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Abstract

The disjointness graph G = G(S) of a set of segments S in Rd, d ≥ 2, is a graph whose
vertex set is S and two vertices are connected by an edge if and only if the corresponding
segments are disjoint. We prove that the chromatic number of G satisfies χ(G) ≤ (ω(G))4 +
(ω(G))3, where ω(G) denotes the clique number of G. It follows, that S has Ω(n1/5) pairwise
intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space,
instead of segments.

We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-
hard tasks. However, we can design efficient algorithms to compute proper colorings of G
in which the number of colors satisfies the above upper bounds. One cannot expect similar
results for sets of continuous arcs, instead of segments, even in the plane. We construct
families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic
numbers are arbitrarily large.

1 Introduction

Given a set of (geometric) objects, their intersection graph is a graph whose vertices correspond to
the objects, two vertices being connected by an edge if and only if their intersection is nonempty.
Intersection graphs of intervals on a line [H57], more generally, chordal graphs [B61, Di61]
and comparability graphs [D50], turned out to be perfect graphs, that is, for them and for
each of their induced subgraph H, we have χ(H) = ω(H), where χ(H) and ω(H) denote
the chromatic number and the clique number of H, respectively. It was shown [HS58] that the
complements of these graphs are also perfect, and based on these results, Berge [B61] conjectured
and Lovász [Lo72] proved that the complement of every perfect graph is perfect.

Most geometrically defined intersection graphs are not perfect. However, in many cases they
still have nice coloring properties. For example, Asplund and Grünbaum [AsG60] proved that
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every intersection graph G of axis-parallel rectangles in the plane satisfies χ(G) = O((ω(G))2). It
is not known if the stronger bound χ(G) = O(ω(G)) also holds for these graphs. For intersection
graphs of chords of a circle, Gyárfás [Gy85] established the bound χ(G) = O((ω(G))24ω(G)),
which was improved to O(2ω(G)) in [KoK97]. Here we have examples of χ(G) slightly superlinear
in ω(G) [Ko88]. In some cases, there is no functional dependence between χ and ω. The first
such example was found by Burling [Bu65]: there are sets of axis-parallel boxes in R3, whose
intersection graphs are triangle-free (ω = 2), but their chromatic numbers are arbitrarily large.
Following Gyárfás and Lehel [GyL83], we call a family G of graphs χ-bounded if there exists a
function f such that all elements G ∈ G satisfy the inequality χ(G) ≤ f(ω(G)). The function
f is called a bounding function for G. Heuristically, if a family of graphs is χ-bounded, then its
members can be regarded “nearly perfect”. Consult [GyL85, Gy87, Ko04] for surveys.

At first glance, one might believe that, in analogy to perfect graphs, a family of intersection
graphs is χ-bounded if and only if the family of their complements is. Burling’s above mentioned
constructions show that this is not the case: the family of complements of intersection graphs of
axis-parallel boxes in Rd is χ-bounded with bounding function f(x) = O(x logd−1 x), see [Ka91].
More recently, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak [PKK14] have
proved that Burling’s triangle-free graphs can be realized as intersection graphs of segments in
the plane. Consequently, the family of these graphs is not χ-bounded either. On the other hand,
the family of their complements is, see Theorem 0.

To simplify the exposition, we call the complement of the intersection graph of a set of
objects their disjointness graph. That is, in the disjointness graph two vertices are connected
by an edge if and only if the corresponding objects are disjoint. Using this terminology, the
following is a direct consequence of a result of Larman, Matoušek, Pach, and Törőcsik.

Theorem 0. [LMPT94] The family of disjointness graphs of segments in the plane is χ-bounded.
More precisely, every such graph G satisfies the inequality χ(G) ≤ (ω(G))4.

For the proof of Theorem 0, one has to introduce four partial orders on the family of seg-
ments, and apply Dilworth’s theorem [D50] four times. Although this method does not seem to
generalize to higher dimensions, the statement does. We establish the following.

Theorem 1. The disjointness graph G of any system of segments in Rd, d ≥ 2 satisfies the
inequality χ(G) ≤ (ω(G))4 + (ω(G))3.

Moreover, there is a polynomial time algorithm that, given the segments corresponding to
the vertices of G, finds a complete subgraph K ⊆ G and a proper coloring of G with at most
|V (K)|4 + |V (K)|3 colors.

If we consider full lines in place of segments, we obtain stronger bounds.

Theorem 2. (i) Let G be the disjointness graph of a set of lines in Rd, d ≥ 3. Then we have
χ(G) ≤ (ω(G))3.

(ii) Let G be the disjointness graph of a set of lines in the projective space Pd, d ≥ 3. Then
we have χ(G) ≤ (ω(G))2.

In both cases, there are polynomial time algorithms that, given the lines corresponding to the
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vertices of G, find complete subgraphs K ⊆ G and proper colorings of G with at most |V (K)|3
and |V (K)|2 colors, respectively.

Note that the difference between the two scenarios comes from the fact that parallel lines in
the Euclidean space are disjoint, but the corresponding lines in the projective space intersect.

Most computational problems for geometric intersection and disjointness graphs are hard.
It was shown by Kratochv́ıl and Nešetřil [KrN90] and by Cabello, Cardinal, and Langer-
man [CaCL13] that finding the clique number ω(G) resp. the independence number α(G) of
disjointness graphs of segments in the plane are NP-hard. It is also known that computing the
chromatic number χ(G) of disjointness and intersection graphs of segments in the plane is NP-
hard [EET86]. Our next theorem shows that some of the analogous problems are also NP-hard
for disjointness graphs of lines in space, while others are tractable in this case. In particular,
according to Theorem 3(i), in a disjointness graph G of lines, it is NP-hard to determine ω(G)
and χ(G). In view of this, it is interesting that one can design polynomial time algorithms to
find proper colorings and complete subgraphs in G, where the number of colors is bounded in
terms of the size of the complete subgraphs, in the way specified in the closing statements of
Theorems 1 and 2.

