
Crossings between curves with many tangencies

Jacob Fox†,⋆, Fabrizio Frati‡, János Pach♯,⋆⋆, and Rom Pinchasi⋄

† Department of Mathematics, Princeton University, Princeton, NJ
jacobfox@math.princeton.edu

‡ Dipartimento di Informatica e Automazione, Roma Tre University, Italy
frati@dia.uniroma3.it

♯ EPFL Lausanne, Switzerland and Rényi Institute Budapest, Hungary
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Abstract. Let A and B be two families of two-way infinite x-monotone
curves, no three of which pass through the same point. Assume that
every curve in A lies above every curve in B and that there are m pairs
of curves, one from A and the other from B, that are tangent to each
other. Then the number of proper crossings among the members of A∪B
is at least (1/2 − o(1))m lnm. This bound is almost tight.

1 Introduction

Studying the incidence structure of a family of curves in the plane is a classi-
cal theme in combinatorial geometry with many applications in computational
geometry. Venn diagrams were introduced in the 19th century to analyze log-
ical relationships between various statements [9,7]. The incidence structure of
non-overlapping circular disks was investigated by Koebe [2], while Erdős [4]
raised several questions about tangencies between possibly overlapping congru-
ent disks, including his famous problem on unit distances: How many pairs of
points can be at distance one from each other in a set of n points in the plane?
In other words, how many tangencies can occur among n unit diameter disks in
the plane? These are hard questions, see [5] for a survey.

An equally tantalizing innocent-looking question was asked by Richter and
Thomassen [6]. We say that two closed curves γ1 and γ2 in the plane properly

cross if they share at least one point p (called a crossing point) such that γ1

passes from one side to the other side of γ2 in a small neighborhood of p. We say
that two closed curves γ1 and γ2 in the plane touch or are tangent to each other,
if they share exactly one point. This point is called the point of tangency of the
two curves. We say that two closed curves are intersecting if they have at least
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one point in common. A family F of closed curves is intersecting if every pair of
them is intersecting. The family F is in general position if any two of its members
share only a finite number of points and no three members pass through the same
point. According to the Richter-Thomassen conjecture, any intersecting family
of n closed curves in general position in the plane determines a total of at least
(1−o(1))n2 crossing points. This, of course, holds automatically if no two curves
of the family touch each other, because then the number of crossing points is at
least 2

(

n
2

)

. Therefore, in order to settle the problem, we have to analyze families
of curves with many tangencies.

In this note, we take the first step in this direction by studying the system
of tangencies between two intersecting families A and B of curves in general
position, with the property that no curve in A properly crosses any curve in B
(see Fig. 1). In this case, we are going to prove that, if m denotes the number
of pairs of touching curves (α, β) with α ∈ A and β ∈ B, the total number
of crossing points in F = A ∪ B divided by m tends to infinity, as m → ∞.
Consequently, if |F| = n and m > εn2 for some ε > 0, then the total number of
crossing points in F is superquadratic in n.
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Fig. 1. Two intersecting families A and B of curves in general position such that no
curve in A properly crosses any curve in B.

For aesthetical reasons, we formulate our results for two-way infinite x-

monotone curves, that is, for graphs γf of continuous functions f : R → R.
For simplicity, in the sequel, we use the term curve in this sense. We say that a
curve γf lies above a curve γg if f(x) ≥ g(x) for all x ∈ R.

For any family F of curves in general position, let CN(F) denote the number
of crossing points.

Our main result is the following.

Theorem 1. Let A and B be two families of two-way infinite x-monotone curves

such that A∪ B is in general position. Assume that every curve in A lies above

every curve in B and that there are m pairs of curves, one from A and the other

from B, that touch. Then the sum of the numbers of proper crossings among the



members of A and among the members of B satisfies

CN(A) + CN(B) ≥
(

1

2
− o(1)

)

m lnm,

where the o(1) term goes to 0 as m tends to ∞.

We say that A and B completely touch if every member of A touches every
member of B.

Theorem 2. For every n > 2, there exist two completely touching n-member

families A and B of two-way infinite x-monotone curves such that A ∪ B is in

general position, every curve in A lies above every curve in B, and

CN(A) + CN(B) ≤
(

3

4
+ o(1)

)

n2 log2 n.

Comparing Theorems 1 and 2, we obtain that if c(n) denotes the minimum
number of crossing points in the union A ∪ B of two completely touching n-
member families of curves, A and B, such that all the members of A are above
all the members of B, then we have:

(1 − o(1))n2 lnn ≤ c(n) ≤
(

3

4
+ o(1)

)

n2 log2 n =

(

3

4 ln 2
+ o(1)

)

n2 lnn.

This shows that Theorem 1 is tight up to a multiplicative factor of roughly
3

4 ln 2 ≈ 1.082.
In Sections 2 and 3 of this note, we establish Theorems 1 and 2, respectively.

In the final section, we make some concluding remarks. In particular, we for-
mulate a combinatorial result of independent interest on alternations in certain
sequences over finite alphabets (Theorem 3), which can also be used to prove
Theorem 1.

