Tight Lower Bounds for the Size of Epsilon-Nets

[Extended Abstract]

*
Janos Pach
EPFL, Lausanne

and

Rényi Institute, Budapest

pach@cims.nyu.edu

ABSTRACT

According to a well known theorem of Haussler and Welzl
(1987), any range space of bounded VC-dimension admits
an e-net of size O (% log %) Using probabilistic techniques,
Pach and Woeginger (1990) showed that there exist range
spaces of VC-dimension 2, for which the above bound is
sharp. The only known range spaces of small VC-dimension,
in which the ranges are geometric objects in some Euclidean
space and the size of the smallest e-nets is superlinear in %,
were found bylAlon (2010). In his examples, every e-net is

of size 2 (Lg(1)), where g is an extremely slowly growing

function, related to the inverse Ackermann function.

We show that there exist geometrically defined range spaces,

already of VC-dimension 2, in which the size of the smallest
e-nets is 2 (é log %) We also construct range spaces in-
duced by axis-parallel rectangles in the plane, in which the
size of the smallest e-nets is 2 (é log log é) By a theorem
of Aronov, Ezra, and Sharir (2010), this bound is tight.

Categories and Subject Descriptors

G.2.1 [Combinatorics]: Combinatorial algorithms

General Terms
Theory

1. INTRODUCTION

Let X be a finite set and let R be a system of subsets
of an underlying set which contains X. In computational
geometry, the pair (X,R) is usually called a range space.
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The elements of X and R are said to be the points and the
ranges of the range space, respectively. Consider a subset
A C X. A is called shattered if for every subset B C A,
one can find a range Rgp € R with Rg N A = B. The size
of the largest shattered subset of points, A C X, is said to
be the Vapnik-Chervonenkis dimension (or VC-dimension)
of the range space (X, R).

In their seminal paper [VaC71], Vapnik and Chervonenkis
proved that, from the point of view of random sampling,
all range spaces whose VC-dimensions are bounded by a
constant behave very nicely. In particular, for any € > 0,
a randomly selected “small” subset of X, whose number of
elements depends only on the VC-dimension d and e, will
“hit” every range containing at least €| X| points of X, with
large probability. A set of points in X with the property that
every range R € R with |[RN X| > £|X| contains at least
one of its elements is called an e-net for the range space
(X,R). Note that these sets are often called strong e-nets
in the literature, to distinguish them from the so-called weak
e-nets, which may also contain points from UR\ X, but must
still hit all ranges that contain at least €| X| elements of X.
In this paper, we will consider only strong e-nets, apart from
some remarks in the last section.

The ideas of Vapnik and Chervonenkis have been adapted
by Haussler and Welzl [HaW87] to show that the mini-
mum number f = f4(¢) such that every range space of
VC-dimension d admits an e-net of size at most f satisfies
fa(e) = O (g log g) They asked whether the logarithmic
factor can be removed in this formula. Pach and Woegin-
ger [PaW90] proved that while fi(e) = max(2, [1]—1), the
logarithmic factor is needed for every d > 2. Moreover, it
was shown by Komlés et al. [KoPW92, PaA95] that for any
d>2,

(d=2+ 15 +o() It < fule) < (@+o(1) 1 In 2,

as € tends to 0. (Here In denotes the natural logarithm.)

Haussler and Welzl discovered that the above results apply
to many geometrically defined range spaces. Roughly speak-
ing, the VC-dimension is bounded by a constant for any set
of ranges with bounded description complezity, that is if the
ranges can be described in terms of a bounded number of
parameters. This observation has far reaching consequences.
The construction of small epsilon-nets has become one of the
most powerful general techniques in computational geome-
try (see [Ch00, EvRS05]).



In a number of basic geometric scenarios it was possible
to improve on the above bounds. For instance, for any finite
set of points in the plane, one can find an e-net of size linear
in 1/e, where the ranges are half-planes, translates of a con-
vex polygon, disks or certain kind of pseudo-disks. Similar
results hold in three-dimensional space for half-space ranges
[PaW90, MaSW90, Ma92, PyR08]. We state two results
here.

