Separating convex sets by straight lines

Janos Pach' and Gébor Tardos
Courant Institute, New York University and
Rényi Institute, Hungarian Academy

Abstract

We answer some questions of Tverberg about separability prop-
erties of families of convex sets. In particular, we show that there
is a family of infinitely many pairwise disjoint closed disks, no two
of which can be separated from two others by a straight line. No
such construction exists with equal disks. We also prove that every
uncountable family of pairwise disjoint convex sets in the plane has
two uncountable subfamilies that can be separated by a straight
line.

1 Introduction

In 1979, Helge Tverberg [Tv79] initiated the investigation of the following
problem. Given two positive integers, k and [, what is the smallest number
n = n(k,l) such that for any family F of pairwise disjoint compact convex
sets in the plane, one can find a straight line which has at least £k members
of F on one of its sides and at least [ members on the other? Clearly,
we have n(1,1) = 2. Improving the original bound of Tverberg, Hope
and Katchalski [HK90] showed that n(1,k) < 12(k — 1) for every k > 2.
(Their proof is based on an old theorem of L. Fejes Téth [Fe53]. For
some other related results, see [GG45], [Had7], [FF73], [Fe87], [AKP8Y],
[CRUZ92], [RT93].)

However, somewhat surprisingly, n(2,2) does not exist. K. P. Vil-
langer (see [Tv79]) constructed an infinite family F of pairwise disjoint
segments in the plane so that there is no straight line that has at least
two members of F on both of its sides. Here we describe a similar but
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somewhat simpler construction with the same property, using only unit
segments.

Figure 1.

Let C be a unit circle, and let p,po,... be an infinite sequence of
points on C, in clockwise order, such that |p; — p;11| = 1073, Let F;
denote the clockwise oriented unit segment starting at p; and tangent to
C (i=1,2,...). To see that F = {Fy, F5,...} meets the requirements, it
is enough to show that, for any 1 <17 < j < k, every line /£ separating F)
from Fj must intersect F;. Indeed, as the segment connecting p to the
far end of F; intersects F);, F; cannot lie on the same side of £ where F}
is. It cannot lie on the other side of £ either, because |py — p;| is much
smaller than |p; — p;|, so the segment connecting p; to the far end of F)
must intersect Fy. (See Figure 1.)

Definition. A family of pairwise disjoint sets in the plane is said to be
separable, if any two sets can be separated by a straight line which does
not intersect any member of the family. Instead of saying that a family
contains a separable subfamily of size m, we sometimes say that it has m
separable members.

Note that in some papers (e.g., in [PT00], [FF73]) families with the
above property are called strongly separable or totally separable.

The above construction also shows that there exist infinitely many
pairwise disjoint straight-line segments in the plane, no three of which
are separable. One may be tempted to believe that there is no such
example with ‘fat’ sets. However, we prove that this is not the case.



Theorem 1. There is a family of infinitely many pairwise disjoint disks
(or squares) in the plane, which has no three separable members.

In Section 2, we prove Theorem 1 in a somewhat stronger form (Theo-
rem 2.3), and we also establish some simple positive results. In particular,
these results imply that every infinite family of disks of roughly equal size
has an infinite separable subfamily, and the same is true for infinite fam-
ilies of azis-parallel rectangles (Theorems 2.4 and 2.5).

The family of sets F depicted in Figure 1 has countably many mem-
bers, no pair of which can be separated from another pair by a straight
line. Tverberg [Tv79] asked whether there exists such a construction with
uncountably many convex sets. We answer this question in the negative,
in the following strong sense.

Theorem 2. FEvery uncountable family of pairwise disjoint conver sets
in the plane has two uncountable subfamilies that can be separated by a
straight line.

Our original proof of Theorem 2 was simplified by V. Totik [To99]. We
present the simplified proof in Section 3, while the last section contains
some related problems and concluding remarks.

2 Entangled sets

Definition 2.1 A sequence F = {F1, Fy, ...} of pairwise disjoint compact
convex sets in the plane is said to be entangled, if at least one of the
following conditions is satisfied:

e for every 1 <14 < j < k, any straight line separating F; from Fj}
intersects FJ;

e for every 1 < i < j < k, any straight line separating F; from F}
intersects Fj.

