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ABSTRACT
We study dynamic self-reconfiguration of modular metamor-
phic systems. We guarantee the feasibility of motion plan-
ning in a rectangular model consisting of square modules
that are allowed to slide along or rotate about one another.
That is, we show that any two connected configurations of
the same number of modules can be transformed into each
other by a sequence of moves so that all intermediate config-
urations are connected. This settles a conjecture formulated
in [6].

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms]: Geometric problems
and computations—computations on discrete structures

General Terms
Algorithms, Theory

Keywords
Motion planning, rectangular metamorphic systems, recon-
figuration

1. INTRODUCTION
A modular metamorphic system consists of a number of

identical modules that can connect to, disconnect from, and
relocate relative to adjacent modules (see, for example, [2,
7, 9, 10, 12]). While individual modules are not capable
of moving by themselves, the entire system may be able to
reconfigure or move to a new position, when its members re-
peatedly change their positions relative to their neighbors,
by rotating or sliding around other modules [1, 7, 11], or by
expansion and contraction [10]. It is usually assumed that
the entire system must remain connected during reconfigu-
ration.

The motion planning problem for such a system is that
of computing a sequence of module motions that brings the
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system from a given initial configuration I into a desired
goal configuration F . Depending on the existence of such a
sequence of motions, we say that the problem is feasible or
respectively, infeasible.

For instance, in [2, 9] upper and lower bounds on the
number of moves needed to change I to F are discussed
for a system of hexagonal modules. In [8] it is shown that
in such a system any two connected configurations are mu-
tually reachable as long as they do not contain a certain
prohibited pattern. Demaine et. al. [3] have considered a
family of one-player games, involving the movement of coins
from one configuration to another. Moves are restricted so
that a coin can only be placed in a free position adjacent to
at least two other coins, in contrast to our motion rules that
are required to maintain overall connectedness throughout
the reconfiguration process.

In Section 2, we present the rectangular model, and in
Section 3 we prove that its two motion rules (sliding and
rotation) guarantee the feasibility of motion planning for
any pair of connected configurations having the same num-
ber of modules. This settles a conjecture formulated in [6].
Section 4 presents another rectangular model for which the
same property holds. We conclude (Section 5) by discussing
several related reconfiguration problems.

2. RECTANGULAR METAMORPHIC SYS-
TEMS

Consider a plane that is partitioned into a rectangular in-
teger grid of square cells indexed by their center coordinates
in the underlying x-y coordinate system. Of the eight adja-
cent cells of cell c = cx,y in the E (+x), W (−x), N (+y),
S (−y), NE, SE, NW and SW directions, the four in the
E, W , N and S directions are said to be side-adjacent to
c, while the other four in the NE, SE, NW and SW direc-
tions are said to be corner-adjacent to c. We denote by N(c)
(resp. NE(c)) the cell side-adjacent to c in the N direction
(resp. the cell corner-adjacent to c in the NE direction).
Similar notation is used to denote the cells side-adjacent or
corner-adjacent to c in the other axis and diagonal direc-
tions.

At any time each cell may be empty or occupied by a
module. The reconfiguration of a metamorphic system con-
sisting of n modules is a sequence of configurations (distri-
butions) of the modules in the grid at discrete time steps
t = 0, 1, 2, . . . , see below. Let Vt be the configuration of
the modules at time t, where we often identify Vt with the
set of cells occupied by the modules or with the set of their
centers. We are only interested in configurations that are



connected, i.e., for each t, the graph Gt = (Vt, Et) must be
connected, where for any t, Et is the set of edges connect-
ing pairs of cells in Vt that are side-adjacent. Vt yields Vt+1

when one module m moves from its current location to new
location in step t. In this paper we restrict ourselves to se-
quential reconfiguration, in which only one module moves
at each discrete time step, as explained above. Note that,
according to the above definition, the pattern (set of cells
or set of integer points) Vt uniquely determines the edge set
Et so that the graph Gt can be characterized by its vertex
set Vt. The union of all closed squares belonging to Vt is a
connected point set of area |Vt|, which will be denoted by
S(Vt).

The following two generic motion rules (Figure 1) define
the rectangular model. These are to be understood as pos-
sible in all axis parallel orientations, in fact generating 16
rules, eight for rotation and eight for sliding.