Theorem A. (Matousek, Seidel, Welzl [MaSW90, Ma92])
All range spaces (X, R), where X is a finite set of points
in R® and R consists of half-spaces, admit e-nets of size

O(1/e).

Theorem B. (Aronov, Ezra, Sharir [ArES10]) All range
spaces (X, R), where X is a finite set of points in R* (or
R?) and R consists of axis-parallel rectangles (bozes), admit
e-nets of size O (i log log %)

Aronov et al. have also established a similar result for “fat”
triangular ranges in the place of axis-parallel rectangles. For
weak e-nets, Ezra [Ez10] extended Theorem B to higher di-
mensions.

In algorithmic applications, it is often natural to consider
the dual range space, in which the roles of points and ranges
are swapped [BrG95, PaA95]. Given a finite family R of
ranges in R, the dual range space induced by them is de-
fined as a set system (hypergraph) on the underlying set
R, consisting of the sets R, := {R | z € R € R}, for all
z € R™. (Note that R, and R, may coincide for z # y.) It
is easy to see (cf. [PaA95]) that if the VC-dimension of the
range space (X,R) is less than d for every X C R™, then
the VC-dimension of the dual range space induced by any
subset of R is less than 29,

Clarkson and Varadarajan [CIV07] found a simple and
beautiful connection between the complexity of the bound-
ary of the union of n members of R and the size of the
smallest epsilon-net in the dual range space. If the complex-
ity of the boundary is o(nlogn), then the dual range space
admits e-nets of size o (é log %) This connection has been
further explored and improved in [Va09, ArES10, ArES11].
In particular, it was shown that dual range spaces of “fat”
triangles in the plane admit e-nets of size O (é loglog™ %),
where log* stands for the iterated logarithm function.

In most range spaces (X,R), one can find roughly 1/e
pairwise disjoint ranges R € R such that the sets RN X are
of size at least £|X|. In these cases, the size of any e-net
is 2(1/¢). For the last two decades, “the prevailing conjec-
ture” was that in “geometric scenarios,” this bound is essen-
tially tight: there always exists an e-net of size O(1/¢) (see,
e.g., [MaSW90, ArES10]). This conjecture had to be revised
after Alon [Al10] discovered some geometric range spaces
of small VC-dimension, in which the ranges are straight
lines, rectangles or infinite strips in the plane, and which
do not admit e-nets of size O(1/e). Alon’s construction
is based on the density version of the Hales-Jewett theo-
rem [HaJ63], due to Furstenberg and Katznelson [FuK89,
FuK91], and recently improved by participants of the Poly-
math blog project [Po09]. However, Alon’s lower bound is
only barely superlinear: 2 (% g(é)), where g is an extremely
slowly growing function, closely related to the inverse Ack-
ermann function.

1.1 New lower bounds

The main aim of this note is to prove that the O (é log i)
general upper bound for the size of the smallest e-nets in
range spaces of bounded VC-dimension is tight even in sim-
ple geometric scenarios.

Our first theorem claims that there exist dual range spaces
induced by finite families of axis-parallel rectangles in which
the size of the smallest e-nets is (% log é) More precisely,
we have the following.

Theorem 1. For any € > 0 and for any sufficiently large
integer n > no(e), there exists a dual range space X* of VC-
dimension 2, induced by n axis-parallel rectangles in R?, in
which the size of every e-net is at least 91? log %

Here and in the sequel, log always denotes the binary log-
arithm.

From Theorem 1 it is not hard to deduce the following
results for primal range spaces.

