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3 Eötvös University, Budapest
4 École Polytechnique Fédérale de Lausanne
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Abstract. We show that every finite connected graph G with maximum degree
three and with at least one vertex of degree smaller than three has a straight-line
drawing in the plane satisfying the following conditions. No three vertices are
collinear, and a pair of vertices form an edge in G if and only if the segment con-
necting them is parallel to one of the sides of a previously fixed regular pentagon.
It is also proved that every finite graph with maximum degree three permits a
straight-line drawing with the above properties using only at most seven different
edge slopes.

1 Introduction

A drawing of a graph G is a representation of its vertices by distinct points in the plane
and the edges by continuous arcs connecting the corresponding endpoints, not passing
through any other point corresponding to a vertex. In a straight-line drawing [8], the
edges are represented by (possibly crossing) segments. If it leads to no confusion, we
make no notational or terminological distinction between the vertices (edges) of G and
the points (arcs) representing them.

There are several widely known parameters of graphs measuring how far G is from
being planar. For instance, the thickness of G is the smallest number of its planar sub-
graphs whose union is G [14]. The geometric thickness of G is the smallest number
of crossing-free subgraphs of a straight-line drawing of G, whose union is G [11].
The slope number of G is the minimum number of distinct edge slopes in a straight-
line drawing of G [16]. It follows directly from the definitions that the thickness of
any graph is at most as large as its geometric thickness, which, in turn, cannot ex-
ceed its slope number. For many interesting results about these parameters, consult
[3,6,4,5,7,9,12,15].

The slope parameter of a graph was defined by Ambrus, Barát, and P. Hajnal [1], as
follows. By abusing the usual terminology, we say that the slope of a line � in the xy-
plane is the smallest angle α ∈ [0, π) such that � can be rotated into a position parallel
to the x-axis by a clockwise turn through α. Given a set of points P in the plane and a
set of slopes Σ, define G(P, Σ) as the graph on the vertex set P , in which two vertices
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p, q ∈ P are connected by an edge if and only if the slope of the line pq belongs to Σ.
The slope parameter s(G) of G is the size of the smallest set of slopes Σ such that G
is isomorphic to G(P, Σ) for a suitable set of points P in the plane. This definition was
motivated by the fact that all connections (edges) in an electrical circuit (graph) G can
be easily realized by the overlay of s(G) finely striped electrically conductive layers.

The slope parameter, s(G), is closely related to the three other graph parameters
mentioned before. For instance, for triangle-free graphs, s(G) is at least as large as
the slope number of G, the largest of the three quantities above. On the other hand, it
sharply differs from them in the sense that the slope parameter of a complete graph on
n vertices is one, while the thickness, the geometric thickness, and the slope number of
Kn tend to infinity as n → ∞. Jamison [10] proved that the slope number of Kn is n.

Any graph G of maximum degree two splits into vertex disjoint cycles, paths, and
possibly isolated vertices. Hence, for such graphs we have s(G) ≤ 3. In contrast, as
was shown by Barát et al. [2], for any d ≥ 5, there exist graphs of maximum degree d,
whose slope parameters are arbitrarily large.

A graph is said to be cubic if the degree of each of its vertices is at most three. A
cubic graph is subcubic if each of its connected components has a vertex of degree
smaller than three.

The aim of this note is to prove

Theorem 1. Every cubic graph has slope parameter at most seven.

We will refer to the angles iπ/5, 0 ≤ i ≤ 4, as the five basic slopes. In Sect. 2, we prove
the following statement, which constitutes the first step of the proof of Theorem 1.

Theorem 2. Every subcubic graph has slope parameter at most five. Moreover, this can
be realized by a straight-line drawing such that no three vertices are on a line and each
edge has one of the five basic slopes.

Using the fact that in the drawing guaranteed by Theorem 2 no three vertices are
collinear, we can also conclude that the slope number of every subcubic graph is at
most five. In [12], however, it was shown that this number is at most four and for cubic
graphs it is at most five. This was improved for connected cubic graphs in [13] to four.

