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Abstract. A thrackle is a graph drawn in the plane so that every pair
of its edges meet exactly once: either at a common end vertex or a in a
proper crossing. We prove that any thrackle of n vertices has at most
1.398n edges. Quasi-thrackles are defined similarly, except that every
pair of edges that do not share a vertex are allowed to cross an odd
number of times. It is also shown that the maximum number of edges
of a quasi-thrackle on n vertices is 3

2
(n− 1), and that this bound is best

possible for infinitely many values of n.

1 Introduction

Conway’s thrackle conjecture [8] is one of the oldest open problems in the theory
of topological graphs. A topological graph is a graph drawn in the plane so that
its vertices are represented by points and its edges by continuous arcs connecting
the corresponding points so that (i) no arc passes through any point representing
a vertex other than its endpoints, (ii) any two arcs meet in finitely many points,
and (iii) no two arcs are tangent to each other. A thrackle is a topological graph
in which any pair of edges (arcs) meet precisely once. According to Conway’s
conjecture, every thrackle of n vertices can have at most n edges. This is analogous
to Fisher’s inequality [3]: If every pair of edges of a hypergraph H have precisely
one point in common, then the number of edges of H cannot exceed the number
of vertices.

The first linear upper bound on the number of edges of a thrackle, in terms
of the number of vertices n, was established in [6]. This bound was subsequently
improved in [1] and [4], with the present record, 1.4n, held by Goddyn and Xu [5],
which also appeared in the master thesis of the second author [9]. One of the
aims of this note is to show that this latter bound is not best possible.

Theorem 1. Any thrackle on n > 3 vertices has at most 1.398n edges.

Several variants of the thrackle conjecture have been considered. For example,
Ruiz-Vargas, Suk, and Tóth [7] established a linear upper bound on the number
of edges even if two edges are allowed to be tangent to each other. The notion
of generalized thrackles was introduced in [6]: they are topological graphs in
which any pair of edges intersect an odd number of times, where each point of
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intersection is either a common endpoint or a proper crossing. A generalized
thrackle in which no two edges incident to the same vertex have any other point
in common is called a quasi-thrackle. We prove the following.

Theorem 2. Any quasi-thrackle on n vertices has at most 3
2 (n− 1) edges, and

this bound is tight for infinitely many values of n.

The proof of Theorem 1 is based on a refinement of parity arguments developed
by Lovász et al. [6], by Cairns–Nikolayevsky [1], and by Goddyn–Xu [5], and
it heavily uses the fact that two adjacent edges cannot have any other point in
common. Therefore, one may suspect, as the authors of the present note did,
that Theorem 1 generalizes to quasi-thrackles. Theorem 2 refutes this conjecture.

2 Terminology

Given a topological graph G in the projective or Euclidean plane, if it leads to
no confusion, we will make no distinction in notation or terminology between
its vertices and edges and the points and arcs representing them. A topological
graph with no crossing is called an embedding. A connected component of the
complement of the union of the vertices and edges of an embedding is called
a face. A facial walk of a face is a closed walk in G obtained by traversing a
component of the boundary of F . (The boundary of F may consist of several
components.) The same edge can be traversed by a walk at twice; the length of
the walk is the number of edges counted with multiplicities. The edges of a walk
form its support.

A pair of faces, F1 and F2, in an embedding are adjacent (or neighboring)
if there exists at least one edge traversed by a facial walk of F1 and a facial
walk of F2. In a connected graph, the size of a face is the length of its (uniquely
determined) facial walk. A face of size k (resp., at least k or at most k) is called
a k-face (resp., k+-face and k−-face).

A cycle of a graph G is a closed walk along edges of G without vertex repetition.
(To emphasize this property, sometimes we talk about “simple” cycles.) A cycle
of length k is called a k-cycle.

A simple closed curve on a surface is said to be one-sided if its removal does
not disconnect the surface. Otherwise, it is two-sided. An embedding of a graph
G in the projective plane is called a parity embedding if every odd cycle of G
is one-sided and every even cycle of G is two-sided. An embedding of G in the
projective plane (or in any other closed compact surface) is cellular if each of its
faces is homeomorphic to an open disc.

3 Proof of Theorem 1

For convenience, we combine two theorems from [2] and [6].

Corollary 1. A graph G is a generalized thrackle if and only if G admits a
parity embedding in the projective plane. In particular, any bipartite thrackle can
be embedded in the (Euclidean) plane.
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Proof. If G is a non-bipartite generalized thrackle, then, by a result of Cairns
and Nikolayevsky [2, Theorem 2], it admits a cellular parity embedding in the
projective plane.

