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“What does the Hungarian parrot say?”
“Log. Log log log log ...”
(Riddle. Folklore.)

1. Introduction

In his classical monograph published in 1935, Dénes Konig [K] included one of Paul Erdés’s
first remarkable results: an infinite version of the Menger theorem. This result (as well as the
Konig-Hall theorem for bipartite graphs, and many related results covered in the book) can be
reformulated as a statement about transversals of certain hypergraphs.

Let H be a hypergraph with vertex set V(H) and edge set E(H). A subset T C V(H) is called
a transversal of H if it meets every edge E € E(H). The transversal number 7(H) is defined as
the minimum cardinality of a transversal of H. Clearly, 7(H) > v(H), where v(H) denotes the
maximum number of pairwise disjoint edges of H. In the above mentioned examples, 7(H) = v(H)
holds for the corresponding hypergraphs. However, in general it is impossible to bound 7 from
above by any function of v, without putting some restriction on the structure of H.

One of Erdés’s closest friends and collaborators, Tibor Gallai (who is also quoted in Ko6nig’s
book) once said: “I don’t care for bounds involving log n’s and loglog n’s. I like exact answers.
But Paul has always been most interested in asymptotic results.” In fact, this quality of Erdds
has contributed a great deal to the discovery and to the development of the “probabilistic method”
(see [ES], [AS]).

The search for “exact answers” (e.g. to the perfect graph conjecture of Berge [Be]) has revealed
some important connections between transversal problems and linear programming that led to the
deeper understanding of the Kénig-Hall-Menger—type theorems. It proved to be useful to introduce

another parameter, the fractional transversal number of a hypergraph, defined by



where the minimum is taken over all non—negative functions ¢ : V(H) — R with the property that

Z t(z)>1 for every E € E(H).
LAY D)

Obviously, 7(H) > 7*(H) > v(H), and 7*(H) can be easily calculated by linear programming. (See
[Lo] and [S].)

At the same time, the probabilistic (or shall we say, asymptotic) approach has also led to
many exciting discoveries about extremal problems related to transversals (e.g. Ramsey—Turdn—
type theorems, property B). It was pointed out by Vapnik and Chervonenkis [VC] that in some
important families of hypergraphs a relatively small set of randomly selected vertices will, with
high probability, be a transversal. They defined the dimension of a hypergraph as the size of the
largest subset A C V(H) with the property that for every B C A there exists an edge E € E(H)
such that £ N A = B. Adapting the original ideas of [VC| and [HW], it was shown in [KPW] (see
also [PA]) that

(1) 7(H) < (14 0(1)) dim(H)7*(H) log 7*(H),

as 7* — 00, and that this bound is almost tight.

Ding, Seymour and Winkler [DSW] have introduced another parameter of a hypergraph, closely
related to its dimension. They defined A(H) as the size of the largest collection of edges { E1, ..., Ex} C
E(H) with the property that for every pair (E;, Ej), 1 < i # j < k, there exists a vertex z such
that € E; N E; but z € E, for any h # 4, j. Combining (1) with Ramsey’s theorem, they showed
that

ANH) +v(H) ’

A(H)

(2) T(H) < 6X*(H) (M(H) + v(H))

holds for every hypergraph H.

As far as we know, Haussner and Welzl [HW] were the first to recognize that (1) has a wide
range of interesting geometric applications, due to the fact that a large variety of hypergraphs
defined by geometric means have low Vapnik—Chervonenkis dimensions.

The aim of this note is to illustrate the power of this approach by two examples. In Section 2
we show that (2) easily implies some far-reaching generalizations of results of Erds and Szekeres
[ES1] [ES2]. In Section 3, we use (2) to extend and to give alternative proofs for some old results

of Gyarfis and Lehel (see [G], [GL], [L]) bounding the transversal numbers of box hypergraphs.



2. Covering with boxes
Given two points p,q, € R? let Box[p,q] be defined as the smallest box containing p and g,
whose edges are parallel to the axes of the coordinate system. The following theorem settles a

conjecture of Birdny and Lehel [BL], who established the first non—trivial result of this kind.

Theorem 2.1. Any finite (or compact) set P C R contains a subset with at most 92'*? elements,

{pill <i <22}, such that
920+2

PC |J Box [p;, pjl.
2,7=1

Proof: Let H be a hypergraph on the vertex set

V(H) = {Box[p,q]| p,q € P},

defined as follows. Associate with each point r € P the set

E, = {Box|p, ¢]|r € Box[p,q]},

and let E(H) = {E,|r € P}.
Clearly, E, N E; # 0 for any p,q, € P, because Box[p, ¢] € E, N E,. Hence, v(H) = 1.
According to a well-known lemma of Erdés and Szekeres [ES1], any sequence of k2 + 1 real num-
bers contains a monotone subsequence of length k 4+ 1. By repeated application of this statement,
we obtain that any set of 22771 41 points in R? has three elements p;, P4, pr, With py € Box[p;, pj].
This immediately implies that

9d—1

A(H) < 2

Indeed, for any family of more than 22" edges E,,,...Ey,, € E(H), one can choose three distinct

indices 4, j, k with p, € Box [p;, p;], which yields that

Thus, we can apply (2) to obtain
T(H) < 6X2(H) (M(H) +1)* < 227

and the result follows. O
As was shown in [BL], the bound 22'*? in Theorem 2.1 is nearly optimal.