Theorem 3. (i) Computing the clique number ω(G) and the chromatic number χ(G) of dis-
jointness graphs of lines in R3 or in P3 are NP-hard problems.

(ii) Computing the independence number α(G) of disjointness graphs of lines in R3 or in P3,
and deciding for a fixed k whether χ(G) ≤ k, can be done in polynomial time.

The bounding functions in Theorems 0, 1, and 2 are not likely to be optimal. As for
Theorem 2 (i), we will prove that there are disjointness graphs G of lines in R3 for which χ(G)

ω(G)

are arbitrarily large. Our best constructions for disjointness graphs G′ of lines in the projective
space satisfy χ(G′) ≥ 2ω(G′)− 1; see Theorem 2.3.

The proof of Theorem 1 is based on Theorem 0. Any strengthening of Theorem 0 leads to
improvements of our results. For example, if χ(G) = O((ω(G))γ) holds with any 3 ≤ γ ≤ 4
for the disjointness graph of every set of segments in the plane, then the proof of Theorem 1
implies the same bound for disjointness graphs of segments in higher dimensions. In fact, it is
sufficient to verify this statement in 3 dimensions. For d ≥ 4, we can find a projection in a
generic direction to the 3-dimensional space that does not create additional intersections and
then we can apply the 3-dimensional bound. We focus on the case d = 3.

It follows immediately from Theorem 0 that the disjointness (and, hence, the intersection)
graph of any system of n segments in the plane has a clique or an independent set of size at least
n1/5. Indeed, denoting by α(G) the maximum number of independent vertices in G, we have

α(G) ≥ n

χ(G)
≥ n

(ω(G))4
,

so that α(G)(ω(G))4 ≥ n. Analogously, Theorem 1 implies that max(α(G), ω(G)) ≥ (1 −
o(1))n1/5 holds for disjointness (and intersection) graphs of segments in any dimension d ≥ 2.
For disjointness graphs of n lines in Rd (respectively, in Pd), we obtain that max(α(G), ω(G))
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is Ω(n1/4) (resp., Ω(n1/3)). Using more advanced algebraic techniques, Cardinal, Payne, and
Solomon [CPS16] proved the stronger bounds Ω(n1/3) (resp., Ω(n1/2)).

If the order of magnitude of the bounding functions in Theorems 0 and 1 are improved,
then the improvement carries over to the lower bound on max(α(G), ω(G)). Despite many
efforts [LMPT94, KaPT97, Ky12] to construct intersection graphs of planar segments with small
clique and independence numbers, the best known construction, due to Kynčl [Ky12], gives only

max(α(G), ω(G)) ≤ nlog 8/ log 169 ≈ n0.405,

where n is the number of vertices. This bound is roughly the square of the best known lower
bound.

Our next theorem shows that any improvement of the lower bound on max(α(G), ω(G)) in
the plane, even if it was not achieved by an improvement of the bounding function in Theorem 0,
would also carry over to higher dimensions.

Theorem 4. If the disjointness graph of any set of n segments in the plane has a clique or
an independent set of size Ω(nβ) for some fixed β ≤ 1/4, then the same is true for disjointness
graphs of segments in Rd for any d > 2.

A continuous arc in the plane is called a string. One may wonder whether Theorem 0 can
be extended to disjointness graphs of strings in place of segments. The answer is no, in a very
strong sense.

Theorem 5. There exist triangle-free disjointness graphs of n strings in the plane with arbitrar-
ily large chromatic numbers. Moreover, we can assume that these strings are simple polygonal
paths consisting of at most 4 segments.

Very recently, Mütze, Walczak, and Wiechert [MWW17] improved this result. They proved
that the statement holds even if the strings are simple polygonal paths of at most 3 segments,
moreover, any two intersect at most once.

The following problems remain open.

Problem 6. (i) Is the family of disjointness graphs of polygonal paths, each consisting of at
most two segments, χ-bounded?

(ii) Is the previous statement true under the additional assumption that any two of the
polygonal paths intersect in at most one point?

Problem 7. Is the family of intersection graphs of lines in R3 χ-bounded?

By Theorem 2, the family of complements of intersection graphs of lines in R3 is χ-bounded.

This paper is organized as follows. In the next section, we prove Theorem 2, which is needed
for the proof of Theorem 1. Theorem 1 is established in Section 3. The proof of Theorem 4
is presented in Section 4. In Section 5, we construct several examples of disjointness graphs
whose chromatic numbers are much larger than their clique numbers. In particular, we prove
Theorem 5 and some similar statements. The last section contains the proof of Theorem 3 and
remarks on the computational complexity of related problems.
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2 Disjointness graphs of lines–Proof of Theorem 2

Claim 2.1. Let G be the disjointness graph of a set of n lines in Pd. If G has an isolated vertex,
then G is perfect.