2 Proof of Theorem 2

The proof is by induction on the number of vertices of the graph. Clearly, the statement
holds for graphs with fewer than three vertices. Let n be fixed and suppose that we
have already established the statement for graphs with fewer than n vertices. Let G be
a subcubic graph of n vertices. We can assume that G is connected, otherwise we can
draw each of its connected components separately and translate the resulting drawings
through suitable vectors.

To obtain a drawing of G, we have to find proper locations for its vertices. At each
inductive step, we start with a drawing of a subgraph of G satisfying the conditions
and extend it by adding a vertex. At a given stage of the procedure, for any vertex v
that has already been added, consider the (basic) slopes of all edges adjacent to v that
have already been drawn, and let sl(v) denote the set of integers 0 ≤ i < 5 mod 5
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for which iπ/5 is such a slope. That is, at the beginning sl(v) is undefined, then it gets
defined, and later it may change (expand). Analogously, for any edge uv of G, denote
by sl(uv) the integer 0 ≤ i < 5 mod 5 for which the slope of uv is iπ/5.

Case 1: G has a vertex of degree one. Assume without loss of generality, that v is a
vertex of degree one, and let w denote its only neighbor. Deleting v from G, the degree
of w in the resulting graph G′ is at most two. Therefore, by the induction hypothesis,
G′ has a drawing meeting the requirements. As w has degree at most two, there is a
basic slope σ such that no other vertex of G′ lies on the line � of slope σ that passes
through w. Draw all five lines of basic slopes through each vertex of G′. These lines
intersect � in finitely many points. We can place v at any other point of �, to obtain a
proper drawing of G.

From now on, assume that G has no vertex of degree one.

Case 2: G has no cycle that passes through a vertex of degree two. Since G is subcubic,
it contains a vertex w of degree two such that G is the union of two graphs, G1 and
G2, having only vertex w in common. Both G1 and G2 are subcubic and have fewer
than n vertices, so by the induction hypothesis both of them have a drawing satisfying
the conditions. Translate the drawing of G2 so that the points representing w in the two
drawings coincide. Since w has degree one in both G1 and G2, by a possible rotation
of G2 about w through an angle that is a multiple of π/5, we can achieve that the two
edges adjacent to w are not parallel. By scaling G2 from w, if necessary, we can also
achieve that the slope of no segment between a vertex of G1 \w and a vertex of G2 \w
is a basic slope. Thus, the resulting drawing of G meets the requirements.

Case 3: G has a cycle passing through a vertex of degree two. If G itself is a cycle, we
can easily draw it. If it is not the case, let C be a shortest cycle which contains a vertex
of degree two. Let u0, u1, . . . , uk denote the vertices of C, in this order, such that u0

has degree two and u1 has degree three. The indices are understood mod k + 1, that
is, for instance, uk+1 = u0. It follows from the minimality of C that ui and uj are not
connected by an edge of G whenever |i − j| > 1.

Since G \C is subcubic, by assumption, it permits a straight-line drawing satisfying
the conditions. Each ui has at most one neighbor in G \ C. Denote this neighbor by ti,
if it exists. For every i for which ti exists, we place ui on a line passing through ti. We
place the ui’s one by one, “very far” from G \ C, starting with u1. Finally, we arrive at
u0, which has no neighbor in G \ C, so that it can be placed at the intersection of two
lines of basic slope, through u1 and uk, respectively. We have to argue that our method
does not create “unnecessary” edges, that is, we never place two independent vertices
in such a way that the slope of the segment connecting them is a basic slope. In what
follows, we make this argument precise.

We determine the locations of u0, u1, . . . , uk by using the below described PROCE-
DURE(G, C, u0, u1, x), where G is our subcubic graph, C is the shortest cycle passing
through a vertex of degree two, u0 is such a vertex, u1 is a neighbor of u0 on C, whose
degree is three, and x is a real parameter. Note that PROCEDURE(G, C, u0, u1, x) is a
nondeterministic algorithm, as we have more than one choice at certain steps. (However,
it is very easy to make it deterministic.)