• Rotation: A module m side-adjacent to a stationary
module f rotates through an angle of 90◦ around f ei-
ther clockwise or counterclockwise. Figure 1(a) shows
a clockwise NE rotation. For rotation to take place,
both the target cell and the cell at the corresponding
corner of f that m passes through (NW in the given
example) have to be empty.

• Sliding: Let f1 and f2 be stationary cells that are
side-adjacent. A module m that is side-adjacent to
f1 and adjacent to f2 slides along the sides of f1 and
f2 into the cell that is adjacent to f1 and side-adjacent
to f2. Figure 1(b) shows a sliding move in the E di-
rection. For sliding to take place, the target cell has
to be empty.

In order to ensure motion precision, each move is guided
by one or two modules that are stationary during the same
step. The two motion rules of this model also appear in [5,
6]. A somewhat similar model is presented in [1].

f1 f2m f

m

(a) (b)

Figure 1: (a) Clockwise NE rotation and (b) sliding
in the E direction. Fixed modules are shaded. The
cells in which the moves take place are outlined in
the figure.

Theorem 1. The set of motion rules of the rectangular
model guarantees the feasibility of motion planning for any
pair of connected configurations V and V ′ having the same
number of modules. That is, following the above rules, V
and V ′ can always be transformed into each other so that all
intermediate configurations are connected.

We refer to a set of modules that form a straight line
chain in the grid, as a straight chain. It is easy to con-
struct examples so that neither sliding nor rotation alone
can reconfigure them to straight chains. However, in Sec-
tion 3 we prove that the motion rules of the rectangular
model (rotation and sliding, Figure 1) are sufficient to guar-
antee reachability, while maintaining the system connected

at each discrete time step. In [6], it was proved that this is
true for a special class of systems, called horizontally con-
vex, where also a distributed algorithm was given for this
task in a setting where concurrent moves are allowed.

3. PROOF OF THEOREM 1

3.1 Algorithm outline
Clearly, it is enough to prove that any configuration can

be transformed into a straight chain. Then one can append
to the sequence of moves that transforms the start configu-
ration into a straight chain, the reversed sequence of moves
that transforms the goal configuration into a straight chain
to obtain the desired effect. In addition, we make use of the
easy fact that the two motion rules permit the relocation of
a straight chain from a given initial location to any target
location.

Assume without loss of generality that the maximum x-
coordinate of a cell in the configuration is 0. Arbitrarily
select one of the occupied cells having x = 0 as the base,
say s. The algorithm relocates all the modules except s, one
by one, to extend a horizontal chain Z, whose leftmost cell
is s. Denote by z the rightmost cell of Z (initially, s = z).
During the execution of the algorithm, all modules except
those in Z \ {s} have non-positive x coordinates. In each
iteration of the algorithm, one module extends the chain in
the E direction by one cell. If desired, the algorithm can be
easily modified so that reconfiguration is done in a compact
space, instead of a straight chain.

3.2 Preliminaries
Sometimes we refer to the cell occupied by a module m

by cell(m). A pair of modules u, v is said to form a critical
pair if u and v are corner-adjacent, say at point p, and the
other two cells corner-adjacent at point p are empty. See
Figure 2. Note that u and v are connected by a path (not
shown in the figure). For example, c, d in Figure 4 form a
critical pair.

u
v

p

Figure 2: A critical pair u, v. The other two cells
corner-adjacent to point p are empty.

Consider the grid graph G = Gt(Vt, Et), where the time-
subscript will be omitted for convenience. Recall that G
is a connected graph, so that S(V ), the union of the occu-
pied cells (closed squares), is an arc-wise connected set in
the plane. The complement S(V ) of S(V ) consists of one or
more connected components, called holes. They are denoted
by H0, . . . , Hk, k ≥ 0, where H0 denotes the unique un-
bounded component, the outer hole, while every other hole
Hi, i ≥ 1, is said to be an inner hole. Each hole is bounded
by a simple orthogonal polygon, which is called the contour
of the hole.

The set of all cells in V side-adjacent or corner-adjacent
to at least one cell in H0, denoted Bout, is called the outer
boundary of the configuration. Similarly, we define the in-
ner boundary Bin of the configuration to be the set of all



elements of V side or corner-adjacent to at least one empty
cell belonging to an inner hole. Note that a cell may belong
to both the outer boundary and the inner boundary of the
configuration, and it may be adjacent to empty cells in more
than one of the inner holes Hi, i ≥ 1.

