\}| \le t^{d_1} d^2$$
 for any $j_0 \in J_0$

The following result is an easy consequence of the Lovasz Local Lemma (cf. [1], [6]).

Theorem 3.1. ([2],[3]) Let H be a hypergraph whose every edge has at least k elements. If every edge of H meets at most 2^{k-3} other edges, then there

exists a 2-colouring of V(H) such that no edge is monochromatic.

By (9) and (10), we can apply this result to our hypergraph H; provided that $t \le 2^{(k/d)-2d-1}$. Thus, we obtain a colouring $f: V(H) \to \{R,G\}$ with 2 colours (say, red and green) such that every C_j is covered by both red and green balls. Consequently, $B = B_j \cup B_{ij}$

$$\underline{B}_{R} = \{B_{\underline{i}} \in \underline{B} : f(B_{\underline{i}}) = R\},$$

$$\underline{B}_{G} = (B_{i} \in \underline{B} : f(B_{i}) = G)$$

is a decomposition of \underline{B} into two coverings. \square

Remark 3.2. The same proof shows that Theorem 2 remains valid (apart from the value of the constant) for every k-fold covering $\underline{B}=\{B_i:i\in I\}$ with balls satisfying $\frac{\inf_{i\in I}r(B_i)}{\sup_{i\in I}r(B_i)}>\varepsilon$ for some $\varepsilon>0$.

References

- [1] B. Bollobas, Random Graphs, Academic Press, London-New York, 1985.
- [2] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, Coll. Math. Soc. J. Bolyai 10, North-Holland, 1974, 609-627.
- [3] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó; Budapest and North-Holland, Amsterdam, 1979.
- [4] J. Pach, Decomposition of multiple packing and covering, in: Diskrete Geometrie, 2. Kollog., Math. Inst. Univ. Salzburg, 1980, 169-178.
- [5] J. Pach, Covering the plane with convex polygons; Discrete Comput. Geom. 1 (1986); 73-81.
- [6] J. Spencer, Nonconstructive methods in discrete mathematics; in: Studies in Combinatorics; Math. Assoc. of America, 1978, 142-178.