Theorem 2. For any € > 0 and for any sufficiently large
integer n > no(e), there exists a (primal) range space ¥ =
(X, R) of VC-dimension 2, where X is a set of n points in
R*, R consists of axis-parallel bozes with one of their vertices
at the origin (or azis-parallel orthants), and in which the size
of every e-net is at least 9—15 log é

Theorem 3. For any € > 0 and for any sufficiently large
integer n > no(g), there exists a (primal) range space X =
(X, R) of VC-dimension 2, where X is a set of n points in
R*, R consists of half-spaces, and in which the size of every
e-net is at least é log %

Theorems 2 and 3 show that Theorems B and A cannot
be generalized to 4-dimensional space. It also follows, by
a standard duality argument, that there exist dual range
spaces induced by half-spaces in R*, for which the size of
the smallest e-net is (L log ).

Our next result shows that Theorem B of Aronov, Ezra,
and Sharir is tight.

Theorem 4. For any € > 0 and for any sufficiently large
integer n > no(e), there exists a (primal) range space ¥ =
(X, R), where X is a set of n points in the plane, R consists
of axis-parallel rectangles, and in which the size of every
e-net is at least C% loglog%. Here C > 0 is an absolute
constant.

The VC-dimension of the family of all axis-parallel rect-
angles in the plane is 4. However, it is easy to verify that
the VC-dimension of the range spaces used for the proof of
Theorem 4 is only at most 3. In the full version of this pa-
per, we also outline a somewhat different approach to prove
the existence of range spaces of VC-dimension 2 that satisfy
the conditions in Theorem 4.

The proof of Theorem 1 is based on a construction remi-
niscent of the one described and studied in [PaT10] in con-
nection with a hypergraph coloring problem. In fact, we
could use precisely the same construction, but this would
require a more complicated analysis. For the proof of The-
orem 4, we use a randomly and uniformly selected set of
roughly ilog log% points in the unit square. Some related
properties of this set were already established in [ChPS09].
Our paper is self-contained: we do not rely on any material
from [PaT10] or [ChPS09].



1.2 Organization

In Section 2, we present the proofs of Theorems 1, 2, and 3,
based on an explicit construction of systems of axis-parallel
rectangles, described in [PaT10]. Section 3 contains a similar
proof of Theorem 4, based on randomized construction from
Chen et al. [ChPS09]. In the final section, we make some
concluding remarks and mention some open problems.

2. BOXES AND HALF-SPACES,
PROOFS OF THEOREMS 1-3

Theorems 2 and 3 are corollaries of Theorem 1, so we
start with the proof of Theorem 1. The proof is based on an
explicit construction of systems of rectangles, similar to the
one described and analyzed in [PaT10]. In order to describe
this construction, we have to introduce some notations.

Let d be a fixed positive integer. For any integers a,b >
0 and 0 < ¢ < d, let R, ;, denote the open axis-parallel
rectangle defined as the cross-product of two intervals:

Rop = (a2', (a4 1)27) x (62777, (b+1)277).
Let
R={R., | 0<i<d, 0<a<2"" 0<b<2'}.

The elements of R are called canonical rectangles. For each
i,0 < i < d, there are precisely 2¢ canonical rectangles Ré,b,
and (apart from their boundaries) they form a tiling of the
2¢ x 2% square. That is, we have |R| = (d + 1)2%.

Consider the set of rectangles
R := {Ri,b €R | a,bare even } .
Clearly, we have

IR| = (d+ 3)2972.

We claim that the dual range space X* induced by the
elements of R meets the requirements of Theorem 1 for € =~
279, Recall that a subset S C R is an e-net in * if and
only if every point in the plane that belongs to at least €| R|
elements of R is covered by at least one element of S.

The heart of the proof is the following statement.

Lemma 2.1. Let d be a positive integer, let R and % be
defined as above and let 0 < e < 1. If S C'R is an e-net in
¥*, then we have

IS| > (1 —29")|R| = (1 — 2% e)(d + 3)2° 2.

Proof. Let S be a fixed e-net in ¥*. Assign to S a collec-
tion of canonical rectangles 7 = 7(S) C R, as follows. Let

T .= {R}z,b | R;La/2j’2\_b/2j €S and a ?é b7 or
RéLG/QLQLb/QJ ¢ S and a = b}. Here “=” is taken modulo 2.

