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Abstract. We show that any k-th closed sphere-of-influence graph in a d-dimensional normed
space has a vertex of degree less than 5dk, thus obtaining a common generalization of results
of Füredi and Loeb (1994) and Guibas, Pach and Sharir (1994).

Toussaint [Tou88] introduced the sphere-of-influence graph of a finite set of points in Eu-
clidean space for applications in pattern analysis and image processing (see [Tou14] for a re-
cent survey). This notion was later generalized to so-called closed sphere-of-influence graphs
[HJLM93] and to k-th closed sphere-of-influence graphs [KZ04]. Our setting will be a d-
dimensional normed space N with norm ‖·‖. We denote the ball with center c ∈ N and
radius r by B(c, r).

Definition 1. Let k ∈ N and let V = {ci : i = 1, . . . ,m} be a set of points in the d-dimensional

normed space N . For each i ∈ {1, . . . ,m}, let r
(k)
i be the smallest r such that

{j ∈ N : j 6= i, ‖ci − cj‖ ≤ r}
has at least k elements. Define the k-th closed sphere-of-influence graph on V by setting {ci, cj}
an edge whenever B(ci, r

(k)
i ) ∩B(cj , r

(k)
j ) 6= ∅.

Füredi and Loeb [FL94] gave an upper bound for the minimum degree of any closed sphere-of-
influence graph in N in terms of a certain packing quantity of the space (see also [MQ94,Sul94].)

Definition 2. Let ϑ(N ) denote the largest cardinality of a subset A of the ball B(o, 2) of the
normed space N such that any two points of A are at distance at least 1, and the origin o is
in A.

Füredi and Loeb [FL94] showed that any closed sphere-of-influence graph (that is, in our
terminology, a first closed sphere-of-influence graph) in N has a vertex of degree smaller than
ϑ(N ) ≤ 5d. (It is clear that ϑ(N ) is bounded above by the number of balls of radius 1/2 that
can be packed into a ball of radius 5/2, which is at most 5d by volume considerations.)

Guibas, Pach and Sharir [GPS94] showed that any k-th closed sphere-of-influence graph in
d-dimensional Euclidean space has a vertex of degree at most cdk, for some universal constant
c > 1. In this note we show the following more precise result, valid for all norms, and generalizing
the result of Füredi and Loeb [FL94] mentioned above.

Theorem 3. Every k-th sphere-of-influence graph on at least two points in a normed space N
has at least two vertices of degree smaller than ϑ(N )k ≤ 5dk.

We note that the theorem still holds when there are repeated elements.

Corollary 4. A k-th sphere-of-influence graph on n points in N has at most (ϑ(N )k − 1)n ≤
(5dk − 1)n edges.
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Proof of Theorem 3. Let V = {c1, c2, . . . , cm}. Relabel the vertices c1, c2, . . . , cm such that

r
(k)
1 ≤ r

(k)
2 ≤ · · · ≤ r

(k)
m . We define an auxiliary graph H on V by joining ci and cj whenever

‖ci − cj‖ < max{r(k)
i , r

(k)
j }. Thus, if {ci : i ∈ I} is an independent set in H, then no ball in

{B(ci, r
(k)
i ) : i ∈ I} contains the center of another in its interior. We next bound the chromatic

number of H.

Lemma 5. The chromatic number of H does not exceed k.

Proof. Note that for each i ∈ {1, . . . ,m}, the set

{j < i : cicj ∈ E(H)} = {j < i : ‖ci − cj‖ < r
(k)
i }

has less than k elements. Therefore, we can greedily color H in the order c1, c2, . . . , cm by k
colors. �

We next show that the degrees of c1 and c2 (corresponding to the two smallest values of r
(k)
i )

are both at most ϑ(N )k, which will complete the proof of Theorem 3. We first need the so-called
“bow-and-arrow” inequality of [FL94]. For completeness, we include the proof from [FL94].

Lemma 6 (Füredi–Loeb [FL94]). For any two non-zero elements a and b of a normed space,∥∥∥∥ 1

‖a‖
a− 1

‖b‖
b

∥∥∥∥ ≥ ‖a− b‖ − |‖a‖ − ‖b‖|‖b‖
.