A hole Hi, i ≥ 0, is said to be critical if it contains an
empty cell side-adjacent to a pair of modules that form a
critical pair. See Figure 3. A hole which is not critical is
said to be perfect. It follows from the connectedness of our
configurations that a critical pair is always associated with
exactly two holes.

In what follows, we consider the set of simple (i.e., non-
self-intersecting) cycles C in G. For any simple cycle C ∈ C,
let R(C) denote the set of cells (empty or occupied) belong-
ing to or enclosed by C. Define the area of C as |R(C)|.
Each simple cycle C in the graph G corresponds to a sim-
ple closed curve obtained by connecting the centers of the
cells belonging to C in the cyclic order. The area of C is
the number of cells enclosed or crossed by this curve. The
contents of a cycle C ∈ C, denoted by Q(C), is defined as
Q(C) = R(C) ∩ V . That is, Q(C) is the set of occupied
cells belonging to or enclosed by C. See Figure 3 for an
illustration.

z

s
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Figure 3: A configuration V in which the minimum
degree in V \Z is at least two. There are three maxi-
mal cycles, having areas of 131, 4, and 6, and contents
of size 89, 4, and 6. A polygonal line delineates the
large cycle with area 131. There are five holes, out
of which H0 and H2 are critical, and the other three
are perfect.

We say that a cycle C is a maximal cycle, if R(C) is max-
imal with respect to inclusion, i.e., there is no cycle C′, such
that R(C) ⊂ R(C′). Denote by M the set of maximal cycles
in G. Note that if C 6= ∅, M 6= ∅. The next three lemmas
give some useful properties of the system of maximal cycles,
similar to those of the block decomposition of graphs [4].

Lemma 1. If C and C′ are two maximal cycles, then
|R(C) ∩ R(C′)| ≤ 1.

Proof. Assume to the contrary that |R(C) ∩ R(C′)| ≥
2. Then C ∪ C′ induces a (simple) cycle C′′ in G so that

R(C) ⊂ R(C′′) (and R(C′) ⊂ R(C′′) ), contradicting the
maximality of C (and C′).

Assume now that in the graph G the degree of every vertex
except z is at least two at some point during the reconfigura-
tion algorithm. Since G is connected, for any two maximal
cycles, C and C′, there exists a simple path P = v1 . . . vk ,
k ≥ 1, in G, connecting a vertex v1 ∈ C with vk ∈ C′,
none of whose intermediate vertices belong to C or C′. The
vertex v1 (resp. vk) is said to be a connector for C (resp.
for C′). (It is possible that v1 and vk coincide.) Notice
that, although there may exist more than one such paths P
connecting C and C′, the connectors (their endpoints) are
uniquely determined. See Figure 4. Similarly, for any maxi-
mal cycle C ∈ M, consider a simple path connecting C to s
(the base of Z), whose intermediate vertices do not belong
to C, and let the corresponding vertex of C be also called
a connector (that is, if s ∈ C, s is a connector). By the
maximality of C, the connector is also unique in this case.
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Figure 4: A configuration with five maximal cycles,
with areas of 12, 8, 4, 4 and 39. Connectors are
shaded in the figure. The configuration has five
holes, four of which are critical (H0, H2, H3, H4).
For example, c, d is a critical pair associated with
holes H0 and H4. ab is a rightmost edge of the max-
imal cycle with area 39, as specified in Step 2 of the
algorithm.

Lemma 2. Assume that in G the degree of every vertex
except of z is at least two. If C 6= ∅, there exists a maximal
cycle C having exactly one connector c. Furthermore, every
vertex of G not in R(C) can be connected to c by a path, all
of whose intermediate vertices lie outside of R(C).

Proof. By definition, each maximal cycle has at least
one connector. Assume for contradiction that each maximal
cycle has at least two connectors. It follows from the degree
condition that C 6= ∅ and so M 6= ∅. If |M| = 1, i.e., M =
C, C has exactly one connector, as noted above. Assume
therefore that |M| ≥ 2. There exist two maximal cycles,
C1 and C2, and a simple path in G between them that does



not pass through any vertex belonging to another maximal
cycle. Since C2 has at least two connectors, there exist two
maximal cycles, C2 and C3, and a simple path between them
that uses another connector of C2 and does not include any
point belonging to another maximal cycle. Any new cycle
that we may reach, has at least two connectors, so we can
repeat this procedure. Finally, we must either visit a vertex
belonging to some path already visited before or reach one
of the previously considered cycles. In either case, we obtain
a simple cycle C′ with R(Ci) ⊂ R(C′) for some Ci ∈ M,
which contradicts the maximality of Ci.