Proof. Let `0 ∈ V (G) be a line representing an isolated vertex of G. Consider the bipartite
multigraph H with vertex set V (H) = A∪B, where A consists of all points of `0 that belong to
at least one other line ` ∈ V (G), and B is the set of all (2-dimensional) planes passing through
`0 that contain at least one other line ` ∈ V (G) different from `0. We associate with any line
` ∈ V (G) different from `0 an edge e` of H, connecting the point p = ` ∩ `0 ∈ A to the plane
π ∈ B that contains `. Note that there may be several parallel edges in H. See Figure 1.

l
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π

π
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p
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Figure 1: Construction of graph H in the proof of Claim 2.1

Observe that two lines `, `′ ∈ V (G)\{`0} intersect if and only if e` and e`′ share an endpoint.
This means that G minus the isolated vertex `0 is isomorphic to the complement of the line graph
of H. The line graphs of bipartite multigraphs and their complements are known to be perfect.
(For the complements of line graphs, this is the König-Hall theorem; see, e. g., [L93].) The
graph G can be obtained by adding the isolated vertex `0 to a perfect graph, and is, therefore,
also perfect. 2

Proof of Theorem 2. We start with the proof of part (ii). Let G be a disjointness graph of
lines in Pd. Let C ⊆ G be a maximal clique in G. Clearly, |C| ≤ ω(G). By the maximality of
C, for every ` ∈ V (G) \ C, there exists c ∈ C that is not adjacent to ` in G. Hence, there is a
partition of V (G) into disjoint sets Vc, c ∈ C, such that c ∈ Vc and c is an isolated vertex in the
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induced subgraph G[Vc] of G. Applying Claim 2.1 separately to each subgraph G[Vc], we obtain

χ(G) ≤
∑
c∈C

χ(G[Vc]) =
∑
c∈C

ω(G[Vc]) ≤ |C|ω(G) ≤ (ω(G))2.

Now we turn to the proof of part (i) of Theorem 2. Let G be a disjointness graph of lines in
Rd. Consider the lines in V (G) as lines in the projective space Pd, and consider the disjointness
graph G′ of these projective lines. Clearly, G′ is a subgraph of G with the lines `, `′ ∈ V (G)
adjacent in G but not adjacent in G′ if and only if ` and `′ are parallel. Thus, an independent set
in G′ induces a disjoint union of complete subgraphs in G, where the vertices of each complete
subgraph correspond to pairwise parallel lines. If k is the maximal number of pairwise parallel
lines in V (G), then k ≤ ω(G) and each independent set in G′ can be partitioned into at most k
independent sets in G. Applying part (ii), we obtain

χ(G) ≤ kχ(G′) ≤ ω(G)(ω(G′))2 ≤ (ω(G))3.

Finally, we prove the last claim concerning polynomial time algorithms. In the proof of part
(ii), we first took a maximal clique C in G. Such a clique can be efficiently found by a greedy
algorithm. The partition of V (G) into subsets Vc, c ∈ C, such that c ∈ Vc is an isolated vertex
in the subgraph G[Vc], can also be done efficiently. It remains to find a clique of maximum size
and a proper coloring of each perfect graph G[Vc] with the smallest number of colors. It is well
known that for perfect graphs, both of these tasks can be completed in polynomial time. See
e.g. Corollary 9.4.8 on page 298 of [GLS88]. Alternatively, notice that in the proof of Claim 2.1
we showed that G[Vc] is, in fact, the complement of the line graph of a bipartite multigraph
(plus an isolated vertex). Therefore, finding a maximum size complete subgraph corresponds to
finding a maximum size matching in a bipartite graph, while finding an optimal proper coloring
of G[Vc] corresponds to finding a minimal size vertex cover in a bipartite graph. This can
be accomplished by much simpler and faster algorithms than the general purpose algorithms
developed for perfect graphs.

To finish the proof of the algorithmic claim for part (ii), we can simply output as K the set
C or one of the largest maximum cliques in G[Vc] over all c ∈ C, whichever is larger. We color
each Vc optimally, with pairwise disjoint sets of colors.

For the algorithmic claim about part (i), first color the corresponding arrangement of pro-
jective lines, and then refine the coloring by partitioning each color class into at most k smaller
classes, where k is the maximum number of parallel lines in the arrangement. It is easy to find
the value of k, just partition the lines into groups of parallel lines. Output as K the set we
found for the projective lines, or a set of k parallel lines, whichever is larger. 2

Theorem 2.3. (i) There exist disjointness graphs G of families of lines in R3 for which the
ratio χ(G)/ω(G) is arbitrarily large.

(ii) For any k one can find a system of lines in P3 whose disjointness graph G satisfies
ω(G) = k and χ(G) = 2k − 1.
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Proof. First, we prove (i). For some m and d to be determined later, consider the set W d
m

of integer points in the d-dimensional hypercube [1,m]d. That is, W d
m = {1, 2, . . . ,m}d. A

combinatorial line is a sequence of m distinct points of x1, . . . xm ∈ W d
m such that for every

1 ≤ i ≤ d, their ith coordinates (xj)i are either the same for all 1 ≤ j ≤ m or we have (xj)i = j
for all 1 ≤ j ≤ m. Note that the points of any combinatorial line lie on a geometric straight
line. Let L denote the set of these geometric lines.

Let G denote the disjointness graph of L. Since each line in L passes through m points of
W d
m, and |W d

m| = md, we have ω(G) ≤ md−1. (It is easy to see that equality holds here, but we
do not need this fact for the proof.)