Cubic Graphs Have Bounded Slope Parameter 53

u u
u

i-1

ui

i-1

ui

ui-1

ui

ui-1

i

Fig. 1. The four possible locations of ui

PROCEDURE(G, C, u0, u1, x)

– STEP 0. Since G \ C is subcubic, it has a representation with the five basic slopes.
Take such a representation, scaled and translated in such a way that t1 (which exists
since the degree of u1 is three) is at the origin, and all other vertices are within unit
distance from it.

For any i, 2 ≤ i ≤ k, for which ui does not have a neighbor in G \ C, let ti
be any unoccupied point closer to the origin than 1, such that the slope of none of
the lines connecting ti to t1, t2, . . . ti−1 or to any other already embedded point of
G \ C is a basic slope.

For any point p and for any i mod 5, let �i(p) denote the line with ith basic slope,
iπ/5, passing through p. Let �i stand for �i(O), where O denotes the origin.

We will place u1, . . . , uk recursively, so that uj is placed on �i(tj), for a suitable i.
Once the position of uj has already been fixed on some �i(tj), define ind(uj), the index
of uj , to be i. (Again, the indices are taken mod 5. Thus, for example, |i − i′| ≥ 2 is
equivalent to saying that i �= i′ and i �= i′ ± 1 mod 5.) Start with u1. The degree of
t1 in G \ C is at most two, so that at the beginning the set sl(t1) (defined in the first
paragraph of this section) has at most two elements. Let l /∈ sl(t1). Direct the line �l(t1)
arbitrarily, and place u1 on it at distance x from t1 in the positive direction. (According
to this rule, if x < 0, then u1 is placed on �l(t1) at distance |x| from t1 in the negative
direction.)

Suppose that u1, u2, . . ., ui−1 have been already placed and that ui−1 lies on the line
�l(ti−1), that is, we have ind(ui−1) = l.

– STEP i. We place ui at one of the following four locations (see Fig. 1):
(1) the intersection of �l+1(ti) and �l+2(ui−1);
(2) the intersection of �l+2(ti) and �l+3(ui−1);
(3) the intersection of �l−1(ti) and �l−2(ui−1);
(4) the intersection of �l−2(ti) and �l−3(ui−1).
Choose from the above four possibilities so that the edge uiti is not parallel to any
other edge already drawn and adjacent to ti, i.e., before adding the edge uiti to the
drawing, sl(ti) did not include sl(uiti).

It follows directly from (1)–(4) that the edge uiui−1 is not parallel to any other
edge already drawn and adjacent to ui−1. That is, before adding the edge uiui−1 to
the drawing, we had sl(uiui−1) /∈ sl(ui−1). Avoiding for uiti the slopes of the edges
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already incident to ti, leaves available two of the choices (1), (2), (3), (4). Some simple
geometric calculations show that, for any possible location of ui, we have

1.6Oui−1−4 < 2 cos
(π

5

)
Oui−1−4 < Oui < 2 cos

(π

5

)
Oui−1+4 < 1.7Oui−1+4.

Thus, if |x| ≥ 50, then we obtain by induction that

1.5Oui−1 < Oui. (1)

Here, we used that x − 1 < Ou1 and that, by the induction hypothesis, Ouj is strictly
increasing for j < i, therefore, we have x − 1 < Oui−1.

We have to verify that the above procedure does not produce “unnecessary” edges,
that is, the following statement is true.

Claim 1. Suppose that |x| ≥ 50.
(i) The slope of uiuj is not a basic slope, for any j < i − 1.
(ii) The slope of uiv is not a basic slope, for any v ∈ V (G \ C).

Proof. (i) Suppose that the slope of uiuj is a basic slope for some j < i − 1. By
repeated application of inequality (1), we obtain that Oui > 1.5i−jOuj > 2Ouj . On
the other hand, if uiuj has a basic slope, then easy geometric calculations show that
Oui < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a contradiction.

(ii) Suppose for simplicity that tiui has slope 0, i.e., it is horizontal. By the construc-
tion, no vertex v of G \ C determines a horizontal segment with ti, but all of them are
within distance 2 from ti. As Oui > x − 1, segment vui is almost, but not exactly
horizontal. That is, we have 0 < |∠tiuiv| < π/5, contradiction. �
Suppose that STEP 0, STEP 1, . . . , STEP k have already been completed. It remains to
determine the position of u0. We need some preparation.