To verify the second part of the lemma, it is sufficient
to observe that every vertex of G not in R(C) lies either
in R(C′) for some other element C′ ∈ M or along a simple
path connecting C to another maximal cycle C′ ∈ M, whose
intermediate points do not lie in R(C) or R(C′).

Lemma 3. Suppose that in G the degree of every vertex
except of z is at least two, and let C be a maximal cycle with
precisely one connector. Then no vertex of C other than its
connector is adjacent in G to any other vertex that occupies
a cell not in R(C).

Proof. Suppose to the contrary that some vertex v0 of
C, different from its connector, is adjacent to another vertex
v1 ∈ V \ Z that lies in the exterior of C. Let v2 denote a
neighbor of v1 different from v0. In general, if vi 6= s has
already been determined for some i ≥ 2, then let vi+1 be any
neighbor of vi in G, different from vi−1. Using the fact that
v0 is not a connector, and using the maximality of C, we can
argue that vi+1 cannot belong to C, and cannot be identical
to s or to any other vertex vj (j ≤ i). This procedure can
be continued forever, which is impossible.

Lemma 4. Consider two empty cells, c and c′, belonging
to a hole Hi (i ≥ 0), each sharing at least one segment (side)
with its contour. Place a new module m in cell c. Then there
exists a sequence of moves through which m relocates to c′

so that at each step m remains adjacent to the contour of
Hi.

Proof. The assertion follows by analyzing all possible
local configurations and by checking that the motion rules
permit every single step of m making a full cycle along the
contour of Hi. See Fig 5.

Figure 5: Moves along the contour of a hole. Sta-
tionary modules are shown shaded.

3.3 Algorithm description
Next, we describe one iteration of the algorithm, culmi-

nating in the extension of the chain Z by one module in the
E-direction. For any hole Hi, let ∆(Hi) denote the set of
all (empty) cells in Hi that contribute at least one segment
to the contour of Hi.

Step 1 Assume that there exists at least one vertex in V \Z,
whose degree in G is one, else go to Step 2.

Step 1.A: If there exists a vertex of degree one in
Bout \Z (i.e., on the outer boundary), select one such
module, say m. Clearly, the removal of m does not dis-
connect G, and once m is removed, cell(m) ∈ ∆(H0),
where H0 is the new unbounded hole. By Lemma 4, if
m is placed in cell(m), there exists a sequence of moves
through which m relocates to the empty cell E(z), so
that at each step m ∈ ∆(H0). Thus, m extends Z by
one cell. Then start a new iteration.

Step 1.B: If no vertex of degree one in V \ Z belongs
to the outer boundary Bout, select a vertex m of de-
gree one that belongs to the inner boundary Bin. The
removal of m does not disconnect G, and once m is
removed, cell(m) ∈ ∆(Hi) for some i ≥ 1. By Lemma
4, if m is placed back in cell(m), there is a sequence
of moves taking m into a position where its degree in
G is at least two. (The existence of such a position
follows from the fact that Hi is an inner hole.) If now
there exists a vertex of degree one in Bout \ Z, go to
Step 1.A. If there exists a vertex of degree one in Bin,
repeat Step 1.B.

Step 2 Assume that in G the degree of every vertex belong-
ing to V \Z is at least two. Then we have C 6= ∅ so that
M 6= ∅. By Lemma 2, there exists a maximal cycle C
having exactly one connector c. Consider all vertical
edges of C with the smallest and with the largest x-
coordinates. Assume without loss of generality that
the connector of C does not belong to the highest ver-
tical edge ab having the largest x-coordinate. Sup-
pose further that a lies above b. (See Figure 6, where
. . . u, a, b, v . . . is the clockwise order of vertices of C
in the neighborhood of ab. The case when the connec-
tor does not belong to the highest vertical edge of C
having the smallest x-coordinate, can be treated sim-
ilarly.) By Lemma 3, E(a), E(b), and N(a) must be
empty, and the removal of a does not disconnect the
graph G. Set m := a. There are two cases, depending

u
v

u

v
b
a

b
a

Figure 6: Illustration of possible moves in Step 2 of
the algorithm.

on whether m belongs to the outer boundary or not.