Consider any proper coloring of G. The color classes are families of pairwise crossing lines in
L. Observe that any such family has a common point in W d

m, except some families consisting of
3 lines. Take an optimal proper coloring of G with χ(G) colors, and split each 3-element color
class into two smaller classes. In the resulting coloring, there are at most 2χ(G) color classes,
each of which has a point of W d

m in common. This means that the set of at most 2χ(G) points of
W d
m (the “centers” of the color classes) “hits” every combinatorial line. By the density version of

the Hales-Jewett theorem, due to Furstenberg and Katznelson [Bo98, FK91], if d is large enough
relative to m, then any set containing fewer than half of the points of W d

m will miss an entire
combinatorial line. Choosing any m and a sufficiently large d depending on m, we conclude that
2χ(G) ≥ md/2 and χ(G)/ω(G) ≥ m/4.

Note that the family L consists of lines in Rd. To find a similar family in 3-space, simply
take the image of L under a projection to R3. One can pick a generic projection that does
not change the disjointness graph G. This completes the proof of part (i). Note that the same
construction does not work for projective lines, as the combinatorial lines in W d

m fall into 2d− 1
parallel classes, so the chromatic number of the corresponding projective disjointness graph is
smaller than 2d.

To establish part (ii), fix a positive integer k, and consider a set S of 2k+ 1 points in general
position (no four in a plane) in R3 ⊆ P3. Let L denote the set of

(
2k+1

2

)
lines determined by

them. Note that by the general position assumption, two lines in L intersect if and only if they
have a point of S in common. This means that the disjointness graph G of L is isomorphic
to the Kneser graph G∗(2k + 1, 2) formed by all 2-element subsets of a (2k + 1)-element set.
Obviously, ω(G∗(n,m)) = bn/mc, so ω(G) = k. By a celebrated result of Lovász [Lo78],
χG∗(n,m) = n− 2m+ 2 for all n ≥ 2m− 1. Thus, we have χ(G) = 2k − 1, as claimed. 2

3 Disjointness graphs of segments–Proof of Theorem 1

If all segments lie in the same plane, then by Theorem 0 we have χ(G) ≤ (ω(G))4. Our next
theorem generalizes this result to the case where the segments lie in a bounded number of distinct
planes.

Theorem 3.1. Let G be the disjointness graph of a set of segments in Rd, d > 2, that lie in the
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union of k two-dimensional planes. We have

χ(G) ≤ (k − 1)ω(G) + (ω(G))4.

Given the segments representing the vertices of G and k planes containing them, there is a
polynomial time algorithm to find a complete subgraph K ⊆ G and a proper coloring of G with
at most (k − 1)|V (K)|+ |V (K)|4 colors.

Proof. Let π1, π2, . . . , πk be the planes containing the segments. Partition the vertex set of G
into the classes V1, V2, . . . , Vk by putting a segment s into the class Vi, where i is the largest
index for which πi contains s.

For i = 1, 2, . . . , k, we define subsets Wi, Zi ⊆ Vi with Zi ⊆Wi ⊆ Vi by a recursive procedure,
as follows. Let W1 = V1 and let Z1 ⊆W1 be a maximal size clique in G[W1].

Assume that the sets W1, . . . ,Wi and Z1, . . . , Zi have already been defined for some i < k.
Let Wi+1 denote the set of all vertices in Vi+1 that are adjacent to every vertex in Z1∪Z2∪. . .∪Zi,
and let Zi+1 be a maximal size clique in G[Wi+1]. By definition,

⋃k
i=1 Zi induces a complete

subgraph in G, and we have
k∑
i=1

|Zi| ≤ ω(G).

Let s be a segment belonging to Zi, for some 1 ≤ i < k. A point p of s is called a piercing
point if p ∈ πj for some j > i. Notice that in this case, s “pierces” the plane πj in a single point,
otherwise we would have s ⊂ πj , contradicting our assumption that s ∈ Vi. Letting P denote

the set of piercing points of all segments in
⋃k
i=1 Zi, we have

|P | ≤
k∑
i=1

(k − i)|Zi| ≤ (k − 1)
k∑
i=1

|Zi| ≤ (k − 1)ω(G).

Let V0 = V (G) \
⋃k
i=1Wi. We claim that every segment in V0 contains at least one piercing

point. Indeed, if s ∈ Vi \Wi for some i ≤ k, then s is not adjacent in G to at least one segment
t ∈ Z1 ∪ . . . ∪ Zi−1. Thus, s and t are not disjoint, and their intersection point is a piercing
point, at which t pierces the plane πi.

Assign a color to each piercing point p ∈ P . Coloring every segment in V0 by the color of one
of its piercing points, we get a proper coloring of G[V0] with |P | colors, so that χ(G[V0]) ≤ |P |.

For every i ≤ k, all segments of Wi lie in the plane πi. Therefore, we can apply Theorem 0
to their disjointness graph G[Wi], to conclude that χ(G[Wi]) ≤ (ω(G[Wi]))

4. By definition, Zi
induces a maximum complete subgraph in G[Wi], hence |Zi| = ω(G[Wi]) and χ(G[Wi]) ≤ |Zi|4.

Putting together the above estimates, and taking into account that
⋃k
i=1 Zi induces a com-

plete subgraph in G, we obtain

χ(G) ≤ χ(G[V0]) +

k∑
i=1

χ(G[Wi]) ≤ |P |+
k∑
i=1

|Zi|4
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≤ (k − 1)ω(G) + (

k∑
i=1

|Zi|)4 ≤ (k − 1)ω(G) + (ω(G))4,

as required.
We can turn this estimate into a polynomial time algorithm as required, using the fact that

the proof of Theorem 0 is constructive. In particular, we use that, given a family of segments
in the plane, one can efficiently find a subfamily K of pairwise disjoint segments and a proper
coloring of the disjointness graph with at most |K|4 colors. This readily follows from the proof
of Theorem 0, based on the four easily computable (semi-algebraic) partial orders on the family
of segments, introduced in [LMPT94].