Claim 2. There exist two integers 0 ≤ l, l′ < 5 with |l − l′| ≥ 2 mod 5 such that
starting the PROCEDURE with ind(u1) = l and with ind(u1) = l′, we can continue so
that ind(u2) is the same.

Proof. Suppose that the degrees of t1 and t2 in G \ C are two, that is, there are two
forbidden lines for both u1 and u2. In the other cases, when the degree of t1 or the
degree of t2 is less than two, or when t1 = t2, the proof is similar, but simpler. We can
place u1 on �l(t1) for any l /∈ sl(t1). Therefore, we have three choices, two of which,
�α(t1) and �β(t1), are not consecutive, so that |α − β| ≥ 2.

The vertex u2 cannot be placed on �m(t2) for any m ∈ sl(t2), so there are three
possible lines for u2: �x(t2), �y(t2), �z(t2), say. For any fixed location of u1, we can
place u2 on at least two of the lines �x(t2), �y(t2), and �z(t2). Therefore, at least one of
them, �x(t2), say, can be used for both locations of u1. �
Claim 3. We can place the vertices u1, u2, . . . , uk using the PROCEDURE so that
|ind(u1) − ind(uk)| ≥ 2 mod 5.

Proof. By Claim 2, there are two placements of the vertices of C \{u0, uk}, denoted by
u1, u2, . . . , uk−1 and by u′

1, u
′
2, . . . , u

′
k−1 such that |ind(u1) − ind(u′

1)| ≥ 2 mod 5,
and ind(ui) = ind(u′

i) for all i ≥ 2. That is, we can start placing the vertices on
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Fig. 2. The four possible locations of u0

two nonneighboring lines so that from the second step of the PROCEDURE we use the
same lines. We show that we can place uk such that u1 and uk, or u′

1 and uk are on
nonneighboring lines. Having placed uk−1 (or u′

k−1), we have four choices for ind(uk).
Two of them can be ruled out by the condition ind(uk) /∈ sl(tk). We still have two
choices. Since u1 and u′

1 are on nonneighboring lines, there is only one line which is
neighboring of both of them. Therefore, we still have at least one choice for ind(uk)
such that |ind(u1) − ind(uk)| ≥ 2 or |ind(u′

1) − ind(uk)| ≥ 2. �

– STEP k+1. Let i = ind(u1), j = ind(uk), and assume, by Claim 3, that |i−j| ≥ 2
mod 5. Consider the lines �i−1(u1) and �i+1(u1). One of them, �i+1(u1), say, does
not separate the vertices of G \ C from uk, the other one does.
Place u0 at the intersection of �i+1(u1) and �i(uk).

Claim 4. Suppose that |x| ≥ 50.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (G \ C).

Proof. (i) Denote by uk+1 the intersection of �i+1(O) and �i(uk). Suppose that the
slope of u0uj is a basic slope for some 1 < j < k. As in the proof of Claim 1, by
repeated application of inequality 1, we obtain that Ouk+1 > 1.5k+1−jOuj > 2Ouj .
On the other hand, by an easy geometric argument, if the slope of u0uj is a basic slope,
then Ouk+1 < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a contradiction, provided that |x| ≥ 50.

(ii) For any vertex v ∈ G \ C, the slope of the segment u0v is strictly between iπ/5
and (i + 1)π/5, therefore, it is not a basic slope. See Fig. 2. This concludes the proof
of the claim and hence Theorem 2. �

3 Proof of Theorem 1

First we note that if G is connected, then Theorem 1 is an easy corollary to Theorem 2.
Indeed, delete any vertex, and then put it back using two extra directions. If G is not
connected, the only problem that may arise is that these extra directions can differ for
different components. We will define a family of drawings for each component of G,
depending on a parameter ε, and then choose the values of these parameters in such a
way that the extra directions will coincide.