In fact, the above argument yields a slightly stronger result.



Theorem 2.2. Let P C R% by any compact set, and let B be any family of bozes in parallel position
with the property that for any (v + 1)—element subset P' C P there is a box B € B which covers at
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least two points of P' (d,v > 1). Then one can choose at most (22 ) members of B such that
their union will cover P.

In [ES2], Erd8s and Szekeres proved the following.

Lemma 2.3. Every set P C R? with at least 2¥ elements contains three points p1, ps, p3 such that
Ip1,p2,p3 > 7 (1 - %) .
Our next result, which improves a theorem of Bardny [B], can be regarded as a generalization

of Lemma 2.3.

Theorem 2.4. Let d be a positive integer, ¢ > 0. Ewvery finite (or compact) set P C R® has a

subset of at most 2(c/e)*!

elements, P' = {p1,pa,...}, with the property that for any p € P\P'
there exist p;,p; € P' satisfying
Ipipp; > T —€ .

(Here ¢ < 8 is a constant.)

Proof: For d > 2,¢ > 0 fixed, let us cover the unit hemisphere centered at O € R% with (4/¢)?~1
spherical (d — 1)-dimensional simplices S1, S2, ... such that the diameter of each S; is at most €/2.
Let hy, ..., hyg denote the hyperplanes induced by O and the ((d — 2)-dimensional) facets of S;.
A parallelotope whose facets are parallel to h;1, ..., hy, respectively, is called a boz of type t. The
smallest box of type t containing p,q € R¢ will be denoted by Box;[p, q]-

For any p,q € R¢, choose an index t such that pq is parallel to Os for some s € S;, and let
Box[p, ] = Box[p, ¢]. Notice that if r € Box [p, ¢] then 4prqg > 7 —e.

Just like in the previous proof, define a hypergraph H by

V(H) = {Box[p,q]|p,q€ P},
E(H) = {E|r e P},
where E, = {Box[p, ¢]|r € Box[p,q]}, and observe that it is sufficient to bound the transversal
number of H. Clearly, v(H) = 1.
By the definition of A(H), one can select A(H) = X elements p1,...,p) € P with the property
that any two of them is enclosed in a box of some type, which does not cover any other p,. More

precisely, for every 1 < i < j < X there exists (i, j) < (4/€)%! such that

{p1,---, P2} N Boxy; 3y [pi, pi] = {pisps} -
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Obviously, p; and p; are two antipodal vertices of Boxy; ;) [pi,pj], and every box has pairs of

antipodal vertices. Let us color the segments p;p;(1 < i < j < A) with (4/¢)4-12¢-1

colors according
to the value of #(4, j) and to the particular position of the diagonal p;p; within Box,; ;) [pi, p;j]- It
is easy to see that the segments of the same fixed color form a bipartite subgraph of the complete

graph K on the vertex set pi,...,p). Hence the chromatic number of K},

)d—lzd—l

MH) < 204/¢

and the result follows from (2). O
It is not hard to see that the bound in Theorem 2.4 is asymptotically tight, apart from the
exact value of ¢ (see [B], [EF]).
Combining these observations with an analogue of Turdn’s theorem for hypergraphs (see e.g.

[Sp]), we immediately obtain the following result related to a problem of Conway, Croft Erdds and

Guy [CC].

Corollary 2.5. There exists a constant ¢ > 0 such that, for any set of n distinct points p1,...pn €

R4, the number of triples i < j < k for which Ip;pjpx, > ™ — ¢, is at least |_n3/2(c/€)d_1

|. Moreover,
apart from the value of ¢, this bound cannot be improved.

Finally, we mention another straightforward generalization of Lemma 2.3.

Theorem 2.6. Let P be any set of at least Ele/9?™ points in R®, where c is a suitable constant.
Then one can find po,...,px € P such that they are “almost collinear”, i.e., IP;—1PiPi+1 > ™ — €

for every i (1 <i < k).

3. Gallai—type theorems
Many problems in geometric transversal theory were motivated by the following famous question
of Gallai. Given a family of pairwise intersecting disks in the plane, what is the smallest number
of needles required to pierce all of them? (The answer is three. See [D], [DGK], [GPW], [E].).
First we show that (2) implies the following result of Gyarfis and Lehel.