It follows from the definition that for each i, precisely half
of the canonical rectangles Rbe € R belong to 7. It is also
clear that S and 7 are disjoint, moreover, every element of
R\ S belongs to 7.

Notice that the elements of 7 can be decomposed into
2971 disjoint “cliques” R°, R!, ..., R%, where each R’ is a
2% x 297" canonical rectangle, and Ny R® # 0. Indeed, by
our construction, for every 2° x 2¢ rectangle R® € T, there

is precisely one 2! x 297! rectangle R' € 7 that intersects
it. Analogously, there is precisely one 22 x 2972 rectangle
R? € T that intersects R', and this rectangle must also
intersect R° N R!. Proceeding like this, starting with a fixed
R® € T, we obtain a uniquely determined clique of size d+ 1
whose elements have a point in common. There are 2471
possible choices for R°, and each element of 7 belongs to
precisely one of the resulting cliques.

Since all elements of R \ S belong to 7, but 7 is disjoint
from S, it follows from the above clique decomposition that
there is a point = € R? contained

1. in at least d\_‘il elements of R, and

IR
2
2. in no element of S.

In view of the fact that S is an e-net we must have

R\ S|
9d—1

< e|R|
proving the lemma. O

We also need the following simple property. Let X de-
note the (primal) range space dual to ¥*. According to our
somewhat unorthodox terminology, the precise definition of
3 is the following. The rectangles in R divide the plane into
finitely many cells. Two points belong to the same cell if
they are contained in the same rectangles. Pick a point in
each cell, and let X denote the set of points we picked. The
range space X is the pair (X, R).

Lemma 2.2. Both ¥ and ¥* have VC-dimension 2.

Before turning to the proof of the lemma, we introduce a
partial order on the family of axis-parallel rectangles in the
plane. For any two axis-parallel rectangles R and R’, we
write R < R’ if the orthogonal projection of R on the x-axis
is contained in the orthogonal projection of R’ on the z-axis,
and the orthogonal projection of R on the y-axis contains
the orthogonal projection of R’ on the y-axis. Obviously,
this is a partial order.

Proof of Lemma 2.2. Clearly, we have VC-dim(X) > 2
and VC-dim(X*) > 2. Observe first that any two intersect-
ing rectangles in R are comparable by <.

Assume for contradiction that 3 or X* has VC-dimension
3 or more. In either case, the existence of a shattered 3-
element set would imply that there are three distinct points
p1, p2, and ps in the plane and three rectangles R1, R2, R3 €
R with {p1,p2,ps}\ Ri = {p:} for i = 1,2,3. The rectangles
R; pairwise intersect, and hence must be linearly ordered
by <. Suppose without loss of generality R1 < Rz < Rs.
Then R; N R3 C R2, contradicting our assumption that ps
is contained in the left-hand side but not in the right. O

Proof of Theorem 1. Let us choose a positive integer d
and 1/3 < o < 2/3 with e = a/2%!. For this, we assume
without loss of generality that e < 2/3. According to Lem-
mas 2.2 and 2.1, the dual range space X* defined for this
d has VC-dimension 2 and it does not admit an e-net of
size smaller than M(d +3)L. Here d +3 > log  and
w > %, which proves that X* satisfies the statement of
the theorem. Note that if log % is an integer, the constant é
in the bound can be replaced by %.

This example is very special: for every e, we have de-
fined a single dual range space ¥, induced by © (% log %)



rectangles. However, from one small example we can easily
construct arbitrarily large ones, as required by the theo-
rem. Keep ¢ fixed, and choose a large integer t. Replace
each rectangle R € R by a chain of rectangles R1 < Rz <
-+ < Ry, where < denotes the ordering relation defined af-
ter Lemma 2.2, and each R; differs only very little from R.
Let R¢ denote the resulting family of rectangles. It is not
difficult to see that if the difference between (the coordinates
of) the new rectangles R; and the original rectangle R € R
is small enough, then the VC-dimension of the dual range
space X} induced by R:, as well as the VC-dimension of the
corresponding “primal” space remains 2.