Suppose that G is a cubic graph. If a connected component is not 3-regular then, by
Theorem 2, it can be drawn using the five basic slopes. If a connected component is a
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complete graph K4 on four vertices, then it can also be drawn using the basic slopes. For
the sake of simplicity, suppose that we do not have such components, ie. each connected
component G1, . . . , Gm of G is 3-regular and none of them is isomorphic to K4.

First we concentrate on G1. Let C be a shortest cycle in G1. We distinguish two
cases.

Case 1: C is not a triangle. Denote by u0, . . . , uk the vertices of C, and let t0 be the
neighbor of u0 not belonging to C. Delete the edge u0t0, and let Ḡ be the resulting
graph.

Case 2: C is a triangle. Then every vertex of C has precisely one neighbor that does
not belong to C. If all these neighbors coincide, then G1 is a complete graph on four
vertices, contradicting our assumption. So one vertex of C, u0, say, has a neighbor t0
which does not belong to C and which is not adjacent to the other two vertices, u1 and
u2, of C. Delete the edge u0t0, and let Ḡ be the resulting graph.

Observe that in both cases, uk and t0 are not connected in G1. Indeed, suppose for
a contradiction that they are connected. In the first case, G1 would contain the triangle
u0ukt0, contradicting the minimality of C. In the second case, the choice of u0 would
be violated.

There will be exactly two edges with extra directions, u0u1 and u0t0. The slope of
u0u1 will be very close to a basic slope and the slope of u0t0 will be decided at the end,
but we will show that almost any choice will do.

For any real x and ε > 0, define MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε), as fol-
lows. Let STEPS 0, 1, . . . , k be identical to the corresponding STEPS of PROCEDU-
RE(Ḡ, C, u0, u1, x).

– STEP k + 1. If there is a segment, determined by the vertices of G \ C, of slope
iπ/5 + ε or iπ/5 − ε, for any 0 ≤ i < 5, then STOP. In this case, we say that ε is
1-bad for Ḡ.

Otherwise, when ε is 1-good, let i = ind(u1) and j = ind(uk). We can assume
that |i − j| ≥ 2 mod 5. Consider the lines �i−1(u1) and �i+1(u1). One of them
does not separate the vertices of G \ C from uk, the other one does.

If �i−1(u1) separates G\C from uk, then place u0 at the intersection of �i+1(u1)
and the line through uk with slope iπ/5 + ε. If �i+1(u1) separates G \ C from uk,
then place u0 at the intersection of �i−1(u1) and the line through uk with slope
iπ/5 − ε.

Since STEPS 0, . . . , k are identical in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) and
in PROCEDURE(Ḡ, C, u0, u1, x), the Claims 1, 2, and 3 also hold for the MODIFIED-
PROCEDURE.

Moreover, it is easy to see that the analogue of Claim 4 also holds with an identical
proof, provided that ε is sufficiently small: 0 < ε < 1/100.

Claim 4’. Suppose that |x| ≥ 50 and 0 < ε < 1/100.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (Ḡ \ C). �

Perform MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) for a fixed ε, and observe how the
drawing changes as x varies. For any vertex ui of C, let ui(x) denote the position of
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ui, as a function of x. For every i, the function ui(x) is linear, that is, ui moves along a
line as x varies.

Claim 5. If ε is 1-good, then with finitely many exceptions, for every value of x, MODI-
FIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ.

Proof. Claims 1, 2, 3, and 4’ imply Claim 5 for |x| ≥ 50. Let u and v be two vertices
of Ḡ. Since u(x) and v(x) are linear functions, their difference, uv(x), is also linear.

If uv is an edge of Ḡ, then the direction of uv(x) is the same for all |x| ≥ 50.
Therefore, it is the same for all values of x, with the possible exception of one value,
for which uv(x) = 0 holds.