Step 2.A: If m ∈ Bout \ Z, proceed as in Step 1.A:
relocate m to the empty cell E(z) so that at each step
m ∈ ∆(H0). Thus m extends Z by one cell. Then
start a new iteration.

Step 2.B: If m /∈ Bout, then we have m ∈ Bin, since
m is adjacent to at least two empty cells, E(a) and
N(a). Consider the holes Hi, Hj (i, j ≥ 1) including
the E-side and the N-side of a, respectively. (It may
happen that i = j.) It follows from the maximality



of C that Hi and Hj cannot be perfect. Once m is
removed, a becomes part of a larger hole H = Hi ∪
Hj ∪a. Let (c1, d1), (c2, d2), . . . , (ck, dk) be the circular
sequence of critical pairs around H , listed in clockwise
order, and following a. That is, the cells cj , dj ∈ V are
corner-adjacent to each other and side-adjacent to an
empty cell ej ∈ ∆(H). See Fig 4. Obviously, G \ {m}
remains connected.

Claim. There is exists an index j for which {cj , dj} *
C, and so that in G \ {m}, there are two simple paths,
π(cj) and π(dj), connecting c, the unique connector of
C, to cj and dj, respectively, satisfying the following
condition: π(cj), ej, and π(dj), together with a piece
of C\{m} induce a cycle Cj in G with R(Cj) ⊃ R(C)∪
{ej} and |Q(Cj)| > |Q(C)|.

Let j denote the index whose existence is guaranteed
by the Claim. In view of Lemma 4, if m is placed back
in cell(m), then by a suitable sequence of moves it can
be taken to cell ej , where it is side-adjacent to both
cj and dj . Therefore, in the final position, the area of
Cj is larger than that of C and the contents of Cj is
larger than that of C (since {cj , dj} * C). Then go to
Step 1.

Proof of Claim. Assume without loss of generality that the
cells c1, d1, c2, d2, . . . , ck, dk follow around the boundary of
H in clockwise order, and set T = {c1, d1, c2, d2, . . . , ck, dk}.
Since the removal of m does not disconnect G, for any x ∈ T ,
there exists a simple path π(x) in G \ {m} connecting c to
x. We can represent this path in the plane by a polygonal
line through the centers of the corresponding cells. Let ρ(x)
denote a simple oriented Jordan arc running in the interior
of the hole H from the SW -corner of a to the boundary of
x. Connecting the endpoints of π(x) and ρ(x) by a simple
arc in the union of the cells in C \ {a} and by a segment in
x, we obtain a closed Jordan region J(x). Every cell x ∈ T
satisfies at least one of the following three possibilities:

1. x belongs to C,

2. J(x) lies on the right-hand side of ρ(x),

3. J(x) lies on the left-hand side of ρ(x).

It follows from the maximality of C that, for any 1 ≤ j ≤
k, the cells dj and cj+1 must be of the same type, where
the indices are taken mod k. For similar reasons, as we go
around the boundary of the hole H in clockwise direction,
the first (resp. the last) cell that participates in a critical
pair must be of type 1 or type 3 (resp. type 1 or type 2). By
the definition of a, it cannot happen that both elements of
every critical pair are of type 1. Thus, there exists a critical
pair (cj , dj) whose elements have different types, and they
will meet the requirements of the Claim. See Figure 7 for
an illustration.

3.4 Algorithm analysis
Each of the steps 1.A, 1.B, 2.A, or 2.B consists of at most

n moves by a single module. We prove that after performing
at most n steps of type 1.B and at most n steps of type 2.B,
we must make a step of type 1.A or 2.A, which completes
one iteration of the algorithm.

First, note that the sequence of relocations in Step 1.B

(if not empty) strictly increases the total number of edges in
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Figure 7: Illustration to the proof of Claim. A con-
figuration with nine maximal cycles, with areas of
47, 18, 8, 6, 4, 4, 4, 4 and 4. Connectors are shaded
in the figure. ab is a rightmost edge of the maximal
cycle with area 47, as specified in Step 2 of the algo-
rithm. Its unique connector is c. The critical pairs
of the hole H created by the removal of a are: (1, 2),
(3, 4), (5, 6) and (7, 8). Cells 1 through 7 have type
3, while cell 8 has types 1 and 2. Critical pair (7, 8)
meets the requirements of the Claim.

the graph G. As G remains connected throughout the algo-
rithm, its number of edges is always at least n − 1. On the
other hand, G is a subgraph of the infinite grid with n ≥ 2
vertices, so its number of edges never exceeds 2n − 3. Tak-
ing into account that the number of edges does not decrease
during Step 2.B, we can conclude that each iteration uses
fewer than n steps of type 1.B.