We have |R.| = t|R|, and the size of the smallest e-net
for X7 is at least as large as it was in X*. Suppose to the
contrary that there is a smaller set S’ of rectangles in R
that form an e-net in ;. Let S” be the set of rectangles in R
that were replaced by the elements of S’. Since |S”| < |§'|,
the rectangles in S” do not form an e-net in X*. Thus, there
is a point in the plane contained in at least £|R| elements
of R, which is not covered by any element of S”. We can
choose such a point lying not too close to the boundaries
of the rectangles in R, and then it is contained in at least
te|R| = e|R¢+| elements of R, none of which belongs to &,
a contradiction. O

Proof of Theorem 2. The statement follows from The-
orem 1 by a standard duality argument (see, e.g., [KaRS08]).
We assume without loss of generality the rectangles are closed
and lie in the first quadrant of the plane. We assign to each
rectangle R = [z1, z2] X [y1, y2] the point p(R) =
(x1,1/22,y1,1/y2) € R*. Now a point ¢ = (a,b) of the first
quadrant liesin Rifand only if 21 < a < z2 and y1 < b < ya,
that is, if and only if the point p(R) is contained in the 4-
dimensional box

B(q) =[0,a] x [0,1/a] x [0,b] x [0,1/b]. O

Theorem 3 is an immediate corollary of Theorem 2 and
the following lemma.

Lemma 2.3. Let P be a finite set of points in the positive
orthant of R, To each p € P, we can assign a point p’ in
the positive orthant of R? so that the set P’ = {p' | p € P}
satisfies the following condition.

For any azis-parallel box B C R that contains the origin,
there is a half-space H(B) C R? which contains the origin
and for which

{p|lpe BNP}y=P NnH(B).

Proof. Let x1,x2,...,24 denote the orthogonal coordinates
in R?. Observe that from the point of view of intersections
with axis-parallel boxes, the actual values of the coordi-
nates do not matter: we need to know only the order of
the z;-coordinates of the points of P for each i. For every
1 (1 <i<d)let0 <& < &2 <&, <...denote the
sequence of different values of the z;-coordinates of the ele-
ments of P. Every such sequence is of length at most |P|. By
rescaling the coordinates if necessary, we can assume that
&ij+1/&,; > d holds for every i and j.

Consider now an axis-parallel box B, which contains the
origin and intersects P in at least one element. We can
shrink B if necessary, without changing its intersection with

P, so that we can suppose without loss of generality that B
is of the form

B =1[0,b1] x [0,b2] X ... x [0,b4],

where each b; is equal to &;;, for a suitable j;.
We claim that BN P is equal to the intersection of P with
the half-space H(B) defined by

For every point in B, each term of the above sum is at most
1, so that we have B C H(B), and hence BNP C H(B)NP.
Suppose now that p is a point of P that does not belong to
B. Then one of its coordinates, x;(p), say, is more than d
times larger than b;. Therefore, the i-th term in the above
sum is already larger than d, which implies that p ¢ H(B).
O

3. PROOF OF THEOREM 4

Theorem 4 is an easy consequence of the following result
on a set of randomly selected points in the unit square. A
similar property of random point sets with respect to axis-
parallel rectangles was established in Chen et al. [ChPS09]
(see Theorem 9). In their setting, r was a constant, € = r/n,
and it was shown that every e-net contains all but a very
small fraction of point set. Here we allow r to slowly tend
to infinity.

Lemma 3.1. Letn > 2, r = [loglogn/5] be integers, where
log stands for the binary logarithm, and let and e = r/n. Let
X be a set of n randomly and uniformly selected points in the
unit square, and let R denote the family of all azxis-parallel
rectangles of the form [j/2%, (5 +1)/2") x [a, b], where j, t are
nonnegative integers, and a < b are reals.

Then, with probability tending to 1, the range space (X, R)
does not admit an e-net of size at most n/2.