Theorem 3.1. [GL] For any positive integers k and v, there exists a number f = f(k,v) with
the following property. Let H be any finite family of subsets of R such that each of them can be
obtained as the union of at most k intervals. If H has no v+ 1 pairwise disjoint members, then all

of its members can be pierced by at most f points.

Proof: In order to apply (2), we have to bound A\(H). Let E1,..., E) be some members (edges) of



H such that, for any 7 < j, E;NE; has a point z;; which does not belong to any other Ej,(h # i, j).

Write each E; (1 <4 < A) as the union of k intervals,
E,=I1U... Ul .

If z;; € I, N I, for some i < j, then (E;, E;) is called a pair of type (p,q). (A pair may have
several different types.)
It is easy to check that there are no four edges E; such that all (;) = 6 pairs determined by
them are of the same type. Thus,
A< Ry2(4),

where R,(t) denotes the smallest number R such that any complete graph of R vertices, whose
edges are colored with s colors, has a monochromatic complete subgraph of ¢ vertices. Hence, the

theorem is true with 5
sz (4) + V) O

v

Flkv) <6 (

Theorem 3.1. does not generalize to subsets of the plane that can be obtained as the union of

3

k axis-parallel rectangles. Indeed, let H = {E;|1 < i < n}, where

>~ =

B ={(z,y) € B}0 < z,y <n and min(jz —il, |y — i|) <

Then v(H) =1, while A(H) = 7(H) = n.

However, one can easily establish the following.

Theorem 3.2. Let F be a family of open domains in the plane such that each of them is bounded
by a closed Jordan curve, and any two of them share at most two boundary points. Furthermore,
let H be a finite set system, whose every element can be obtained by taking the union of at most k
members of F. If H has no v+ 1 pairwise disjoint elements, then all of its elements can be pierced

by at most g(k,v) points (where g depends only on k and v).
Proof: Pick A elements (edges) of H,
E;=I1;U...Ul (IpeF,1<i<\1<p<k),

and suitable points

zij € (B N Ej)\ Unzij En

as in the previous proof. After defining the type of a pair (E;, E;), i < j in exactly the same way as

above, now one can argue that there are no 6 edges E; such that all the (g) = 15 pairs determined



by them have the same type (p,q). Assume, for contradiction, that e.g. FEi,..., Eg satisfy this
condition for some p # ¢. Then any I;, (1 < i < 3) and any I, (4 < j < 6) have a common
interior point (z;;) which is not covered by any other Ej (k # 4,7). We can conclude (by tedious
case analysis) that there exist pairwise disjoint connected open subsets I}, C I;;, (1 <i <3), I, C
Ij, (4 < j < 6) such that every I}, and I}, share a common boundary segment. This contradicts
Kuratowski’s theorem on planar maps. The case p = g can be treated similarly.

Thus, A < Ry2(6) and the result follows. We could also apply Theorem 1.1 of Sharir [Sh] to
deduce A < Ry2(c) with a much larger constant ¢ > 6. O

Theorem 3.2 can be applied to the family F¢ of all homothetic copies of a convex set C' in the
plane. The special case when C is a convex polygon with a bounded number of sides was settled by
Gyérfis [G]. (An easy compactness argument shows that C' does not need to be strictly convex.)

For any hypergraph H and for any integer ¢ > 1, let 14(H) denote the maximum number of
(not necessarily distinct) edges of H such that every vertex is contained in at most ¢ of them.
Furthermore, let A;(H) be the size of the largest collection of edges {E;|i € I} C E(H) with the
property that for any t—tuple J C I there exists z; € V(H) such that

o< (e (y)

Clearly, v1(H) = v(H) and A\ (H) = A\(H).
Ding, Seymour and Winkler [DSW] have established an upper bound for 7(H) in terms of
vi(H) and A1 (H), for any fixed ¢t > 1. Applying their result with ¢ = 2, we obtain the following

generalization of Theorem 3.1 for the plane.

Theorem 3.3. Let H be a finite family of open sets in the plane such that

(i) every member of H is bounded by at most k closed Jordan curves;

(7i) any two distinct members of H have at most £ boundary points in common.

Assume that among any v + 1 members of H there are three with non—empty intersection. Then

all members of H can be pierced by at most f(k,2,v) points, where f does not depend on H.

In higher dimensions we obtain e.g. the following result.

Theorem 3.4. Let H be a finite family of not necessarily connected polyhedra in R* (d > 2).
Assume that every member of H has at most k vertices, and that among any v + 1 members of H
there are d+ 1 whose intersection is non—empty. Then all members of H can be pierced by at most

g(d, k,v) points, where g does not depend on H.



The special case of Theorem 3.4, when every member of H is the union of a bounded number

of axis—parallel boxes, was proved by Lehel [L].
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