On the other hand, Lovász, Pach, and Szegedy [6, Theorem 1.4] showed that
a bipartite graph is a generalized thrackle if and only if it is planar, in which case
it can be embedded in the projective plane so that every cycle is two-sided.
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Fig. 1: (a) An illustration for the proof of Lemma 1; (b) Graph G(k) embedded in
the projective plane. The projective plane is obtained by identifying the opposite
pairs of points on the ellipse.

Lemma 1. A thrackle does not contain more than one triangle.

Proof. Refer to Fig. 1a. By Lemma [6, Lemma 2.1], every pair of triangles in a
thrackle share a vertex. A pair of triangles cannot share an edge, otherwise they
would form a 4-cycle, and a thrackle cannot contain a 4-cycle.

Let T1 = vzy and T2 = vwu be two triangles that have a vertex v in common.
By Lemma [6, Lemma 2.2], the two closed curves representing T1 and T2 properly
cross each other at v. Hence, the closed Jordan curve C1 corresponding to T1

contains w in its interior and u in its exterior. Thus, the drawing of T1∪{uv, uw}
in a thrackle is uniquely determined up to isotopy and the choice of the outer
face. If we traverse the edge wu from one endpoint to the other, we encounter its
crossings with the edges vy, yz, and zv in this or in the reversed order. Indeed,
the crossings between wu and vz, and wu and vy must be in different connected
components of the complement of the union of zy, vw, and vu in the plane. By
symmetry, the crossing of zy and wu is on both zy and wu between the other
two crossings. Now, a simple case analysis reveals that this is impossible in a
thrackle. We obtain a contradiction, which proves the lemma.

Next, we prove Theorem 1 for triangle-free graphs. Our proof uses a refinement
of the discharging method of Goddyn and Xu [5].

Lemma 2. Any triangle-free thrackle on n > 3 vertices has at most 1.398(n− 1)
edges.
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Proof. Since no 4-cycle can be drawn as a thrackle, the lemma holds for graphs
with fewer than 5 vertices. We claim that a vertex-minimal counterexample to
the lemma is (vertex) 2-connected. Indeed, let G = G1 ∪ G2, where |V (G1) ∩
V (G2)| < 2. Suppose that |V (G1)| = n′. By the choice of G, we have |E(G)| =
|E(G1)|+ |E(G2)| ≤ 1.398(n′ − 1) + 1.398(n− n′) = 1.398(n− 1).

Thus, we can assume that G is 2-connected. Using Corollary 1, we can embed
G as follows. If G is not bipartite, we construct a cellular parity embedding of G
in the projective plane. If G is bipartite, we construct an embedding of G in the
Euclidean plane. Note that in both cases, the size of each face of the embedding
is even.

The following statement can be verified by a simple case analysis. It was
removed from the short version of this note.

Proposition 1. In the parity embedding of a 2-connected thrackle in the projec-
tive plane, the facial walk of every 8−-face is a cycle, that is, it has no repeated
vertex.

To complete the proof of Lemma 2, we use a discharging argument. Since G
is embedded in the projective plane, by Euler’s formula we have

e + 1 ≤ n + f (1)

where f is the number of faces and e is the number of edges of the embedding.
We put a charge d(F ) on each face F of G, where d(F ) denotes the size of F ,

that is, the length of its facial walk. An edge is called bad if it is incident to a
6-face. Let F be an 8+-face. Through every bad edge uv of F , we discharge from
its charge 1/6 to the neighboring 6-face on the other side of uv.

We proved in [4] that in a thrackle no pair of 6-cycles can share a vertex. By
Claim 1, G has no 8-face with 7 bad edges. Furthermore, every 8−-face is a 6-face
or an 8-face. Indeed, in a parity embedding there is no odd face, and 4-cycles are
not thrackleable. Hence, every face ends up with a charge of at least 7.

Proposition 2. Unless G has 12 vertices and 14 edges, no two 8+-faces that
share an edge can end up with charge precisely 7.

In the case where G has 12 vertices and 14 edges, the lemma is true, By
Proposition 2, if a pair of 8+-faces share an edge, at least one of them ends up
with a charge at least 43/6. Let F be such a face. We can further discharge 1/24
from the charge of F to each neighboring 8+-face. After this step, the remaining
charge of F is at least 43

6 − 3 1
24 = 7 + 1

24 . Every 9+-face F ′ has charge at least

d(F ′)− d(F ′)
6 ≥ 7 + 1

2 .
In the last discharging step, we discharge through each bad edge of an 8+-face

an additional charge of 1/288 to the neighboring 6-face. At the end, the charge of
every face is at least 7 + 1

24 −6 1
288 = 7 + 1

48 . Since the total charge
∑

F d(F ) = 2e
has not changed during the procedure, we obtain 2e ≥ (7 + 1

48 )f . Combining this
with (1), we conclude that

e ≤
7 + 1

48

5 + 1
48

n−
7 + 1

48

5 + 1
48

≤ 1.398(n− 1),
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which completes the proof of Lemma 2.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. If G does not contain a triangle, we are done by Lemma 2.
Otherwise, G contains a triangle T . We remove an edge of T from G and denote
the resulting graph by G′. According to Lemma 1, G′ is triangle-free. Hence, by
Lemma 2, G′ has at most 1.398(n− 1) edges, and it follows that G has at most
1.398(n− 1) + 1 < 1.398n edges.