Proof. We write [n] to denote the index set {1,...,n}.
Let us choose the y-coordinates of our random points p;
first, and then enumerate them in the increasing order of
their y-coordinates. That is, let p; = (zi,y:), where the
numbers y; < y2 < --- < yp are fixed and the x;-s are
chosen uniformly and independently from [0, 1]. Finally, let
X = {pi |i € [n]}.

Fix a subset I C [n] of size at most n/2, and let S; =
{pi | i € I'}. We will prove that the probability that S; is
an e-net for the range space (X, R) is very small.

We write each x; as an infinite binary fraction ().dl(.nd?) e

That is, zi = > ooy d{" /2, where d\” = 0 or 1. The t-th
truncation of x;, denoted by xlm, is the finite binary fraction
0.d§1>d§2> - dgtil). In particular, we have xz(l) =0.

Choosing x; uniformly at random can be achieved by se-
lecting all of its binary digits dgt) uniformly and indepen-
dently. This will be done in stages. At stage t, we choose
dgt) for all <.

Consider now stage t of our selection process for a fixed

t, 1 <t <log(n/r) — 1. Before the selections are made, xit)
has been fixed for all i. For every x € [0, 1], define

Hz:Hff):{lSign\xEt):x}.

The sets H, partition [n] into at most 2¢~! nonempty parts.



For each z € [0,1], divide H, into as many pairwise dis-
joint intervals as possible, each containing r elements not in
I. More precisely, select ||Hy \ I]/r|] pairwise disjoint sets
H, ; of the form Hy; = {i € Hy | as,; < i < by ;} with
|Hy; \I| =r.

For a given x, out of the at least n/2 indices in [n]\ I, there
are fewer than r that do not belong to any interval of H,.
Using our assumption ¢ < log(n/r) — 1, the total number of
indices in [n] \ I that belong to some interval H, ; over all z
and j is larger than n— |I|—2'~1r > n/4. Since each interval
contains precisely r such indices, the number of intervals is
larger than n/(4r).

We call an interval H; ; bad if its size is at least 47, oth-
erwise is called good. Any bad interval contains at least 3r
elements of I, so the number of bad intervals is at most
|[1|/3r < n/(6r). Consequently, the number of good inter-
vals is at least the total number of intervals minus n/(6r),
which is larger than n/(4r) — n/(6r) = n/(12r).

Let G, ; be a good interval. With probability 271%=.il >
274 we have d\") = 0 for all i € G, ; \ I but d'" =1 for all
1 € Gg,; N 1. If this happens, we say that the interval G,;
fails. If G, ; fails, then for the rectangle R = [z,z +27%) x
[Yan. ;> Yb, ;] We have RN X = {p; | i € G,,; \ IT}. That is, in
this case we have |[RNX| =r = en and RN Sy = 0, showing
that St is not an e-net for (X, R).

Notice that at a fixed stage ¢ (1 <t < log(n/r) — 1), all
the at least n/(12r) good intervals fail independently, each
with probability larger than 27", We say that S; survives
stage t if none of the intervals fail. We have

Prob[S; survives stage ¢] < (1 —27%)"/(121) < g=n/(12r2%7),

This inequality holds independently of what happened at
the earlier stages, so that

Prob[S; is an e-net for (X, R)] <

7(log(%)—2)n

Prob[S; survives all stages t < log <;> —1)] <27 1zr2dT

There are fewer than 2" choices for a set I with |I| < n/2.
By the union bound, this yields that

(1og(g)_2)n
Prob[(X,R) admits an e-net of size < %] < 2" T aze2dr

The right-hand side of this inequality tends to 0, as n — oo.
O

Proof of Theorem 4. Consider the random range space
(X,R) described in Lemma 3.1, where n is so large that
the probability that (X,R) does not admit an e-net of size
at most m/2 is positive. Fix an n-element set X with this
property. Then the minimum size of an e-net for (X, R) is
larger than % = 1.2 > Lloglog1/10.