Our algorithm finds the sets Vi, as in the proof. However, finding Wi and a maximum size
clique Zi ⊆ Wi is a challenge. Instead, we use the constructive version of Theorem 0 to find
Zi ⊆ Wi and a proper coloring of G[Wi]. The definition of Wi remains unchanged. Next, the
algorithm identifies the piercing points.

The algorithm outputs the clique K =
⋃
Zi and the coloring of G. The latter one is obtained

by combining the previously constructed colorings of the subgraphs G[Wi] (using disjoint sets of
colors for different subgraphs), and coloring each remaining vertex by a previously unused color,
associated with one of the piercing points the corresponding segment passes through. 2

Proof of Theorem 1. Consider the set of all lines in the projective space Pd that contain
at least one segment belonging to V (G). Let Ḡ′ denote the disjointness graph of these lines.
Obviously, we have ω(Ḡ′) ≤ ω(G). Thus, Theorem 2(ii) implies that

χ(Ḡ′) ≤ (ω(Ḡ′))2 ≤ (ω(G))2.

Let C be the set of lines corresponding to the vertices of a maximum complete subgraph in
Ḡ′. Fix an optimal proper coloring of Ḡ′. Suppose that we used k “planar” colors (each such
color is given to a set of lines that lie in the same plane) and χ(Ḡ′)− k “pointed” colors (each
given to the vertices corresponding to a set of lines passing through a common point).

Consider now G, the disjointness graph of the segments. Let G0 denote the subgraph of G
induced by the set of segments whose supporting lines received one of the k planar colors in the
above coloring of Ḡ′. These segments lie in at most k planes. Therefore, applying Theorem 3.1
to G0, we obtain

χ(G0) ≤ (k − 1)ω(G0) + (ω(G0))4 ≤ (k − 1)ω(G) + (ω(G))4.

For i, 1 ≤ i ≤ χ(Ḡ′) − k, let Gi denote the subgraph of G induced by the set of segments
whose supporting lines are colored by the ith pointed color. It is easy to see that Gi is the
complement of a chordal graph. That is, the complement of Gi contains no induced cycle of
length larger than 3. According to a theorem of Hajnal and Surányi [HS58], any graph with this
property is perfect, so that

χ(Gi) = ω(Gi) ≤ ω(G).
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Putting these bounds together, we obtain that

χ(G) ≤ χ(G0) +

χ(Ḡ′)−k∑
i=1

χ(Gi) ≤ (k − 1)ω(G) + (ω(G))4 +

χ(Ḡ′)−k∑
i=1

ω(G)

≤ ((ω(Ḡ′))2 − 1)ω(G) + (ω(G))4 < (ω(G))3 + (ω(G))4.

To prove the algorithmic claim in Theorem 1, we first apply the algorithm of Theorem 2 to
the disjointness graph Ḡ′. We distinguish between planar and pointed color classes and find the
subgraphs Gi. We output a coloring of G, where for each Gi, i > 0 we use the smallest possible
number of colors (Gi is perfect, so its optimal coloring can be found in polynomial time), and
we color G0 by the algorithm described in Theorem 3.1. The subgraphs Gi are colored using
pairwise disjoint sets of colors. We output the largest clique K that we can find. This may
belong to a subgraph Gi with i > 0, or may be found in G0 or in Ḡ′ by the algorithms given by
Theorem 3.1 or Theorem 2, respectively. (In the last case, we need to turn a clique in Ḡ′ into a
clique of the same size in G, by picking an arbitrary segment from each of the pairwise disjoint
lines.) 2

4 Ramsey-type bounds in R2 vs. R3–Proof of Theorem 4

As we have pointed out in the Introduction, it is sufficient to establish Theorem 4 in R3. We
rephrase Theorem 4 for this case in the following form.

Theorem 4.1. Let f(m) be a function with the property that for any disjointness graph G of a
system of segments in R2 with max(α(G), ω(G)) ≤ m we have |V (G)| ≤ f(m).

Then for any disjointness graph G of a system of segments in R3 with max(α(G), ω(G)) ≤ m
we have |V (G)| ≤ f(m) +m4.

Applying Theorem 4.1 with f(k) = ck1/β, Theorem 4 immediately follows. We prove Theo-
rem 4.1 by adapting the proof of Theorem 3.1.

Proof of Theorem 4.1. Let G be the disjointness graph of a set of segments in R3 with
ω(G) ≤ m and α(G) ≤ m.

First, assume that all segments lie in the union of k planes, for some k ≥ 1. Define the
sets of vertices Vi, Wi, and Zi for every 1 ≤ i ≤ k, as in the proof of Theorem 3.1, and let
V0 = V (G) \

⋃k
i=1Wi. Since all elements of Wi lie in the same plane, the subgraph induced

by them is a planar segment disjointness graph for every i ≥ 1. We can clearly represent these
graphs by segments in a common plane π such that two segments intersect if and only they come
from the same set Wi and there they intersect. In this way, we obtain a system of segments in
the plane whose disjointness graph G∗ is the join of the graphs G[Wi], i.e., G∗ is obtained by
taking the disjoint union of G[Wi] (for all i ≥ 1) and adding all edges between Wi and Wj for
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every pair i 6= j. Clearly, we have

ω(G∗) =
k∑
i=1

ω(G[Wi]) =
k∑
i=1

|Zi| ≤ ω(G) ≤ m,

and
α(G∗) =

k
max
i=1

α(G[Wi]) ≤ α(G) ≤ m.