2 Levels – Proof of Theorem 1

The lower k-level of a family F of curves is the closure of the set of all points that
lie on exactly one member of F and strictly above exactly k − 1 members (see
Fig. 2). Let ℓk(F) denote the number of all proper crossings among members of
F that lie on the lower k-level of F . Analogously, the upper k-level of a family
F of curves is the closure of the set of all points that lie on exactly one member
of F and strictly below exactly k − 1 members. Let uk(F) denote the number
of all proper crossings among members of F that lie on the upper k-level of F .
Note that each proper crossing among two members of a family F of curves in
general position lies on two consecutive levels, so that we have

|F|
∑

k=1

ℓk(F) =

|F|
∑

k=1

uk(F) = 2CN(F). (1)

Theorem 1 can be easily deduced from the following lemma.
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Fig. 2. Two families A and B of curves, with |A| = 4 and |B| = 3. The lower 2-level
of A and the upper 2-level of B are shown by thick lines. Black dots show xinf(a3, b2)
and xsup(a3, b2) when k = 2.

Lemma 1. Let k > 1 and A and B be two families of two-way infinite x-

monotone curves, each of cardinality at least k, such that A ∪ B is in general

position. Assume that every curve in A lies above every curve in B and that

there are m pairs of curves, one from A and the other from B, that touch. Then,

we have

ℓ1(A) + u1(B) ≥ m − 1,

and

ℓk(A) + uk(B) ≥ 2
m

k
− 4k.

Proof: We may assume without loss of generality that all crossing points
between members of A ∪ B have distinct x-coordinates and that all of these
values belong to the open interval 0 < x < 1.

Note that, as x varies between the x-coordinates of two consecutive points
at which a member of A touches a member of B, the lowest curve of A or the
highest curve of B must change. This yields the inequality

ℓ1(A) + u1(B) ≥ m − 1.

Fix k > 1. For any 0 ≤ ξ ≤ 1 which is not the x-coordinate of an intersection
point, let Ak(ξ) denote the kth lowest curve in A at the vertical line x = ξ and let
Bk(ξ) denote the kth highest curve in B at the vertical line x = ξ. Analogously,
A≤k(ξ) denotes the family consisting of the k lowest curves in A at the vertical
line x = ξ and B≤k(ξ) denotes the family consisting of the k highest curves in B
at the vertical line x = ξ.

For ξ = 0 or ξ = 1, the number of pairs (a, b) ∈ A≤k(ξ) × B≤k(ξ) is k2. A
pair (a, b) ∈ A× B is said to be internally touching if a and b touch each other
and

(a, b) 6∈ (A≤k(0) × B≤k(0)) ∪ (A≤k(1) × B≤k(1)) .

Let I stand for the number of internally touching pairs (a, b). Clearly, we have
I ≥ m − 2k2. For any internally touching pair (a, b), let (see Fig. 2)

1. xinf(a, b) be the infimum of all x-values for which Ak(x) = a and b ∈ B≤k(x),
or a ∈ A≤k(x) and Bk(x) = b, and let



2. xsup(a, b) be the supremum of all x-values for which Ak(x) = a and b ∈
B≤k(x), or a ∈ A≤k(x) and Bk(x) = b.

Obviously, we have xinf(a, b) < xsup(a, b) as the x-coordinate of the touching
point between a and b lies strictly between these two numbers. It is also clear
that the numbers xinf(a, b) and xsup(a, b) are x-coordinates of crossing points
lying on the kth lowest level of A or on the kth highest level of B.

For any 0 < ξ < 1, there are at most k internally touching pairs (a, b) with
xinf(a, b) = ξ. Indeed, for any a ∈ A such that a = Ak(ξ + ε), say, for all
sufficiently small ε > 0, all curves b ∈ B with xinf(a, b) = ξ must belong to the
set B≤k(ξ). This is a set of size k. Thus, the number of distinct x-coordinates ξ
at which either Ak(ξ) or Bk(ξ) changes is at least 2I/k. That is, we have

ℓk(A) + uk(B) ≥ 2I

k
≥ 2

m − 2k2

k
= 2

m

k
− 4k.

�

A similar argument was used in [1].
Now we are in a position to establish Theorem 1.

Proof of Theorem 1: Assume without loss of generality that |A| ≥ |B| and
that every curve in A∪B participates in at least one touching pair. This implies
that any two members of A properly cross at least once and any two members
of B properly cross at least once. Hence, we have

CN(A) + CN(B) ≥
(|A|

2

)

+

(|B|
2

)

.

This completes the proof in the special case where m ≤ |A|2/ ln |A|, because

then the term
(

|A|
2

)

already exceeds the desired lower bound. In particular, since
the total number m of touching pairs is at most |A||B|, we are done if |B| ≤
|A|/ ln |A|.