Remark 1. Without introducing any additional forbidden configuration, our
methods cannot lead to an upper bound in Theorem 1, better than 22

16n = 1.375n.

This is a simple consequence of the next lemma. Let H(k) be a graph
obtained by taking the union of a pair of vertex-disjoint paths P = p1 . . . p6k
and Q = q1 . . . q6k of length 6k; edges piqi for all i mod 3 = 0; edges piq6k−i for
all i mod 3 = 2; and paths pip

′
ip
′′
i qi, for all i mod 3 = 1, which are internally

vertex-disjoint from P,Q, and from one another.

Lemma 3. For every k ∈ N, the graph H(k) has 16k vertices and 22k− 2 edges,
it contains no two 6-cycles that share a vertex or are joined by an edge, and it
admits a parity embedding in the projective plane.

Proof. For every k, H(k) has 12k− 4 vertices of degree three and 4k + 4 vertices
of degree two. Thus, H(k) has 3(6k − 2) + 4k + 4 = 22k − 2 edges. A projective
embedding of G(k) with the required property is depicted in Figure 1b. Using
the fact that all 6-cycles are facial, the lemma follows.

Remark 2. It was stated without proof in [2] that the thrackle conjecture has
been verified by computer up to n = 11. Provided that this is true, the upper

bound in Theorem 1 can be improved to e ≤ 7+ 1
12

5+ 1
12

(n− 1) ≤ 1.393(n− 1). This

follows from the fact that an 8-face and a 6-face can share at most two edges.

4 Proof of Theorem 2

It is known [1] that C4, a cycle of length 4, can be drawn as a generalized thrackle.
Hence, our next result whose simple proof is left to the reader implies that
the class of quasi-thrackles forms a proper subclass of the class of generalized
thrackles.

Lemma 4. C4 cannot be drawn as a quasi-thrackle.

Let G(k) denote a graph consisting of k pairwise edge-disjoint triangles that
intersect in a single vertex. The drawing of G(3) as a quasi-thrackle, depicted in
Figure 2a, can be easily generalized to any k. Therefore, we obtain the following

Lemma 5. For every k, the graph G(k) can be drawn as a quasi-thrackle.
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Fig. 2: A drawing of G(3) as a quasi-thrackle. The two copies of the vertex v are
identified in the actual drawing.

In view of Lemma 1, Gk cannot be drawn as a thrackle for any k > 1. Thus,
the class of thrackles is a proper sub-class of the class of quasi-thrackles.

Cairns and Nikolayevsky [1] proved that every generalized thrackle of n
vertices has at most 2n − 2 edges, and that this bound cannot be improved.
The graphs G(k) show that for n = 2k + 1, there exists a quasi-thrackle with
n vertices and with 3

2 (n− 1) edges. According to Theorem 2, no quasi-thrackle
with n vertices can have more edges.

Proof of Theorem 2. Suppose that the theorem is false, and let G be a
counterexample with the minimum number n of vertices.

We can assume that G is 2-vertex-connected. Indeed, otherwise G = G1 ∪G2,
where |V (G1)∩ V (G2)| ≥ 1 and E(G1)∩E(G2) = ∅. Suppose that |V (G1)| = n′.
By the choice of G, we have |E(G)| = |E(G1)|+ |E(G2)| ≤ 3

2 (n′−1)+ 3
2 (n−n′) =

3
2 (n− 1), so G was not a counterexample.

Suppose first that G is bipartite. By Corollary 1, G (as an abstract graph) can
be embedded in the Euclidean plane. By Lemma 4, all faces in this embedding
are of size at least 6. Using a standard double-counting argument, we obtain that
2e ≥ 6f , where e and f are the number of edges and faces of G, respectively. By
Euler’s formula, we have e+ 2 = n+f . Hence, 6e+ 12 ≤ 6n+ 2e, and rearranging
the terms we obtain e ≤ 3

2 (n− 3), contradicting our assumption that G was not
a counterexample.