Clearly, an entangled sequence F cannot have three separable ele-
ments. Furthermore, there is no straight line which has at least two
elements of F on both of its sides. The construction described in the
Introduction proves the following.

Theorem 2.2. There exists an infinite sequence of entangled unit seg-
ments in the plane. O

We prove Theorem 1 in the following stronger form.



Theorem 2.3 There exists an infinite sequence of (i) entangled disks,
(7i) entangled squares in the plane.

Proof: We start the construction with two disjoint, but almost touch-
ing, disks (or squares), F; and Fj, with the property that the counter-
clockwise angle between the z-axis and any line separating them is be-
tween ¢/4 and e, for some small positive constant €. Assume that,
for some n > 2, we have already found disks (squares, respectively)
Fy, ..., F, with the property that, for every 1 < i < 5 < k < n, any
line separating F; and F; cuts through Fj. Also assume, inductively, that
the angle between the z-axis and every line separating two members of
{F1,...,F,} is between ¢, = ¢/2" and «.

Let F' denote the convex hull of U} ,F;. Take a huge disk (square,
resp.) Fy ., touching F' at a point p such that the angle between the z-
axis and the tangent to F,_; at p is 3e,,/4. Clearly, every line separating
two members of {F1,...,F,} will cut through F}_ ,, provided that the
radius (sidelength, resp.) of F;_, is sufficiently large.

Let F,1, denote the set obtained from F)_ , by slightly shrinking
it about its center. Obviously, Fi,..., F,41 will satisfy the induction
hypothesis. That is, for every 1 <i < j < k <n + 1, any line separating
F; and F; cuts through Fj, and the angle between the z-axis and any line
separating two of the sets is between e,11 = ¢,/2 and ¢. O

It is impossible to combine the features of Theorems 2.2 and 2.3 by
constructing an infinite sequence of entangled unit disks or squares, be-
cause every large family of ‘fat’ sets of roughly the same size contains a
large separable subfamily. We formulate this result in Euclidean spaces of
arbitrary dimension. Extending the definition on page 2, we call a family
of pairwise disjoint compact convex sets in d-space separable, if every pair
can be separated by a hyperplane which does not intersect any member
of the family.

Theorem 2.4. Let R > r > 0 be fized, and let F be a family of n
pairwise disjoint compact convex sets in d-space, each containing a ball
of radius T and contained in another ball of radius R. Then F has a
separable subfamily with at least cn members, where ¢ = c(r, R,d) > 0 is
a constant.

Proof: Choose a number s randomly and uniformly in [0,4dR], and cut
the space into cubes along the hyperplanes z; = 4dRk+s, for every integer
k (i =1,...,d). The expected number of members of F intersected by
these hyperplanes is at most n/2.



Let vg denote the volume of the d-dimensional unit ball. There are
at most (4dR)?/(vgr?) members of F contained in the same cube, so we

can find a separable subfamily of size at least (vdrd / (2(4dR)d)) n. O

One cannot strengthen Theorem 2.3(ii) by exhibiting an infinite se-
quence of entangled azis-parallel squares, because of the following obser-
vation.

Theorem 2.5. Any family F of n pairwise disjoint azis-parallel bozxes in
R? has at least n/(clogn)? separable members, where ¢ > 0 is an absolute
constant.

Proof: Let the projection of the box B € F to the i-th coordinate be
[Bi 1, Bi,]. For the separation we use only axis-parallel hyperplanes. This
allows us to assume without loss of generality that the sets {B;|B €
F,b € {0,1}} consists of (at most 2n) consecutive integers for every
1 = 1,...,d, as changing these values but leaving their order does not
alter the problem. Our assumption implies that all sides of the boxes
in F are between 1 and 2n. There are positive numbers [1,...,l; such
that F has at least n/[logs /2(2n)-|d members whose sidelength in the i-th
coordinate belong to the interval [I;, 31;/2], for every i = 1,...,d. Let F'
denote the subfamily consisting of these members. As in the proof of the
previous statement, for every i = 1,...,d, pick a number s; randomly and
independently in [0, 2/;]. The expected number of members of F', disjoint
from all axis-parallel hyperplanes x; = 2jl; + s; (where i = 1,...,d, and
j is an integer), is at least |F7|/4%. As no two members of F' fit into the
same cell determined by these hyperplanes, we obtain that F has at least

d
|F!| /4% > n/ (4|_log3/2(2n)'|) separable members. O

3 Proof of Theorem 2

Our original proof of Theorem 2 was greatly simplified by V. Totik [To99].