From now on, we can assume that

m > |A|2/ ln |A|
and

|A|/ ln |A| ≤ |B| ≤ |A|.
Let ε > 0 be a very small constant. Set K = m

1

2
−ε, and add up ℓk(A) +

uk(B) for all 1 ≤ k ≤ K. Note that we can apply Lemma 1, since the last two
inequalities imply that K ≤ |B|. In view of (1), we obtain

CN(A) + CN(B) ≥ 1

2

K
∑

k=1

(ℓk(A) + uk(B)) ≥ 1

2

(

m − 1 +
K
∑

k=2

(

2
m

k
− 4k

)

)

≥ 1

2

(

m − 2K(K + 1) + 3 + 2m

K
∑

k=2

1

k

)

=

(

1

2
− ǫ − o(1)

)

m lnm.

Letting ǫ → 0, we can conclude that CN(A)+CN(B) is at least (1
2 −o(1))m lnm,

as required. �



3 Constructive upper bound – Proof of Theorem 2

Let c(n) denote the minimum number of crossing points in the union of any two
completely touching n-member families of curves A ∪ B, where all members of
A are above all members of B.

We need the following:

Lemma 2. For any pair of positive integers i and j, we have

c(ij) ≤ i2c(j) + j2c(i).

Proof: Let (A′,B′) be a pair of completely touching i-member families of
curves with

CN(A′) + CN(B′) = c(i).

Replace each curve γ ∈ A′ ∪B′ by j curves that closely follow γ. For any α ∈ A′

and for any β ∈ B′, let each of the j curves corresponding to α touch each of
the j curves corresponding to β in a small neighborhood of the point where α
and β touch each other. This can be achieved by introducing c(j) crossings near
each point of tangency between α and β. Apart from the crossings introduced in
the neighborhoods of these points, the j new curves corresponding to an “old”
curve γ ∈ A′ ∪ B′ are disjoint.

Denote the family of ij curves obtained from the members of A′ by A, and
the family of ij curves obtained from B′ by B. Since the number of tangencies
between A′ and B′ is i2, there are at most i2c(j) crossings among the members
of A ∪ B that occur near these touching points. On the other hand, in a small
neighborhood of each crossing between two members of A′ or two members of B′,
we create j2 crossings in A or in B. Therefore, there are j2c(i) crossings among
members of A ∪ B that occur near crossings in A′ or B′. In view of the fact
that each crossing in A∪B occurs in a small neighborhood of either a touching
point or a crossing point in A′ ∪ B′, we obtain that c(ij) ≤ CN(A) + CN(B) ≤
i2c(j) + j2c(i), as required. �

Using the fact c(2) = 3, by repeated application of Lemma 2 with j = 2 and
i = 2, 22, . . . , 2k−1. we obtain that c(2k) ≤ 3

4k4k. Starting with a completely
touching pair of 2-member families of curves, after k − 1 iterations we obtain a
completely touching pair (A,B) of 2k-member families with m = 22k touching
pairs. Thus, there exists a configuration with only 3

4k4k = 3
8m log2 m crossings,

meeting the requirements. This completes the proof of Theorem 2.

4 Concluding remarks

The assumption in Theorem 1 that the curves are two-way infinite is not im-
portant. If we have a family F = A ∪ B of arbitrary x-monotone curves such
that, for any pair of curves α ∈ A, β ∈ B which can be met by a vertical line,



α lies above β, we can make each curve two-way infinite without destroying this
property, by adding only at most

2

(|A|
2

)

+ 2

(|B|
2

)

< |F|2

crossings.

One can give an alternative proof of Theorem 1 by reducing it to a combina-
torial statement about sequences. Let (x1, . . . , xm) be a sequence of m elements
taken from a finite alphabet Φ. For any pair of distinct elements a, b ∈ Φ, define
the number of alternations of a and b in the sequence, as the largest number
t such that there is a subsequence (xi(0), xi(1), . . . , xi(t)) of length t + 1 with
1 ≤ i(0) < i(1) < . . . < i(t) ≤ m such that its elements alternate between a and
b (or between b and a). That is,

xi(0) = xi(2) = . . . = a, xi(1) = xi(3) = . . . = b,

or
xi(0) = xi(2) = . . . = b, xi(1) = xi(3) = . . . = a.

This number t is denoted by alt{a,b}(x1, . . . , xn).
Define the alternation number of the sequence (x1, . . . , xm), as

∑

{a,b}⊆Σ

alt{a,b}(x1, . . . , xm),

where the sum is taken over all unordered pairs {a, b} of distinct elements from
Φ.

Theorem 1 can also be proved using the following result, which is perhaps of
independent interest.

Theorem 3. Let (x1, . . . , xm) be a sequence of length m over an alphabet Φ.

Assume that there exists an absolute constant c > 0 such that for all 1 ≤ z ≤
m, every z consecutive elements of the sequence contain at least c

√
z distinct

symbols. Then the alternation number of the sequence (x1, . . . , xm) is at least

dm log m, for a suitable constant c′ > 0, depending only on c.

Salazar [8] verified the Richter-Thomassen conjecture in the special case when
any pair of curves have at most k points in common, for a fixed constant k. The
best known general bound is due to Mubayi [3], who proved that any family of
n closed curves in general position in the plane determines at least

(

4
5 + o(1)

)

n2

intersection points.
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