If uv is not an edge of Ḡ, then the slope of uv(x) is not a basic slope for any
|x| ≥ 50. Therefore, with the exception of at most five values of x, the slope of uv(x)
is never a basic slope, nor does uv(x) = 0 hold. �
Take a closer look at the relative position of the endpoints of the missing edge, u0(x)
and t0(x). Since t0 ∈ Ḡ \ C, t0 = t0(x) is the same for all values of x. The position
of u0 = u0(x) is a linear function of x. Let � be the line determined by the function
u0(x). If � passes through t0, then we say that ε is 2-bad for Ḡ. If ε is 1-good and it
is not 2-bad for Ḡ, then we say that it is 2-good for Ḡ. If ε is 2-good, then by varying
x we can achieve almost any slope for the edge t0u0. This will turn out to be crucially
important, because we want to attain that these slopes coincide in all components.

Claim 6. Suppose that the values 0 < ε, δ < 1/100 are 1-good for Ḡ. Then at least one
of them is 2-good for Ḡ.

Proof. Suppose, for simplicity, that ind(u1) = 0, ind(uk) = 2, and that u1 and uk are
in the right half-plane (of the vertical line through the origin). The other cases can be
settled analogously. To distinguish between MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε)
and MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), let uε

0(x) denote the position of u0 ob-
tained by the first procedure and uδ

0(x) its position obtained by the second. Let �ε and
�δ denote the lines determined by the functions uε

0(x) and uδ
0(x). Suppose that x is very

large. Since, by (1), we have uk(x)O > 1.5u1(x)O, both uε
0(x) and uδ

0(x) are above
the line �π/10. On the other hand, if x < 0 is very small (i.e., if |x| is very big), both
uε

0(x) and uδ
0(x) lie below the line �π/10. It follows that the slopes of �ε and �δ are

larger than π/10, but smaller than π/5.
Suppose that neither ε nor δ is 2-good. Then both �ε and �δ pass through t0. That is,

for a suitable value of x, we have uε
0(x) = t0. We distinguish two cases.

Case 1: uε
0(x) = t0 = uk(x). Then, as x varies, the line determined by uk(x) coincides

with �2(t0). Consequently, t0 and uk are connected in G1, a contradiction.

Case 2: uε
0(x) = t0 �= uk(x). In order to get a contradiction, we try to determine the po-

sition of uδ
0(x). Considering STEP k + 1 in both MODIFIEDPROCEDURE

(Ḡ, C, u0, u1, x, ε) and in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), we can conclude
that u1(x) lies on �1(t0), uδ

0(x) lies on �1(u1(x)), therefore, uδ
0(x) lies on �1(t0). On

the other hand, uδ
0(x) lies on �δ, and, by assumption, �δ passes through t0. However, we

have shown that �δ and �1(t0) have different slopes, therefore, uδ
0(x) must be at their

intersection point, so we have uδ
0(x) = uε

0(x) = t0.
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Considering again STEP k + 1 in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) and in
MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), we can conclude that the point uδ

0(x) =
t0 = uε

0(x) belongs to both �ε(uk(x)) and �δ(uk(x)). This contradicts our assumption
that uk(x) is different from uδ

0(x) = t0 = uε
0(x). �

By Claim 5, for every ε < 1/100 and with finitely many exceptions for every value of
x, MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ. When
we want to add the edge u0t0, the slope of u0(x)t0 may coincide with the slope of
u(x)u′(x), for some u, u′ ∈ Ḡ. The following statement guarantees that this does not
happen “too often”. We use α(u) to denote the slope of a vector u.

Claim 7. Let u(x) and v(x): R → R2 be two linear functions, and let �(u) and �(v)
denote the lines determined by u(x) and v(x). Suppose that for some x1 < x2 <
x3, the vectors u, v do not vanish and that their slopes coincide, that is, α(u(x1)) =
α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) = α(v(x3)). Then �(u) and �(v) must
be parallel.

Proof. If �(u) passes through the origin, then for every value of x, u(x) has the same
slope. In particular, α(v(x1)) = α(v(x2)) = α(v(x3)). Therefore, �(v) also passes
through the origin and is parallel to �(u). (In fact, we have �(u) = �(v).) We can argue
analogously if �(u) passes through the origin. Thus, in what follows, we can assume
that neither �(u) nor �(v) passes through the origin.