Once we have one example of a range space ¥ = (X, R)
that admits no small e-net for a given value of e, we can
create arbitrarily large examples with the same property, by
replacing each point p € X with ¢ new points, very close to
p. (The same trick was applied in [Al10] and in the proof of
Theorem 1.) This completes the proof of Theorem 4. O

The VC-dimension of the random range space we consid-
ered is 3. However, we can also construct a range space of
VC-dimension 2, meeting the requirements of Theorem 4.

4. CONCLUDING REMARKS

1. It was shown in [PaW90] that any range space (X,R),
where X is a finite point set in the plane and R consists
of half-planes, admits e-nets of size at most [2/e] — 1, and
that this bound is tight up to an additive constant at most
1. The corresponding result on the line is almost trivial.
Consequently, Theorem A holds in any dimension d < 3,
and our Theorem 3 shows that it is false for d > 3.

The epsilon-net problem for half-spaces (containing the
origin) is self-dual. That is, any dual range space induced
by half-spaces in R? admits an e-net of size O(1/¢) if d < 3,
and this statement is false whenever d > 3.

2. Recall that a weak e-net for a range space (X, R) is a
set of elements of Urer R (not necessarily in X) such that
every range R € R with |[RN X| > £|X| contains at least
one of them. In [Ez10], Ezra proved that if X is any finite
set of points in R? and R consists of all axis-parallel boxes,
then (X, R) admits a weak e-net of size O (% loglog ). This
implies that our Theorem 2 cannot be strengthened by re-
quiring that the constructed range spaces do not admit weak
e-nets of size smaller than é log %, provided that € > 0 is suf-
ficiently small.

It is easy to see that the analogue of Theorem 3 is also
false for weak e-nets instead of strong ones. Indeed, any
finite system of half-spaces in R? can be hit by d + 1 points,
so that in (primal or dual) half-space range spaces there
always exist weak e-nets of size O(1).

However, we have been unable to decide whether the ana-
logue of Theorem 4 holds for weak e-nets in place of strong
ones.

3. Let X be a finite or infinite set and let R be a family
of “ranges” of a certain type in R? (e.g., lines, balls, half-
spaces, axis-parallel boxes). We say that a subfamily S C R
forms a k-fold covering of X if every point of X belongs to
at least kK members of S. It is an old problem in discrete
geometry to decide whether every k-fold covering selected
from a family R can be decomposed into two or more cov-
erings [PaTT09]. For example, it was shown by Gibson and
Varadarajan [GiV09] that every k-fold covering of the plane
with translates of a convex polygon can be decomposed into
Q(k) coverings.

There is an intimate relationship between epsilon-net prob-
lems and problems about decomposition of multiple cover-
ings. If we know that every k-fold covering S C R with
|S| = n splits into at least ck coverings for some absolute
constant ¢ > 0, then one of these coverings contains at most
n/(ck) sets. Setting k = en, we find a covering consisting
of at most 1/(ce) members of S. This means that the dual
range space %* induced by the members of S admits an e-
net of size O(1/¢). Therefore, if the dual range space does
not always admit an e-net of size O(1/¢), then it cannot be
true that every k-fold covering with ranges from R splits
into (k) coverings.

In particular, Alon [Al10] proved that there are n-element
point sets X C R? and straight-line ranges that do not ad-
mit e-nets of size O(1/e). The standard duality between
points and lines preserves incidences. Switching to the dual,
we obtain dual range spaces induced by sets of n lines in the
plane that do not admit e-nets of size O(1/e). According to
the argument in the previous paragraph, this implies that it
cannot be true that every k-fold covering of a finite set of
points in R? with straight lines splits into Q(k) coverings.



This consequence of Alon’s theorem had been proved ear-
lier, using the Hales-Jewett theorem [PaTT09]. Alon [A110]
proved that the same example also disproves that all range
spaces consisting of straight-line ranges in the plane admit
e-nets of size O(1/e).

4. If we replace Lemma 3.1 by a slightly weaker statement
(Theorem 9) in [ChPS09], we obtain a weaker version of
Theorem 4, resulting in an 2 (% log log %/ loglog log %) lower
bound on the size of the smallest e-net.
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