Proof. Without loss of generality, we may assume that ‖a‖ ≥ ‖b‖ > 0. Then

‖a− b‖ =

∥∥∥∥‖a‖ 1

‖a‖
a− ‖b‖ 1

‖b‖
b

∥∥∥∥
=

∥∥∥∥‖b‖ (
1

‖a‖
a− 1

‖b‖
b) + (‖a‖ − ‖b‖) 1

‖a‖
a

∥∥∥∥
≤ ‖b‖

∥∥∥∥ 1

‖a‖
a− 1

‖b‖
b

∥∥∥∥+ ‖a‖ − ‖b‖ . �

The next lemma is abstracted with minimal hypotheses from [MQ94, Proof of Theorem 6]
(see also [FL94, Proof of Theorem 2.1]).

Lemma 7. Consider the balls B(v1, λ1) and B(v2, λ2) in the normed space N , such that
max{λ1, λ2} ≥ 1, v1 /∈ int(B(v2, λ2)), v2 /∈ int(B(v1, λ1)) and B(vi, λi) ∩B(o, 1) 6= ∅ (i = 1, 2).
Define π : N → B(o, 2) by

π(x) =

{
x if ‖x‖ ≤ 2,

2
‖x‖x if ‖x‖ ≥ 2.

Then ‖π(v1)− π(v2)‖ ≥ 1.

Proof. In terms of the norm, we are given that ‖v1 − v2‖ ≥ max{λ1, λ2} ≥ 1, ‖v1‖ ≤ λ1 + 1,
and ‖v2‖ ≤ λ2 + 1. Without loss of generality, we may assume that ‖v2‖ ≤ ‖v1‖.

If v1, v2 ∈ B(o, 2) then ‖π(v1)− π(v2)‖ = ‖v1 − v2‖ ≥ 1.
If v1 /∈ B(o, 2) and v2 ∈ B(o, 2), then

‖π(v1)− π(v2)‖ =

∥∥∥∥2
1

‖v1‖
v1 − v2

∥∥∥∥ ≥ ‖v1 − v2‖ −
∥∥∥∥v1 − 2

1

‖v1‖
v1

∥∥∥∥
= ‖v1 − v2‖ − (‖v1‖ − 2) ≥ λ1 − (λ1 + 1) + 2 = 1.
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If v1, v2 /∈ B(o, 2), then

‖π(v1)− π(v2)‖ =

∥∥∥∥2
1

‖v1‖
v1 − 2

1

‖v2‖
v2

∥∥∥∥ ≥ 2
‖v1 − v2‖ − ‖v1‖+ ‖v2‖

‖v2‖
by Lemma 6

≥ 2

(
λ1 − (λ1 + 1)

‖v2‖
+ 1

)
=
−2

‖v2‖
+ 2 ≥ −1 + 2 = 1. �

We can now finish the proof of Theorem 3. Let i ∈ {1, 2}, and let c := ci, that is, the radius
corresponding to c is the smallest, or second smallest. By Lemma 5 we can partition the set
of neighbors of c in the k-th closed sphere-of-influence graph on V into k classes N1, . . . , Nk so

that each Nt is an independent set in H. We may assume that the radius r
(k)
i corresponding

to c is 1. Then for any t ∈ {1, . . . , k}, each ball in {B(cj , r
(k)
j ) : cj ∈ Nt} intersects B(c, 1),

and the center of no ball is in the interior of another ball. By Lemma 7, {π(p − c) : p ∈ Nt}
is a set of points contained in B(o, 2) with a distance of at least 1 between any two. That is,
|Nt \ int(B(c, 1))| ≤ ϑ(N ) − 1 for each t = 1, . . . , k. Since there are at most k − 1 points in

V ∩ int(B(c, 1))\{c}, it follows that the degree of c is at most
∑k

t=1 |Nt \ int(B(c, 1))|+k−1 ≤
(ϑ(N )− 1)k + k − 1 = ϑ(N )k − 1. �
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