By our assumption, G∗ has at most f(m) vertices, so that
∑k

i=1 |Wi| ≤ f(m). As we have seen

in the proof of Theorem 3.1, the total number of piercing points is at most (k − 1)
∑k

i=1 |Zi| ≤
(k − 1)ω(G) < km, and each segment in V0 contains at least one of them. Each piercing point
is contained in at most m segments, because these segments induce an independent set in G.
Thus, we have |V0| < km2 and

|V (G)| = |V0|+
k⋃
i=1

|Wi| < km2 + |V (G∗)| ≤ km2 + f(m).

Now we turn to the general case, where there is no bound on the number of planes containing
the segments. As in the proof of Theorem 1, we consider the disjointness graph Ḡ′ of the
supporting lines of the segments in the projective space P3. Clearly, we have ω(Ḡ′) ≤ ω(G) ≤ m,
so by Theorem 1 we have χ(Ḡ′) ≤ m2. Following the proof of Theorem 1, take an optimal
coloring of Ḡ′, and let G0 denote the subgraph of G induced by the segments whose supporting
lines received one of the planar colors. Letting k denote the number of planar colors, for every
i, 1 ≤ i ≤ ω(Ḡ′) − k, let Gi denote the subgraph of G induced by the set of segments whose
supporting lines received the ith pointed color. As in the proof of Theorem 1, every Gi, i ≥ 1 is
perfect and, hence, its number of vertices satisfies

|V (Gi)| ≤ χ(Gi)α(Gi) ≤ ω(Gi)α(Gi) ≤ ω(G)α(G) ≤ m2.

The segments belonging to V (G0) lie in at most k planes. In view of the previous paragraph,
|V (G0)| ≤ km2 + f(m) vertices. Combining the above bounds, we obtain

|V (G)| = |V (G0)|+
χ(Ḡ′)−k∑
i=1

|V (Gi)| ≤ km2 + f(m) + (χ(Ḡ′)− k)m2

≤ km2 + f(m) + (m2 − k)m2 ≤ f(m) +m4,

which completes the proof. 2
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5 Constructions–Proof of Theorem 5

The aim of this section is to describe various arrangements of geometric objects in 2, 3, and 4
dimensions with triangle-free disjointness graphs, whose chromatic numbers grow logarithmically
with the number of objects. (This is much faster than the rate of growth in Theorem 2.3.) Our
constructions can be regarded as geometric realizations of a sequence of graphs discovered by
Erdős and Hajnal.

Definition 5.1. [EH64]. Given m > 1, let Hm, the m-th shift graph, be a graph whose vertex
set consists of all ordered pairs (i, j) with 1 ≤ i < j ≤ m, and two pairs (i, j) and (k, l) are
connected by an edge if and only if j = k or l = i.

Obviously, Hm is triangle-free for every m > 1. It is not hard to show (see, e.g., [L93],
Problem 9.26) that χ(Hm) = dlog2me. Therefore, Theorem 5 follows directly from part (vii) of
the next theorem.

Theorem 5.2. For every m, the shift graph Hm can be obtained as a disjointness graph, where
each vertex is represented by

(i) a line minus a point in R2;
(ii) a two-dimensional plane in R4;
(iii) the intersection of two general position half-spaces in R3;
(iv) the union of two segments in R2;
(v) a triangle in R4;
(vi) a simplex in R3;
(vii) a polygonal curve in R2, consisting of four line segments.

Proof. (i) Let L1, . . . , Lm be lines in general position in the plane. For any 1 ≤ i < j ≤ m, let
us represent the pair (i, j) by the “pointed line” pij = Li \ Lj .

Fix 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, and set X = pij ∩ pkl = (Li ∩ Lk) \ (Lj ∪ Ll). If i = k,
then X is an infinite set.

Otherwise, Li ∩ Lk consists of a single point. In this case, X is empty if and only if this
point belongs to Lj ∪ Ll. By the general position assumption, this happens if and only if j = k
or l = i. Thus, the disjointness graph of the sets pij , 1 ≤ i < j ≤ m, is isomorphic to the shift
graph Hm.

(ii) Let h1, . . . hm be hyperplanes in general position in R4. For every i, fix another hyperplane
h′i, parallel (but not identical) to hi. For any 1 ≤ i < j ≤ m, represent the pair (i, j) by the two
dimensional plane pij = hi ∩ h′j .

Given 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, the set X = pij ∩ pk,l = hi ∩ h′j ∩ hk ∩ h′l is the
intersection of four hyperplanes. If the four hyperplanes are in general position, then X consists
of a single point.

If the hyperplanes are not in general position, then some of the four indices must coincide.
If i = k or j = l, then two of the hyperplanes coincide and X is a line. In the remaining cases,
when j = k or l = i, among the four hyperplanes two are parallel, so their intersection X is
empty.
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(iii) For i = 1, . . . ,m, define the half-space hi as

hi = {(x, y, z) ∈ R3 | ix+ i2y + i3z < 1}.

Note that the bounding planes of these half-spaces are in general position. For any 1 ≤ i < j ≤
m, represent the pair (i, j) by pij = hj \ hi.

Now let 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m. If j = k or l = i, the sets pij and pkl are obviously
disjoint. If i = k or j = l, then pij ∩ pkl is the intersection of at most 3 half-spaces in general
position, so it is unbounded and not empty.