Recall that the contents of a cycle C, denoted Q(C), is the
set of occupied cells belonging to or enclosed by C. Consider
the following weight function characterizing the configura-
tion: Φ(G) = q − y, where q = | ∪C∈M Q(C)| is the total
contents of maximal cycles, and y is the number of maximal
cycles. Observe that 0 ≤ Φ(G) ≤ n. Note that Step 1.B

preserves all the existent cycles, and observe that the above
weight function strictly increases during each step of type
2.B, and it does not decrease during any step of type 1.B.
Consider first a step of type 1.B: y can only increase by 1,
and if y increases by 1, then q also increases by at least one
(by the maximality condition). Consider now a step of type
2.B: Since {cj , dj} * C, assume for simplicity that dj /∈ C.
Denote by q′ and y′ the values of q and y respectively at
the end of the step. If dj ∈ Q, we have q′ ≥ q and y′ < y;
whereas if dj /∈ Q, we have q′ > q and y′ ≤ y. In either
case, Φ(G) strictly increases. Therefore, each iteration uses
at most n steps of type 2.B.

In conclusion, after fewer than n + n = 2n steps of type
1.B or 2.B, we must perform at least one step of type 1.A or
2.A, and complete an iteration of the algorithm. After each
iteration, the horizontal chain Z is extended by one cell in
the E-direction, so after n−1 iterations, the reconfiguration
to a straight chain is complete. Each step consists of at most



n moves, so the entire algorithm takes fewer than 2n3 moves.

4. ANOTHER RECTANGULAR MODEL
The following two generic motion rules (Figure 8) define

the weak rectangular model. These are to be understood
as possible in all axis-parallel orientations, in fact generat-
ing eight rules, four diagonal moves and four side moves
(axis-parallel ones). The only imposed condition is that the
configuration must remain connected at each discrete time
step.

• Diagonal move: A module m moves diagonally to an
empty cell corner-adjacent to cell(m).

• Side move: A module m moves to an empty cell side-
adjacent to cell(m).

m

(a)

m

(b)

Figure 8: (a) NE diagonal move and (b) side move
in the E direction. The cells in which the moves
take place are outlined in the figure.

The same result as in Theorem 1 holds for this second
model, but its proof is much easier.

Theorem 2. The set of motion rules of the weak rectan-
gular model guarantees the feasibility of motion planning for
any pair of connected configurations having the same number
of modules.

Proof. Assume without loss of generality that the lowest
cell of the configuration has y = 0. Consider the following
weight function characterizing the configuration:

Φ(G) =
X
c∈V

|y(c)|,

where y(c) is the y-coordinate of (the center of) cell c. Notice
that Φ is invariant with respect to horizontal translation.
If Φ(G) = 0, then G must be a straight horizontal chain.
We show that there exists a sequence of moves during which
Φ(G) monotone decreases to 0, with the additional condition
that at each time step the y-coordinate of every vertex is
nonnegative.

Consider the top row of V ; if its y-coordinate is equal to 0,
there is nothing to prove (the reconfiguration is complete).
Else consider its rightmost cell u. Notice that N(u), NW (u)
and NE(u), as well as E(u), are all empty. Since G is con-
nected, at least one of the cells W (u) or S(u) is nonempty.
We have seven cases, five for the first alternative and two
for the second. See Figure 9.

For the first five cases, v := W (u) is nonempty.

Case 1: S(v) is nonempty and S(u) is empty. Then u makes
a side move in the S direction.

Case 2: S(v) and S(u) are nonempty, and SE(u) is empty.
Then u makes a side move in the SE direction.

Case 3: S(v), S(u) and SE(u) are nonempty. Then u makes
a side move in the E direction.

Case 4: S(v) is empty and S(u) is nonempty. Then u makes
a diagonal move in the SW direction.

Case 5: both S(u) and S(v) are empty. Then u makes a
diagonal move in the SW direction.

For the last two cases, W (u) is empty and w := S(u) is
nonempty.

Case 6: SE(u) is empty. Then u makes a diagonal move in
the SE direction.

Case 7: SE(u) is nonempty. Then u makes a side move in
the E direction.