Suppose that α(u(x1)) = α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) =
α(v(x3)). For any x, define w(x) as the intersection point of �(v) and the line con-
necting the origin to u(x), provided that they intersect. Clearly, v(x) = w(x) for
x = x1, x2, x3, and u(x) and w(x) have the same slope for every x. The transfor-
mation u(x) → w(x) is a projective transformation from �(u) to �(v), therefore, it
preserves the cross ratio of any four points. That is, for any x, we have

(u(x1), u(x2); u(x3), u(x)) = (w(x1), w(x2); w(x3), w(x)) .

Since both u(x) and v(x) are linear functions, we also have

(u(x1), u(x2); u(x3), u(x)) = (v(x1), v(x2); v(x3), v(x)) .

Hence, we can conclude that v(x) = w(x) for all x. However, this is impossible, unless
�(u) and �(v) are parallel. Indeed, suppose that �(u) and �(v) are not parallel, and set
x in such a way that u(x) is parallel to �(v). Then w(x) cannot have the same slope as
u(x), a contradiction. �
Suppose that ε is 2-good and let us fix it. As above, let uε

0(x) be the position of u0 ob-
tained by MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε), and let �ε be the line determined
by uε

0(x).
Suppose also that there exist two independent vertices of Ḡ, u, u′ �= u0, such that

the line determined by uu′(x) is parallel to �ε. Then we say that ε is 3-bad for Ḡ. If ε
is 2-good and it is not 3-bad for Ḡ, then we say that it is 3-good for Ḡ.

It is easy to see that, for any 0 < ε, δ < 1/100, �ε and �δ are not parallel, therefore,
for any fixed u, u′, there is at most one value of ε for which the line determined by
uu′(x) is parallel to �ε. Thus, with finitely many exceptions, all values 0 < ε < 1/100
are 3-good.
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Summarizing, we have obtained the following.

Claim 8. Suppose that ε is 3-good for Ḡ. With finitely many exceptions, for every value
of x, MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) gives a proper drawing of G1. �
Now we are in a position to complete the proof of Theorem 1. Proceed with each of the
components as described above for G1. For any fixed i, let ui

0v
i
0 be the edge deleted

from Gi, and denote the resulting graphs by Ḡ1, . . . , Ḡm. Let 0 < ε < 1/100 be fixed
in such a way that ε is 3-good for all graphs Ḡ1, . . . , Ḡm. This can be achieved, in
view of the fact that there are only finitely many values of ε which are not 3-good.
Perform MODIFIEDPROCEDURE(Ḡi, Ci, ui

0, u
i
1, x

i, ε). Now the line �i determined by
all possible locations of ui

0 does not pass through ti0.
Note that when MODIFIEDPROCEDURE(Ḡi, Ci, ui

0, u
i
1, x

i, ε) is executed, then apart
from edges with basic slopes, we use an edge with slope rπ/5 ± ε, for some integer r
mod 5. By using rotations through π/5 and a reflection, if necessary, we can achieve
that each component Ḡi is drawn using the basic slopes and one edge of slope ε.

It remains to set the values of xi and draw the missing edges ui
0v

i
0. Since the line

�i determined by the possible locations of ui
0 does not pass through ti0, by varying the

value of xi, we can attain any slope for the missing edge ti0u
i
0, except for the slope

of �i. By Claim 8, with finitely many exceptions, all values of xi produce a proper
drawing of Gi. Therefore, we can choose x1, x2, . . . , xm so that all segments ti0u

i
0 have

the same slope and every component Gi is properly drawn using the same seven slopes.
Translating the resulting drawings through suitable vectors gives a proper drawing of
G, this completes the proof of Theorem 1.

4 Concluding Remarks

In the proof of Theorem 1, the slopes we use depend on the graph G. However, the
proof shows that one can simultaneously embed all cubic graphs using only seven fixed
slopes.

It is unnecessary to use |x| ≥ 50, in every step, we could pick any x, with finitely
many exceptions.

It seems to be only a technical problem that we needed two extra directions in the
proof of Theorem 1. We believe that one extra direction would suffice.

The most interesting problem that remains open is to decide whether the number of
slopes needed for graphs of maximum degree four is bounded.
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