It remains to analyze the case when all four indices are distinct. This requires some calcu-
lation. We assume without loss of generality that j < l. Consider the point P = (x, y, z) ∈ R3

with x = 1
i + 1

j + 1
k , y = − 1

ij −
1
jk −

1
ki and z = 1

ijk . This is the intersection point of the

bounding planes of hi, hj and hk. Therefore, the polynomial zu3 + yu2 + xu − 1 vanishes at
u = i, j, k, and it must be positive at u = l, as l > i, j, k and the leading coefficient is positive.
This means that P lies in the open half-space hl. As the bounding planes of hi, hj and hk are
in general position, one can find a point P ′ arbitrarily close to P (the intersection point of these
half-planes) with P ′ ∈ hj \ (hi ∪ hk). If we choose P ′ close enough to P , it will also belong to
hl. Thus, P ′ ∈ pij ∩ pkl, and so pij and pkl are not disjoint.

(iv), (v), and (vi) directly follow from (i), (ii) and (iii), respectively, by replacing the un-
bounded geometric objects representing the vertices with their sufficiently large bounded subsets.

(vii) Let C be an almost vertical, very short curve (arc) in the plane, convex from the right
(that is, the set of points to the right of C is convex) lying in a small neighborhood of (0, 1). Let
p1, p2, . . . , pm be a sequence of m points on C such that pj is above pi if and only if j > i. For
every 1 ≤ i ≤ m, let Ti be an equilateral triangle whose base is horizontal, whose upper vertex
is pi, and whose center is on the x-axis. Let qi and ri be the lower right and lower left vertices
of Ti, respectively. It is easy to see that Tj contains Ti in its interior if j > i. Let si be a point
on ripi, very close to pi.

Let us represent the vertex (i, j) of the shift graph Hm by the polygonal curve pij =
tijpjqjrjsj , where the point tij is on the x-axis slightly to the left of the line pipj . Note that if
C is short enough and close enough to vertical, then tij can be chosen so that it belongs to the
interior of all triangles Tk for 1 ≤ k ≤ m. In particular, the entire polygonal path pij belongs to
Tj .

It depends on our earlier choices of the vertices pi′ , how close we have to choose si to pi.
Analogously, it depends on our earlier choices of pi′ and si′ , how close we have to choose tij to
the line. Instead of describing an explicit construction, we simply claim that with proper choices
of these points, we obtain a disjointness representation of the shift graph.

To see this, let 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m. If j = l, then three of the four line segments
in pij and pkl are the same, so they intersect. Otherwise, assume without loss of generality that
j < l. As noted above, pij belongs to the triangle Tj , which, in turn, lies in the interior of Tl.
Three segments of pkl lie on the edges of Tl, so if pij and pkl meet, the fourth segment, tklpl,
must meet pij . This segment enters the triangle Tj , so it meets one of its edges. Namely, for
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j > k it follows from the convexity of the curve C that the segment tklpl intersects the edge pjqj
and, hence, also pij . Analogously, if j < k, then tklpl intersects the interior of the edge rjpj .
This is true even if tkl were chosen on the line pkpl, so choosing sj close enough to pj , one can
make sure that tklpl intersects rjsj and, hence, also pij . On the other hand, if j = k, we choose
tkl so that tklpl is just slightly to the left of pj = pk, so it enters Tj through the interior of the
segment sjpj that is not contained in pij . To see that in this case pij and pkl are disjoint, it is
enough to check that tklpl and tijpj are disjoint. This is true, because pj is on the right of tklpl
and (from the convexity of C) the slope of the segments is such that pj is the closest point of
the segment tijpj to tklpl. 2

6 Complexity issues–Proof of Theorem 3

The aim of this section is to outline the proof of Theorem 3 and to establish some related
complexity results. For simplicity, we only consider systems of lines in the projective space P3.
It is easy to see that by removing a generic hyperplane (not containing any of the intersection
points), we can turn a system of projective lines into a system of lines into R3 without changing
the corresponding disjointness graph.

It is more convenient to speak about intersection graphs rather than their complement in
formulating the next theorem.

Theorem 6.1 (i) If G is a graph with maximum degree at most 3, then G is an intersection
graph of lines in P3.

(ii) For an arbitrary graph G the line graph of G is an intersection graph of lines in P3.

Proof. (i) Suppose first that G is triangle-free. Let V (G) = {v1, . . . , vk}. Let vertex v1 be
represented by an arbitrary line L1. Suppose, recursively, that the line Lj representing vertex
j has already been defined for every j < i. We will maintain the “general position” property
that no doubly ruled surface contains more than 3 pairwise disjoint lines. We must choose Li
representing vi such that

(a) it intersects the lines representing the neighbors vj of vi with j < i,
(b) it does not intersect the lines representing the non-neighbors vj with j < i, and
(c) we maintain our general position conditions.
These are simple algebraic conditions. The vertex vi has at most 3 neighbors among vj

for j < i, and they must be represented by pairwise disjoint lines. Thus, the Zariski-closed
conditions from (a) determine an irreducible variety of lines, so unless they force the violation of
a specific other (Zariski-open) condition from (b) or (c), all of those conditions can be satisfied
with a generic line through the lines representing the neighbors. In case vi has three neighbors
vj with j < i, the corresponding condition forces Li to be in one of the two families of lines
on a doubly ruled surface Σ. This further forces Li to intersect all lines of the other family
on Σ, but due to the general position condition, none of the vertices of G is represented by
lines there, except the three neighbors of vi. We would violate the general position condition
with the new line Li if the family we choose it from already had three members representing
vertices. However, this would mean that the degrees of the neighbors of vi would be at least 4,
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a contradiction. In case vi has fewer than 3 neighbors, the requirement of Li intersecting the
corresponding lines does not force Li to intersect any further lines or to lie on any doubly ruled
surface.