It is easy to check that the configuration remains con-
nected after each move. The reader should notice that the
key is case 4 (a move which is prohibited in the previous
model). Note that each of the cases 1, 2, 4, 5, and 6 reduces
the weight function by one unit. Cases 3 or 7 can occur
in a sequence at most n times after which one of the other
five cases (1, 2, 4, 5, or 6) must occur. Therefore, Φ(G) = 0
after at most n3/2 steps (the initial value of Φ(G) is at mostPn−1

i=1
i ≤ n2/2).

A more careful calculation shows that in fact not more
than O(n2) moves are made. Among all modules with mini-
mum y-coordinate, the one whose x-coordinate is the small-
est is called the reference module of the configuration. Con-
sider the reference module, say r, of the initial configuration.
Observe that the reconfiguration procedure outlined above
does not move any of the modules in the lowest row, so in
particular r remains fixed. In the only cases when y(u) is
not reduced (remains constant), 3 and 7, x(u) is increased
by one. Note also that x(u) is decreased by one only if y(u)
is decreased by one (cases 4 and 5). By the connectedness of
each intermediate configuration, x(r)−n ≤ x(m) ≤ x(r)+n,
for each module m. Consequently, the number of moves of
the module from cell c of the initial configuration that leave
the value of y unchanged, is not more than 2n + y(c). Since
the number of moves of the same module, during which y
gets reduced is y(c), the total number of moves in the re-
configuration process does not exceedX

c∈V

(2n + y(c) + y(c)) = 2n2 + 2
X
c∈V

y(c) ≤ 3n2.

This bound is tight up to a multiplicative constant, see Sec-
tion 5. It is very easy to improve the last bound to 2n2.

As for the previous model, it is not hard to construct ex-
amples that cannot be reconfigured to straight chains using
only diagonal moves or only side moves. There are, in fact,
small examples that simultaneously work for both models.

5. CONCLUDING REMARKS

1. In our original model, the reconfiguration of a vertical
chain into a horizontal one requires only Θ(n2) moves,
and we believe that no other pair of configurations
requires more. We have shown that this holds in the
weak rectangular model.

2. A somewhat different model can be obtained if, in-
stead of the connectedness requirement at each time
step, one imposes the following so-called single back-
bone condition [6]. Denote by Ft = Vt \ {m} the set
of modules that do not move in step t (i.e., fixed). We
refer to Ft as the backbone. The initial configuration
V0 must be connected: i.e., the graph G0 = (V0, E0)
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Figure 9: Case analysis in the proof of Theorem 2. In cases 1 through 5 (upper row), the cell W (u) is
nonempty; in cases 6 and 7 (bottom row), the cell W (u) is empty. The horizontal line indicates in each case
the top row of the configuration.

must be connected. At any time t, the backbone Ft

must be connected with respect to side-adjacency, i.e.,
the graph Bt = (Ft, E

′
t) must be connected, where

E′
t ⊂ Et is the set of edges connecting pairs of cells in

Ft that are side-adjacent. (The backbone could how-
ever have ’holes’.) Together with the connectedness
of the modules at time 0, it ensures that the modules
remain connected at any time step t. (If concurrent
moves are allowed, additional conditions have to be
imposed, as in [6].)

A subtle difference exists between requiring the con-
figuration to be connected at each discrete time step
and requiring the existence of a connected backbone
along which a module slides or rotates [6]. A one step
motion that does not satisfy the single backbone con-
dition appears in Figure 10: the initial connected con-
figuration practically disconnects during the move and
reconnects at the end of it.

Figure 10: A rotation move which temporarily dis-
connects the configuration.

Notice that at each step of our algorithm, the element
m selected to move has the property that its removal
does not disconnect G. This property is also main-
tained throughout the sequence of moves until another
element is selected to move. Therefore, the single back-
bone condition remains satisfied during the whole pro-
cedure.

3. A related question is the following. A configuration
consisting of unit cubes of integer coordinates in d-
space is called an animal if the boundary of their union
is homeomorphic to a (d − 1)-sphere. It is easy to
see that in the plane, any animal can be transformed
into any other by adding or removing one square at
a time so that all intermediate configurations are an-
imals. The corresponding statement in higher dimen-
sions is not known to be true. There exist, however,
relatively small animals in 3-space with the property

that no cube can be removed from them without vio-
lating the condition. This is in sharp contrast to the
situation in the plane.
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