Let F be an uncountable family of pairwise disjoint convex sets in
the plane. Since there are no more than countably many disjoint sets
of positive measure, we may assume that every member of F has zero
measure. That is, F consists of points, segments, half-lines, and lines.
There are uncountably many members that fall into one of these four
categories, so we can ignore all other members of F. If all members of
F are points, then the proof is straightforward. If F consists of straight
lines, then the situation is even simpler, because two disjoint lines must



be parallel. So we can assume that all elements of F are segments or all
of them are half-lines.

If all sets in F share an endpoint, we are done. Thus, we may assume
without loss of generality that every point is an endpoint of only countably
many members of F. Similarly, we may assume that there are no more
than countably many pairwise parallel half-lines in F.

We say that two members of F are close to each other, if their closures
have a point in common, or they are parallel half-lines. Consider three
distinct elements of F. We claim that F has only a countable number
of members that are close to all three of them. To see this, notice that
every member of F close to F' € F

e cither contains an endpoint of F,
e or shares an endpoint with F',

e or is a half-line parallel to F,

e or has an endpoint in F.

The members of F satisfying any of the first three conditions form a
countable set. Obviously, no member of F satisfies the last condition for
three distinct F’s, as every member of F has at most two endpoints.

This implies that for all but at most two members of F there are
uncountably many members in F not close to them. Notice that if two
members of F are not close to each other, then there is a straight line
separating them, which passes through at least two points of rational
coordinates. Let us call such a line rational.

Since there are only countably many rational lines, every member
F € F, with at most two exceptions, can be separated from uncountably
many other members by a single rational line £r. We conclude that there
is an uncountable subfamily F' C F such that £z is the same for every
F € F'. Obviously, this line has uncountably many members on both of
its sides.

4 Remarks

4.1. As was mentioned in the Introduction, Tverberg [Tv79] discovered
that, for every large family F of pairwise disjoint compact convex sets
in the plane (even for an entangled sequence of sets), there is a straight
line separating one member of F from many other members. It was also
pointed out in [Tv79] that no such theorem holds in 3-space. To see this,



take a finite family F of pairwise disjoint straight lines, no three of which
are parallel to the same plane. Then any plane separating two members
of F must cross every other member, and this property is preserved when
we intersect all members of F with a sufficiently large ball to obtain a
family of compact sets.

However, if we start with an infinite family of lines, the above property
may be violated when we replace the lines by their intersection with the
ball. Nevertheless, it is not hard to establish the following

Proposition 4.2. There ezxists an infinite family F of pairwise disjoint
unit segments in 3-space such that there are no two members that can be
separated from a third by a plane.

Proof: We fix a unit segment pg and define the segments Fy, Fy, ...,
recursively. Assume that we have already defined the first n pairwise
disjoint segments, Fi, F5, ..., F,,, such that

e F; and pq have an interior point in common (1 < ¢ < n),

e the directions of Fi,..., F}, and pq are in general position,
e no two members of {Fy,..., F,} can be separated from a third by
a plane.

Let r be a point contained in the open segment pq that does not belong
to any F; (1 <14 <mn). Let F,,+1 be a unit segment passing through r,
whose direction is in general position with respect to the directions of
Fy, ..., F, and pq. If the endpoints of F,; are close enough to p and ¢,
then Fi,..., F, 11 satisfy the above conditions for n 4+ 1. O

4.3 Notice that it was a crucial feature of the above construction that all
segments F; cross a fixed unit segment. Indeed, every family F satisfying
the condition in Proposition 4.2 must be bounded, which implies that its
members have an accumulation point pg with respect to the Hausdorff
distance. If the closure of a member F; € F is disjoint from the closed
segment pg, then F; can be separated by a plane from infinitely many
members of F.

Although one can find a continuum of pairwise skew lines in general
position in 3-space, no two of which can be separated by a plane from a
third, Proposition 4.2 guarantees the existence of only a countably infinite
family of unit segments with the same property. Is it true that, for any
uncountable family F of pairwise disjoint bounded convex sets in 3-space,
there is a plane which has uncountably many members of F on both of
its sides?
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