We prove the general case by induction on |V (G)|. Suppose that a, b, c ∈ V (G) form a triangle
in G and that the subgraph of G induced by V (G)\{a, b, c} can be represented as the intersection
graph of distinct lines in P3. Note that each of a, b and c has at most a single neighbor in the
rest of the graph. We extend the representation of the subgraph by adding three lines La, Lb
and Lc, representing the vertices of the triangle. We choose these lines in a generic way so
that they pass through a common point p, and La intersects the line representing the neighbor
of a (in case it exists), and similarly for Lb and Lc. It is clear that we have enough degrees
of freedom (at least six) to avoid creating any further intersection. For instance, it suffices to
choose p outside all lines in the construction and all planes determined by intersecting pairs of
lines.

(ii) Assign distinct points of P3 to the vertices of G so that no four points lie in a plane.
Represent each edge xx′ ∈ E(G) by the line connecting the points assigned to x and x′. As no
four points are coplanar, two lines representing a pair of edges will cross if and only if the edges
share an endpoint. Therefore, the intersection graph of these lines is isomorphic to the edge
graph of G. 2

The following theorem implies Theorem 3, as the disjointness graphH = Ḡ is the complement
of the intersection graph G, and we have ω(G) = α(H), α(G) = ω(H), χ(G) = θ(H), and
θ(G) = χ(H). Here θ(H) denotes the clique covering number of H, that is, the smallest number
of complete subgraphs of H whose vertex sets cover V (H).

Theorem 6.2. Let H be an intersection graph of n lines in the Euclidean space R3 or in
the projective space P3.

(i) Computing α(H), the independence number of H, is NP-hard.
(ii) Computing θ(H), the clique covering number of H, is NP-hard.
(iii) Deciding whether χ(H) ≤ 3, that is, whether H is 3-colorable, is NP-complete.
(iv) Computing ω(H), the clique number of H, is in P.
(v) Deciding whether θ(H) ≤ k for a fixed k is in P.
(vi) All the above statements remain true if H is not given as an abstract graph, but with its

intersection representation with lines.

Proof. We only deal with the case where the lines are in P3. The reduction of the Euclidean
case to this case is easy.

(i) The problem of determining the independence number of 3-regular graphs is NP -hard;
see [AK00]. By Theorem 6.1(i), all 3-regular graphs are intersection graphs of lines in P3.

(ii) The vertex cover number of a graph H is the smallest number of vertices with the property
that every edge of H is incident to at least one of them. Note that the vertex cover number of
H is |V (H)| − α(H). In [Po74], it was shown that the problem of determining the vertex cover
number is NP -hard even for triangle-free graphs. We can reduce this problem to the problem
of determining the clique covering number of an intersection graph of lines. For this, note that
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each complete subgraph of the line graph H ′ of H corresponds to a star of H and thus θ(H ′)
is the vertex cover number of H. The reduction is complete, as H ′ is the intersection graph of
lines in P3, by Theorem 6.1(ii).

(iii) Deciding whether the chromatic index (chromatic number of the line graph) of a 3-
regular graph is 3 is NP-complete, see [Ho81]. Using that the line graph of any graph is an
intersection graph of lines in P3 (Theorem 6.1(ii)), the statement follows.

(iv) A maximal complete subgraph corresponds to a set of lines passing through the same
point p or lying in the same plane Π. Any such point p or plane Π is determined by two lines,
and in both cases we can verify for each remaining line whether it belongs to the corresponding
complete subgraph (whether it passes through p or belongs to Π, respectively). This gives an
O(n3)-time algorithm, but we suspect that the running time can be much improved.

(v) As we have seen in part (iv), there are polynomially many maximal complete subgraphs
in H. We can check all k-tuples of them, and decide whether they cover all vertices in H.

(vi) For this, we need to consider the constructions of lines in the representations described
in the proof of Theorem 6.1, and show that they can be built in polynomial time. This is obvious
in part (ii) of the theorem. For part (i), the situation is somewhat more complex. To find many
possible representations of the next vertex intersecting the lines it should, is an algebraically
simple task. In polynomial time, we can find one of them that is generic in the sense needed for
the construction. However, if the coordinates of each line would be twice as long as those of the
preceding line (a condition that is hard to rule out a priori), then the whole construction takes
more than polynomial time.

A simple way to avoid this problem is the following. First, color the vertices of the triangle-
free graph G of maximal degree at most 3 by at most 4 colors, by a simple greedy algorithm.
Find the lines representing the vertices in the following order: first for the first color class,
next for second color class, etc. The coordinates of each line will be just slightly more complex
than the coordinates of the lines representing vertices in earlier color classes. Therefore, the
construction can be performed in polynomial time. A similar argument works also for graphs
G with triangles: First we find a maximal subset of pairwise vertex-disjoint triangles in G. Let
G0 be the graph obtained from G by removing these triangles. Then we construct an auxiliary
graph G′ with these triangles as vertices by connecting two of them with an edge if there is an
edge in G between the triangles. The graph G′ has maximum degree at most 3, so it can be
greedily 4-colored. If we construct G by adding back the triangles to G0, in the order determined
by their colors, then the procedure will end in polynomial time. 2
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[GyL83] A. Gyárfás and J. Lehel: Hypergraph families with bounded edge cover or transversal
number, Combinatorica 3(3–4) (1983), 351–358.

17
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