If G is not bipartite, then, according to Corollary 1, it has a parity embedding
in the projective plane. By Lemma 4, G contains no 4-cycle. It does not have
loops and multiple edges, therefore, the embedding has no 4-face. G cannot
have a 5-face, because the facial walk of a 5-face would be either a one-sided
5-cycle (which is impossible), or it would contain a triangle and a cut-vertex
(contradicting the 2-connectivity of G). In a similar manner, one can argue that
G has no 3-face. By Euler’s formula, e + 1 = n + f and, as in the previous
paragraph, we conclude that 6e + 6 ≤ 6n + 2e, the desired contradiction.
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5 Omitted proofs

Proposition 1. In the parity embedding of a 2-connected thrackle in the projective
plane, the facial walk of every 8−-face is a cycle, that is, it has no repeated vertex.

Proof. If G is bipartite, the claim follows by the 2-connectivity of G and by the
fact that the 4-cycle is not a thrackle.

Suppose G is not bipartite. Then G cannot contain 4−-face, since we excluded
triangles (by the hypothesis of the lemma) and 4-cycles (which are not thrackles).
We can also exclude any 5-face F , because either the facial walk of F is a 5-cycle,
which is impossible in a parity embedding, or the facial walk contains a triangle.

Analogously, if F is a 7-face, its facial walk cannot be a cycle (with no repeated
vertex). Hence, the support of F must contain a 5-cycle. Using the fact that G
has no triangle and 4-cycle, we conclude that F must be incident to a cut-vertex,
a contradiction.

It remains to deal with 6-faces and 8-faces. If the facial walk of a 6-face F is
not a 6-cycle, then its support is a path of length three or a 3-star. In this case,
G is a tree on three vertices, contradicting our assumption that G is 2-connected.
Thus, the facial walk of every 6-face must be a 6-cycle.

The support of the facial walk of an 8-face F cannot contain a 5-cycle, because
in this case it would also contain a triangle. Therefore, the support of F must
contain a 6-cycle. The remaining (2-sided) edge of F cannot be a diagonal of
this cycle (as then it would create a triangle or a 4-cycle), and it cannot be a
“hanging” edge (because this would contradict the 2-connectivity of G). This
completes the proof of the proposition.

Proposition 2. Unless G has 12 vertices and 14 edges, no pair of 8+-faces that
share an edge end up with charge precisely 7.

Proof. An 8-face F with charge 7 must be adjacent to a pair of 6-faces, F1 and
F2. By Proposition 1, the facial walks of F, F1, and F2 are cycles. Since G does
not contain a cycle of length 4, both F1 and F2 share three edges with F , or one
of them shares two edges with F and the other one four edges. Hence, any 8-face
F ′ adjacent to F shares an edge uv with F , whose both endpoints are incident to
a 6-face. If F ′ has charge 7, both edges adjacent to uv along the facial walk F ′,
must be incident to a 6-face. By the aforementioned result from [4], these 6-faces
must be F1 and F2. By Proposition 1, the facial walk of F ′ is 8-cycle. Since F ′

shares 6 edges with F1 and F2, we obtain that G has only 4 faces F, F ′, F1, and
F2.

Lemma 4. C4 cannot be drawn as a quasi-thrackle.

Proof. Suppose for contradiction that C4 = uvwz can be drawn as a quasi-
thrackle; see Fig.3. Assume without loss of generality that in the corresponding
drawing, the path uvw a path uvw does not intersect itself. Let c1 denote the
first crossing along uz (with vw) on the way from u. Let c2 denote the first
crossing along wz (with uv) on the way from w. Let Cu denote the closed Jordan
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curve consisting of uv; the portion of uz between u and c1; and the portion of
vw between v and c1. Let Cw denote the closed Jordan curve consisting of vw;
the portion of wz between w and c2; and the portion of uv between v and c2.

v

u

w

z

c1

c2

Cw

Cu

Fig. 3: An illustration for the proof of Lemma 4.

Observe that z and w are not contained in the same connected component
of the complement of Cu in the plane. Indeed, wz crosses Cu an odd number of
times, since it can cross it only in uv. Let Du denote the connected component
of the complement of Cu containing z. By a similar argument, z and u are not
contained in the same connected component of the complement of Cw in the plane.
Let Dw denote the connected component of the complement of Cw containing z.

Since z ∈ Du ∩ Dw, we have that Du ∩ Dw 6= ∅. On the other hand, Cu and
Cw do not cross each other, but they share a Jordan arc containing neither u
nor w. If Du ⊂ Dw (or Dw ⊂ Du), then u and z are both in Dw (or w and z are
both in Du), which is impossible. Otherwise, u and z are both in Dw, and at the
same time w and z are both in Du, which is again a contradiction.
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